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Abstract

Reinforced concrete (RC) columns play a vital role in structural integrity, and accurately
predicting their failure modes is essential for enhancing seismic safety and performance.
This study explores the use of a supervised machine learning approach—specifically, an
artificial neural network (ANN) model—to classify failure modes of RC columns. The
model is trained using data from the well-established Pacific Earthquake Engineering
Research Center (PEER) structural performance database, which contains results from
over 400 cyclic lateral-load tests on RC columns. These tests encompass a wide range of
column types, including those with spiral or circular hoop confinement, rectangular ties,
and varying configurations of longitudinal reinforcement with or without lap splices at
critical sections. The ANNs were evaluated using a randomly selected subset from the
PEER database, achieving classification accuracies of 94% for rectangular columns and
95% for circular columns. Notably, in certain cases, the model’s predictions aligned with
or exceeded the accuracy of traditional building code-based methods. These findings
underscore the strong potential of machine learning—particularly ANNs—for reliably
postdicting failure modes (even the brittle ones) in RC columns, signaling a promising
advancement in the field of earthquake engineering.

Keywords: reinforced concrete; columns; PEER structural performance database; machine
learning; artificial neural networks; failure mode

1. Introduction
The failure behavior of structural elements—such as reinforced concrete (RC)

columns—is influenced by a variety of factors. These include geometric characteristics,
longitudinal reinforcement, the effectiveness of transverse reinforcement in providing
confinement, and the loading history. The performance of these columns throughout
the loading range is governed by several interacting resistance mechanisms, including
flexure, shear, buckling of longitudinal bars under compression, and—in cases with lap
splices—the development behavior of the lap-splice itself. Often, a combination of these
mechanisms determines the overall response of a column, particularly under cyclic loading.
Numerous models have been developed to predict both the strength and deformation
capacity of columns. However, comparisons with experimental data show that predictions
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for deformation capacity carry significantly more uncertainty—by at least an order of
magnitude—than those for strength [1,2].

System identification and damage detection form a dual-focused research area that
increasingly utilizes machine learning (ML) to simulate structural behavior and forecast
seismic responses. Laboratory testing of RC structures has generated valuable data, en-
abling ML techniques to identify failure modes, predict strength and capacity, and model
constitutive behavior [3]. Recently, ML has been applied to risk assessment and predic-
tive modeling within civil engineering [4–11]. Some studies have focused specifically
on predicting failure modes and estimating shear strength in beam–column joints. For
instance, Mitra et al. (2011) [12] distinguished between non-ductile joint shear failures and
ductile beam yielding in interior joints [6,9,12,13]. Similarly, Tang et al. (2022) [14] per-
formed low-cycle reciprocating load tests on 23 recycled aggregate concrete-filled steel tube
columns and three conventional counterparts. They used artificial intelligence—specifically,
random forests, optimized via the firefly algorithm—to analyze how different parameters
affect the seismic performance of concrete columns. Further related research, including
multi-objective optimization studies, is discussed in Tang et al. (2023) [15].

Machine learning (ML), a branch of artificial intelligence (AI), has demonstrated
significant effectiveness in optimizing and predicting structural behavior [16–24]. Unlike
traditional approaches to analyzing reinforced concrete (RC) slab–column systems, ML
enables engineers to efficiently process large datasets and uncover intricate patterns related
to dynamic behavior. Its strength lies in the ability to account for a wide range of input
variables and their complex interdependencies, making ML highly valuable for predicting
failure modes and enhancing structural optimization [25–29]. The integration of ML into
structural engineering has led to notable progress in understanding and modeling the
complex behavior of RC structures. For instance, Zhou et al. [30] explored the use of deep
learning models—including multi-layer perceptrons and one-dimensional convolutional
neural networks—to predict failure modes and structural responses of RC slabs under
blast loads. Their findings demonstrate that ML techniques can effectively handle multi-
dimensional datasets, providing accurate and interpretable predictions that outperform
traditional methods. Similarly, hybrid approaches that combine ML with optimization
algorithms have improved the accuracy of punching shear strength (PSS) predictions
in RC slabs [31]. The importance of interpretability in ML applications has also been
emphasized. Shen et al. [32], for example, applied XGBoost alongside SHAP (Shapley
Additive Explanations) to illustrate how key input variables—such as reinforcement ratios—
affect structural performance. This level of transparency increases confidence in ML
models, particularly for safety-critical engineering applications. In addition to static failure
mode prediction, ML has been successfully applied to dynamic analysis. Zhao et al. [33]
utilized support vector machines and Gaussian process regression to estimate the maximum
displacement of RC slabs under blast loading. Their study highlighted the superior accuracy
and efficiency of ML models compared to traditional numerical simulations, making them
well-suited for real-time evaluations. Additionally, Albostami et al. [34] investigated the
use of artificial neural networks (ANNs) and evolutionary algorithms for optimizing the
punching shear strength of steel fiber-reinforced concrete slabs. Collectively, these studies
highlight the transformative potential of ML in structural engineering applications [35,36].

Previous research by the authors [36] has highlighted several key findings regarding
key features affecting the ductility of RC columns. For example, regarding concrete strength,
the following remarks can be made:

(a) Higher-strength materials exhibit lower ultimate strain,
(b) Confinement can increase strain capacity;
(c) Higher concrete strength reduces the compression zone at both yielding and failure.
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Overall, greater concrete strength tends to reduce ductility. The presence of compres-
sive axial load further decreases the curvature ductility of a section. Experimental results
support this trend, showing increased brittleness, especially when axial load ratios exceed
the balanced failure condition. The shear span-to-depth ratio (aspect ratio) plays a critical
role in shear behavior. For columns with a small aspect ratio, shear deformations may
become significant relative to flexural deformations. When shear response dominates,
the hysteresis (force–deformation) curve displays more pronounced pinching and a faster
reduction in energy dissipation capacity. Finally, displacement ductility is inversely re-
lated to the aspect ratio, which, for a given flexural resistance, is itself inversely related to
shear demand (maximum shear force). According to the literature [3–36], ANNs and deep
learning can capture better the above-described nonlinearity between these features of RC
columns and the final failure mode.

This study investigates the effectiveness of a supervised learning algorithm—ANNs—
as a predictive tool for postdicting the failure modes of reinforced concrete (RC) columns.
The assessment is based on a well-known experimental dataset originally compiled by Berry
et al. (2004) [37], widely recognized as the PEER (Pacific Earthquake Engineering Research
Center) structural performance database. This comprehensive dataset consolidates results
from over 400 cyclic lateral-load tests on RC columns, covering various types, including
spiral or circular hoop-confined columns, rectangular tied columns, and those with or
without lap splices in the longitudinal reinforcement at critical sections. Where available,
the database includes detailed information for each test, such as column geometry, material
characteristics, reinforcement specifications, test setup (accounting for P-Delta effects), axial
load, digital records of lateral force–displacement at the column top, and associated top
displacements corresponding to different levels of observed damage.

In the latter database [37], column failure modes were categorized as follows:

(a) Flexure-critical;
(b) Flexure–shear-critical;
(c) Shear-critical.

These classifications were based on the following criteria:

• If no shear damage was reported, the column was categorized as flexure critical.
• If shear damage (diagonal cracks) was noted, the absolute maximum effective force

(Feff)—the highest measured force in the experimental response—was compared to the
calculated “ideal” force (F0.004), corresponding to a maximum axial compressive strain
of 0.004 (the strain at which unconfined concrete spalls). The failure displacement
ductility (µfail) was defined as the displacement ductility at 80% of the maximum
effective force (Feff). If Fe f f < 0.95·F0.004 or if µ f ail ≤ 2, the column was classified as
shear-critical. Otherwise, the column was categorized as flexure–shear-critical. All
columns in the database were further grouped by cross-sectional shape (rectangular
or circular).

This paper has the following contributions in the research area of ML methods in
earthquake engineering:

• According to the authors’ knowledge, the PEER structural performance database is
employed for the first time in order to detect the failure mode of RC columns based on
the traditional methods which employ engineering mechanics solutions applied to the
whole database.

• The above results are thoroughly compared to the performance of ANNs for the entire
database, both for rectangular and circular RC columns.

• Finally, all the performance metrics necessary for the evaluation of the ML methodol-
ogy in detecting the failure mode of RC columns are provided too.
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The structure of this study is as follows: After the Introduction, which describes
the initiatives of this research paper, the employed data and the performed traditional
methodology are described in Section 2. In the latter section, the performance of traditional
methods based on engineering mechanics and building code scrutiny is given in detail. The
steps of the supervised ML method carried out in Python programming language (Python
3.12) and its output results are provided in Sections 2 and 3. Finally, the discussion of the
latter results is presented in Section 4, while the conclusions and future work are presented
in Section 5.

2. Materials and Methods
Reinforced concrete (RC) columns play a critical role in the structural integrity of

buildings, as their failure can result in severe and disproportionate impacts on the entire
system. The behavior of RC columns subjected to combined axial load, shear, and flexure
has been the focus of extensive research for decades. For flexural behavior, methods such
as sectional analysis or fiber modeling in a one-dimensional stress field can effectively
estimate ultimate strength, yield deformation, and predict flexural failure modes. However,
when shear or combined shear–flexure behavior governs the response, sectional analysis
alone becomes insufficient. This is because shear force transfer involves complex stress
fields that span the entire member, extending to its supports. Figure 1 shows the shear
strength degradation models adopted by EN 1998-3 (2005) [38] and ASCE/SEI 41 (2007) [39],
which are used to depict the envelope of resistance curves for RC columns as a function of
displacement ductility.

Figure 1. Shear strength degradation model for RC column failure mode prediction adopted by the
current codes of assessment.

These models are used as the primary basis for determining whether shear failure
occurs before or after flexural yielding—identified by the intersection point of the shear
strength curve and the flexural capacity curve. To define the shear failure strength and
deformation of a reinforced concrete column, the flexural capacity curve must first be
established using conventional flexural analysis. This curve is then combined with the
shear strength degradation curve provided by design codes. This method is employed in
the current section to assess how accurately building code-based provisions can identify
the actual failure mode of RC columns, prior to evaluating the same performance using
machine learning techniques in the following Section.



Appl. Sci. 2025, 15, 10175 5 of 30

2.1. Flexural Capacity

Flexural capacity curves, as shown in Figure 1 for the RC columns in the PEER
database [37], are derived from nonlinear static pushover or cyclic analyses performed
using the widely recognized MATLAB (2024b) toolbox, FEDEAS Lab Release 3.0 [40–42],
under the assumption of flexural behavior without shear failure. Numerical simulations
were conducted using a nonlinear fiber beam–column element that captures the spread of
plasticity along the member. The longitudinal beam element is modeled using a force-based
approach with a linear moment distribution, which constructs a flexibility matrix that is
updated incrementally as nonlinearity increases. Strain–displacement relationships are
implicitly determined by inverting this flexibility matrix to derive stiffness. Assuming
strain compatibility among the constituent materials, the model evaluates sectional re-
sponses at specific integration points along the member’s length. At the sectional level,
the Bernoulli assumption—that plane sections remain plane and perpendicular to the
member’s axis—was employed to relate fiber strains to sectional curvature and axial strain.
Nonlinear uniaxial material models define the normal stress–strain behavior of individual
fibers, while shear effects on principal stress orientations across the section are neglected.
Figure 2 illustrates a typical discretization of a column section. Sectional stress resultants,
including moment and axial load, were obtained by summing the contributions of the fiber
stress resultants.

(a) (b) 

(c) 

Figure 2. (a) Numerical model for circular and rectangular RC columns failed in flexure in FEDEAS
MATLAB toolbox [40–42]. (b) Circular section discretization in fibers/layers. (c) Rectangular section
discretization in fibers/layers.

2.2. Shear Capacity

Shear capacity curves of the RC columns of the PEER database were obtained based on
the shear strength degradation model of Figure 1. According to EN 1998-3 (2005) [38], the
part of the cyclic shear resistance that depends on concrete and transverse steel contribution
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(excluding the part owing to axial load contribution), VR, decreases with the plastic part
of ductility demand, expressed in terms of ductility ratio of the transverse deflection of
the shear span or of the chord rotation at member end: µ∆

pl = µ∆ − 1. For this purpose,
µ∆

pl may be calculated as the ratio of the plastic part of the chord rotation, θp, normalized
to the chord rotation at yielding, θy. Thus, EN 1998-3 (2005) [38] defines shear strength
accounting for the above reduction as follows:

VR = [(h − x)/2Ls]·min(N; 0.55Ac fc) +
[
1 − 0.05min

(
5; µ∆

pl
)]

·{
0.16max(0.5; 100ρtot)[1 − 0.16min(5; LV/h)]

√
fc Ac + Vw

} (1)

where h is the depth of the cross-section (equal to the diameter D for circular sections); x
is the compressive zone depth; N is the compressive axial force (positive, taken as being
zero for tension); Ls = M/V is the shear span of the member; Ac is the cross-sectional area,
taken as being equal to bwd for a cross-section with a rectangular web of width (thickness)
bw and structural depth d or to πDc

2/4 (where Dc is the diameter of the concrete core
to the inside of the hoops) for circular sections; fc is the concrete compressive strength,
and ρtot is the total longitudinal reinforcement ratio. The term Vw is the contribution of
transverse reinforcement to shear resistance, taken as equal to the following:

Vw =
π

2
Asw

S
fyw(D − 2c) (2)

where, fyw is the yield stress of the transverse reinforcement, Asw is the area of the spiral
wire, c is the concrete cover, and S is the spiral step (spacing between successive turns of a
spiral). Similarly, for rectangular cross-sections with a web having a width of bw,

Vw = ρwbwz fyw (3)

where ρw is the transverse reinforcement ratio, z is the height of the equivalent truss
(internal lever arm between longitudinal tension and compression resultants, i.e., d-d′ in
beams and columns). In concrete columns with a shear span ratio of Ls/h less than or
equal to 2, the shear strength, VR cannot exceed the value corresponding to failure by web
crushing along the diagonal of the column after flexural yielding, VR,max, which, under
cyclic loading, may be calculated from the following expression:

VR,max = (4/7)[1 − 0.02min(5; µ∆
pl)][1 + 1.35(N/Ac fc)][1 + 0.45(100ρtot)]·

√
min(40; fc)bwz·sin2δ (4)

where δ is the angle between the diagonal strut that is defined by the centroids of the
compression zones at the column ends, and the axis of the column (tan δ = h/2Ls).

ASCE/SEI 41 [39] represents the most recent update in a series of guidelines developed
following the FEMA [43] initiatives from the 1990s and 2000s, which aimed to establish a
consistent assessment framework for existing structures. The FEMA/ATC documents were
the first to provide an integrated reference for performance-based engineering, where defor-
mation and force demands under various seismic hazards are compared against structural
capacities at different performance levels (i.e., damage states). At the start of this significant
FEMA project, limited data existed on the performance of existing components, leading to
inconsistent application of reliability concepts in developing performance criteria. Estimat-
ing the shear strength of an RC element remains a complex challenge because it requires
a thorough understanding of multiple interacting behavior mechanisms under reversed
cyclic loading. Shear strength is strongly influenced by factors such as loading history,
element dimensions (e.g., aspect ratio), concrete strength, longitudinal reinforcement ratio,
and particularly the ratio and detailing of transverse reinforcement. To date, it has not
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been possible to theoretically derive shear strength solely from first principles of mechanics
without relying on calibrated empirical constants. Consequently, shear strength estimates
based on design expressions are inherently dependent on the experimental datasets used to
calibrate them, as well as on researchers’ interpretations regarding the influence of various
variables on shear mechanics. The following formula for estimating the shear strength of
reinforced concrete columns is recommended by the ASCE/SEI 41 (2007) [39] Code for
seismic rehabilitation of existing buildings:

VR = Vc + Vw = k(µ∆)

[
(0.5

√
fc/(Ls/d))

√
1 + N/(0.5Ag

√
fc)

]
0.8Ag + k(µ∆)·

[
Asw fywd/S

]
(5)

where Vc is the concrete’s contribution to shear resistance; Vw is the contribution of
transverse reinforcement; d is the effective depth; Ls is the shear span of the column; N is the
axial force (compression positive, taken as zero for tension); Ag is the gross cross-sectional
area of the column; Asw is the cross-sectional area of one layer of stirrup reinforcement
parallel to the shear action; and S is the centerline spacing of stirrups along the length of the
member. If S is equal to or greater than half of the effective depth of the column, then the
contribution of steel reinforcement Vw to shear strength is reduced to 50% of its estimated
value from the above equation. If S is equal to or greater than the effective depth of the
column, then zero shear strength contribution from steel reinforcement Vw is considered;
fc is the concrete compressive strength; k(µ∆) is the shear strength reduction coefficient
that depends on ductility demand. If ductility demand is less than or equal to 2, then the
factor is equal to 1 (i.e., no strength reduction). If the ductility is greater than 6, then the
reduction factor is equal to 0.6. For ductility between 2 and 6, the reduction factor is linearly
interpolated between the proposed values.

2.3. Failure Mode Prediction

The next section will evaluate the effectiveness of machine learning methods—
particularly ANNs—in predicting the failure modes of RC columns using test cases from
the PEER structural performance database [37]. In this section, the performance evaluation
will instead be carried out using the traditional engineering mechanics approach, applied
to the same set of column tests. Furthermore, the confusion matrix will be introduced as a
performance metric for the traditional method, encompassing both circular and rectangular
RC columns from the PEER database.

For a circular column that failed in flexure, a single beam–column element was used
to model the entire length of the cantilever column (Figure 2), with five Gauss–Lobatto
integration points distributed along the element (FEDEAS Lab [40–42]). The effect of
confinement on the concrete core was incorporated by adjusting the properties of the
uniaxial stress–strain relationship for concrete in compression [44,45]. The P-Delta effect
was not considered in this simulation. The resulting lateral force–lateral displacement
response is shown in Figure 3, compared against experimental data. Similarly, for a
rectangular RC column from the test set that also failed in flexure, a single fiber element
represented the entire cantilever height (Figure 2), with five Gauss–Lobatto integration
points along its length. The uniaxial stress–strain behavior of concrete was modeled using
the relationship proposed by Mander et al. (1988) [45]. However, the differing confinement
between the unconfined concrete cover and the confined core was not accounted for in
the section discretization (Figure 2). The longitudinal steel reinforcement’s stress–strain
behavior was simulated using the Menegotto and Pinto (1973) model [46]. The P-Delta
effect was included here. The lateral force–lateral displacement curve obtained from this
numerical simulation is compared with experimental results in Figure 4. As with the
circular columns, a strong correlation between numerical and experimental results was
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observed [47]. Consequently, it will be assumed that the traditional engineering mechanics
methods and code provisions can predict flexural failure modes of both circular and
rectangular columns with 100% accuracy.

Figure 3. Comparison between numerical and experimental response of circular column failed in flexure
(ID#117) (specimen case obtained from the Berry et al. Database 2004 [37] and was analyzed herein).

Figure 4. Comparison between numerical and experimental response of rectangular column
failed in flexure (ID#19) (specimen case obtained from the Berry et al. Database 2004 [37] and
was analyzed herein).

Figure 5 shows a comparison between analytical and experimental responses for a
rectangular column (ID#140) that failed in shear. The correlation is notably poor, even
regarding the initial stiffness predicted by flexural analysis. This discrepancy is due
to the exclusion of deformation effects from reinforcement pullout and shear deforma-
tion. It is apparent that only the degrading shear strength model from ASCE/SEI 41
(2007) [39] intersects the flexural capacity curve, indicating shear failure caused by shear
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strength degradation. However, the predicted displacement at which this failure occurs
precedes the actual onset of strength degradation observed experimentally. Because not
all code provisions correctly predicted the failure mode in this case, the prediction is
considered unsuccessful.

Figure 5. Comparison between numerical and experimental response of rectangular column failed
in shear (ID#140) (specimen case obtained from the Berry et al. Database 2004 [37] and was
analyzed herein).

Both shear strength degradation models shown in Figure 6 predicted shear failure
occurring after yielding, but at displacements considerably smaller than those recorded
in the experimental results. Among the two, the EN 1998-3 (2005) [38] model offered a
closer estimation of shear failure strength than the ASCE/SEI 41 (2007) [39] model. In
this instance, the traditional method successfully predicted the failure mode. Additional
comparison cases for the whole PEER database can be found in [47].

Figure 6. Comparison between numerical and experimental response of circular column failed
in shear (ID#14) (specimen case obtained from the Berry et al. Database 2004 [37] and was
analyzed herein).
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The performance metrics for predicting failure modes of circular RC columns using
the traditional method are presented below. This approach, grounded in engineering
mechanics and building code provisions (also see [47], Figure 2), achieves an accuracy
of 81% in identifying the actual failure modes of the tested columns. This accuracy is
determined from Table 1 by dividing the sum of the diagonal elements by the total sum of
all elements in the table.

Table 1. Confusion matrix in numbers for prediction through engineering mechanics and code
provisions of the failure mode of circular RC columns of the PEER structural performance database.

Confusion Matrix in Numbers
Tr

ue
V

al
ue

s Flexure 12 0 0

Flexure–Shear 2 5 0

Shear 0 2 0

Flexure Flexure–Shear Shear

Predicted Values

Lastly, the performance metrics for predicting failure modes of rectangular RC columns
using the traditional method are also presented below. This approach, based on engineering
mechanics and code provisions (see also [47]), attains an accuracy of 97% in correctly
identifying the actual failure modes of the tested columns. The accuracy is calculated from
Table 2 by dividing the sum of the diagonal elements by the total sum of all elements in
the table.

Table 2. Confusion matrix in numbers for prediction through engineering mechanics and code
provisions of the failure mode of rectangular RC columns of the PEER structural performance database.

Confusion Matrix in Numbers

Tr
ue

V
al

ue
s Flexure 57 0 0

Flexure–Shear 1 3 0

Shear 1 0 0

Flexure Flexure–Shear Shear

Predicted Values

2.4. Artificial Neural Networks with Python

Following the presentation of failure modes and performance metrics obtained from
traditional nonlinear structural analysis methods, this section introduces a methodology
for predicting failure modes of reinforced concrete columns using machine learning (ML)
techniques. The focus is on supervised ML approaches, particularly ANNs, applied to a
randomly selected test set from the PEER database [37].

The typical workflow for any machine learning task includes the following steps:

1. Define the problem and determine the necessary data.
2. Gather the data in a usable format.
3. Identify and address any data gaps or uncertainties.
4. Prepare the data for input into the machine learning model.
5. Train the model using the training dataset.
6. Apply the trained model to make predictions on the test dataset.
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7. Evaluate the predictions against known test outcomes and calculate performance metrics.
8. If results are unsatisfactory, improve the model, collect more data, or investigate

alternative modeling methods.

Neural networks are models that attempt to mimic the functioning of the human
brain to solve various types of problems, including classification problems, regression, and
forecasting the future values of a variable. The specialized branch of machine learning that
specializes in training neural networks (especially those with complex structures) is called
deep learning in the literature (Burkov A., 2019 [48]). A neuron is the building block of
a neural network. In other words, a neural network consists of a set of neurons that are
arranged within the network in different layers.

The process of training an ANN on the available data involves determining the optimal
values of the parameters that “connect” each neuron in one layer to the neurons in the
immediately preceding layer. In this study, there were 500 neurons in the hidden layer.
This process, called forward propagation, can be described in the following steps:

1. The records of the entire training set pass through the neural network, and for each
one, the network generates a prediction of the variable to be predicted.

2. The above predictions are used to calculate the value of the cost function, which
quantifies the “error” made by the ANN in attempting to predict the value to be
predicted. A very common choice is the mean squared error (MSE) function.

3. Forward propagation, described in steps 1 and 2, is followed by backward propaga-
tion, during which the parameter values used in the neural network in steps 1 and 2
to generate predictions from the ANN are revised and renewed in such a way as to
contribute to reducing the value of the cost function calculated above. This process is
called backward propagation because the revision–renewal of the parameter values
starts from the output layer and reaches the input layer of the ANN.

4. The process described in steps 1 to 3, where the records of the training set are forward
propagated to calculate a value of the cost function and then backward propagated
with the aim of updating the values of the parameters used in order to reduce the
value of the cost function calculated, is referred to in the literature as an epoch.

5. The next epoch begins, using the revised values of the parameters determined during
the backward propagation of the previous epoch. The training process stops at the last
epoch selected, and the ANN parameter values obtained in the backward propagation
of the last epoch are the final ones for the ANN.

It is worth noting that the number of epochs (here equal to 500) that will take place
during ANN training is selected by the analyst and constitutes a hyperparameter of the
ANN model. Usually, the number of epochs to be used is determined by trial and error, and
the general rule is that fewer epochs often lead to ANNs that exhibit underfitting, while
too many epochs are associated with ANNs that exhibit overfitting, since in one case the
model comes into contact with the testing set records a few times, while in the other case it
examines the test set records more times.

From a mathematical point of view, training a neural network, like a “classic” super-
vised learning model, can be described as the problem of minimizing the selected cost
function under the values of the model parameters, which in the case of an artificial neural
network are the parameters that weight the outputs of the neurons of the immediately
preceding layer of the network at the input of the neurons of the immediately following
layer of the network. Such a problem is usually too complex to be solved accurately with
closed-form solutions. Thus, in practice, this problem is solved using numerical meth-
ods. This numerical solution is aided by optimization algorithms, which are algorithmic
procedures that “guide” the process of finding the values of the network parameters that
correspond to the minimum value of the cost function.
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The adaptive moment estimator (Adam) algorithm applied in this study is one of the
most widely used solving algorithms today. It maintains a different learning rate for each
parameter of the network, unlike other algorithms that use a common learning rate for all
parameters. It is considered one of the best options for training neural networks that solve
complex problems, as it is quite effective on complex and noisy data and helps to quickly
converge on the final solution to the problem.

It is also clear that choosing the appropriate activation function for both the neurons
of the hidden layers of a neural network and the neurons of the output layer is a crucial
choice in the process of developing a neural network model. The choice varies depending
on the problem that the neural network is called upon to solve (regression or classification)
and whether the activation function will be used in the hidden layer or in the output layer
of the network. The following Table 3 summarizes the activation functions applied in
this study.

Table 3. Activation functions applied to the ANNs in this study.

Activation Function Equation Application

ReLu F(x) = max(0, x) Classification Problems with many hidden
layers

Softmax F
(

xj
)
= exj

/∑D
k=1exk Non-binary classification problems and

applied to the output layer

A very important hyperparameter in training a neural network is the cost function
that will be used. As explained, the entire process of training a model consists of finding
the optimal estimates of the model parameters, i.e., those that minimize the selected cost
function. Up to this point, reference has been made mainly to the mean square error
(MSE) function, which, although widely used and useful, cannot be used in classification
problems. It is worth noting that while in the case of binary classification, the output layer
of the ANN contains one neuron (producing as output the probability Y = 1), in non-binary
classification, the output layer contains as many neurons as there are possible (distinct)
values of the variable to be predicted (Figure 7). In Table 4, the cost function applied here
for non-binary classification is reported.

Figure 7. Non-binary classification problem for RC column failure mode prediction with 5 input
variables (see Appendix A) and 3 possible values for the classification variable of the output layer (0
for flexure, 1 for flexure–shear, and 2 for shear). The maximum probability defines the final failure
mode of the RC column.
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Table 4. Cost Function of the ANN for the non-binary classification problem of this study.

Cost Function Equation Application

Multiclass Cross
Entropy (MCE) MCE = −∑c

j=1Y j
i log

(
Ŷ j

i

) Non-binary
classification problems

3. Results
A review of the full PEER database [37] for both circular and rectangular RC columns

reveals that not all necessary parameters for defining the key variables influencing failure
mode and displacement ductility are available for every column. Therefore, data files
containing the required parameters—such as aspect ratio, axial load ratio, concrete strength,
transverse reinforcement ratio, and normalized maximum shear stress—were generated
and categorized into two groups based on section shape: rectangular and circular RC
columns (see Appendix A).

These datasets were then split into training and testing sets for each column type. The
test data were set to comprise 25% of the total dataset, with the remaining 75% allocated for
training (based on previous research by the authors on the same data as the best choice [36]).
During the training phase, the model was provided with both the input features and
the corresponding failure modes (flexure, flexure–shear, or shear—hot-encoded in the
dataset as 0, 1, and 2, respectively), enabling it to learn the relationships between the
features and the target variable. As previously discussed, it is expected that these input
features are correlated with the failure mode, and the model’s objective is to discover this
underlying relationship.

Once trained, the model is tested using the test dataset, where it is given only the
feature data—without the actual failure mode labels—and is asked to predict the failure
modes. Since the true failure modes are known to the supervisors, the model’s accuracy
can then be evaluated. In general, dividing the dataset into training and testing subsets
(hold-out method) ensures that the model is evaluated on data representative of the entire
dataset while preventing overfitting.

3.1. Rectangular RC Columns

The performance metrics for rectangular RC columns are presented below. The ANN
model achieved an accuracy of 94% in predicting the actual failure modes of the columns
in the test dataset. This accuracy is calculated from Table 5 by dividing the sum of the
diagonal elements by the total sum of all elements in the table. Additional performance
metrics are provided in Table 6. Furthermore, Table 6 indicates that the model performs
better at predicting flexural and shear failure modes than flexure–shear failures. This is
understandable, as distinguishing flexure–shear failure is often more complex, even in
practical engineering assessments, particularly in seismic structural assessment. When
each influencing parameter in the feature data is examined individually, the transverse
reinforcement ratio emerges as the most significant factor for the model’s success. This
outcome verifies that the model has accurately captured the relationship between all
features and the target failure mode, which is essential for building a prediction model
based on physically meaningful ML methods [36]. It is important to note that Table 5
provides a clear explanation of the data illustrated in Figure 8, while Table 6 further clarifies
the interpretation of Table 5.
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Table 5. Confusion matrix in numbers for ML prediction of the failure mode of rectangular RC
columns of the PEER structural performance database with ANNs.

Confusion Matrix in Numbers *

Tr
ue

V
al

ue
s Flexure 56 1 0

Flexure–Shear 2 1 1

Shear 0 0 1

Flexure Flexure–Shear Shear

Predicted Values
* Also see Figure 8.

Table 6. Performance metrics.

Performance Metrics *

True
Positive

True
Negative

False
Positive

False
Negative Accuracy Precision Recall

Flexure 56 1 + 1 + 1 + 0 = 3 2 + 0 = 2 1 + 0 = 1 (56 + 3)/(56 + 3 + 2 + 1) =
59/62 = 95% (56)/(56 + 2) = 56/58 = 97% (56)/(56 + 1) = 56/57 = 98%

Flexure–
Shear 1 56 + 0 + 0 + 1= 57 1 + 0 =1 2 + 1 = 3 (1 + 57)/(1 + 57 + 1 + 3) =

58/62 = 94% (1)/(1 + 1) = 1/2 = 50% (1)/(1 + 3) = 1/4 = 25%

Shear 1 56 +1 + 2 + 1 = 60 1 + 0 = 1 0 + 0 = 0 (1 + 60)/(1 + 60 + 1 + 0) =
61/62 = 98% (1)/(1 + 1) = 1/2 = 50% (1)/(1 + 0) = 1/1 = 100%

* Also see Table 5.

Figure 8. Confusion matrix as the performance metric for ML prediction of the failure mode of
rectangular RC columns of the PEER structural performance database with ANNs.

In addition, the following metrics are applied and depicted in Figure 9:

• The receiver operating characteristic (ROC) curve demonstrates the balance between
True acceptance rate (TAR) along the y-axis and false acceptance rate (FAR) along the
x-axis. The upper left corner of the contour represents the ideal point where TAR
equals one and FAR equals zero.

• The area under the curve (AUC) is used to quantify the quality of the authentication
model as an alternative to accuracy. The value of AUC ranges from 0.0 to 1.0.

Finally, the principal component analysis (PCA) model is a model widely used for
reducing the dimensionality of data (dimensionality reduction) in order to utilize only
features–variables that provide knowledge and significantly improve models during the
training phase. The graph below (Figure 10) shows a simple problem for the purposes
of the presentation, since the human eye cannot visualize more than three dimensions.
Specifically, each record (green dot) is initially described by a set of three variables (X1,
X2, and X3) and then, after applying the principal component analysis, the same set can
be described by just two variables, the two principal components (PC1 and PC2), thereby
reducing the dimensions of the problem without losing important information from the
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data. In the employed ANN model, the input variables are 5 (see Appendix A). Based on
that, in order to identify the decision boundaries or failure surface boundaries of the ANN
model and its performance on the test set, the decision surface is plotted in Figure 11 for
rectangular RC columns. It can be clearly seen that the model is not successful in predicting
the flexure–shear failure mode, as the previous performance metrics imply too.

Figure 9. Receiver operating characteristic (ROC) along with area under curve (AUC) index for
rectangular RC columns of PEER structural performance database with ANNs.

Figure 10. Reduction in problem dimensions from 3 to 2 using principal component analysis (PCA).
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Figure 11. ANN decision surface for rectangular RC columns’ failure mode prediction.

3.2. Circular RC Columns

The performance metrics for circular RC columns are presented below. The ANN
model achieved an accuracy of 95% in predicting the actual failure modes of the columns
in the test dataset. This accuracy is calculated from Table 7 by dividing the sum of the
diagonal elements by the total sum of all elements in the table. Additional performance
metrics are provided in Table 8. Furthermore, Table 8 indicates that the model performs
better at predicting flexural and shear failure modes than flexure–shear failures. This is
understandable, as mentioned already, as distinguishing flexure–shear failure is often more
complex even in practical engineering assessments, particularly in seismic assessments. By
analyzing each influencing parameter in the feature data individually, it becomes evident
that the transverse reinforcement ratio is the most critical factor for the model’s success.
This finding confirms that the model has correctly captured the relationship between all
features and the target failure mode. Such alignment is essential for developing an ML
prediction model grounded in physical meaning [36]. It is important to note that Table 5
provides a clear explanation of the data illustrated in Figure 12, while Table 8 further
clarifies the interpretation of Table 7.

Table 7. Confusion matrix in numbers for ML prediction of the failure mode of circular RC columns
of the PEER structural performance database with ANNs.

Confusion Matrix in Numbers *

Tr
ue

V
al

ue
s Flexure 12 0 0

Flexure–Shear 1 6 0

Shear 0 0 2

Flexure Flexure–Shear Shear

Predicted Values
* Also see Figure 12.
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Table 8. Performance metrics.

Performance Metrics *

True
Positive

True
Negative

False
Positive

False
Negative Accuracy Precision Recall

Flexure 12 6 + 0 + 0 + 2 = 8 1 + 0 = 1 0 + 0 = 0 (12 + 8)/(12 + 8 + 1 + 0) =
20/21 = 95% (12)/(12 + 1) = 12/13 = 92% (12)/(12 + 0) = 12/12 = 100%

Flexure–
Shear 6 12 + 0 + 0 + 2 = 14 0 + 0 = 0 1 + 0 = 1 (6 + 14)/(6 + 14 + 0 + 1) =

20/21 = 95% (6)/(6 + 0) = 6/6 = 100% (6)/(6 + 1) = 6/7 = 86%

Shear 2 12 +0 + 1 + 6 = 19 0 + 0 = 0 0 + 0 = 0 (2 + 19)/(2 + 19 + 0 + 0) =
21/21 = 100% (2)/(2 + 0) = 2/2 = 100% (2)/(2 + 0) = 2/2 = 100%

* Also see Table 7.

Figure 12. Confusion matrix as the performance metric for ML prediction of the failure mode of
circular RC columns of the PEER structural performance database with ANNs.

In addition, the two metrics of ROC and AUC are applied and depicted in Figure 13.
Finally, in order to identify the decision boundaries or failure surface boundaries of the
ANN model and its performance on the test set, the decision surface is plotted in Figure 14
for circular RC columns. It can be clearly seen that the model is not perfectly successful in
predicting the flexure–shear failure mode, as the previous performance metrics imply too.

Figure 13. Receiver operating characteristic (ROC) along with area under the curve (AUC) index for
circular RC columns of the PEER structural performance database with ANNs.

Finally, for both ANNs for circular and rectangular columns, the loss and accuracy
indices during training are depicted in Figure 15 below. The influence of the number of
epochs on these indices is evident. This figure compares the training behavior of ANNs for
circular and rectangular columns over 500 epochs, showing loss (left) and accuracy (right).
For circular columns, the loss decreases smoothly from about 1.6 to ~0.3–0.4, while accuracy
starts near 50% and gradually climbs with fluctuations to ~90% by epoch 500, suggesting
the task is more complex and requires longer training. In contrast, for rectangular columns,
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the loss drops sharply from ~2.0 to ~0.2–0.3 within the first 50 epochs, and accuracy starts
higher (around 80%), quickly stabilizing near 90% by ~100 epochs with much smoother
convergence. Overall, rectangular columns are easier for the ANN to learn, showing
faster, more stable performance, while circular columns demand more epochs and display
greater variability.

Figure 14. ANN decision surface for circular RC columns’ failure mode prediction.

Figure 15. ANN loss and accuracy indices during training for circular and rectangular RC columns’
failure mode prediction.

4. Discussion
Based on previous studies by the authors [1,2,36], the current state of modeling the

lateral load response of reinforced concrete columns still presents several challenges. Key
areas requiring improvement include more accurate estimation of the behavior of columns
prone to shear failure after flexural yielding; enhanced methods for predicting shear
strength and its degradation with increasing displacement ductility; consideration of
reinforcement pullout effects on stiffness; better representation of hysteresis loop shapes;
understanding the negative impact of axial loads at large displacements; and accurately
determining the deformation levels (e.g., drift ratios) associated with key points along the
column’s response curve. These unresolved issues must be addressed before performance-
based assessment frameworks can be considered complete and fully reliable [1,2,36]. In
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addition, the overall accuracy of other machine learning methods, such as random forests,
performed by the authors [36] for rectangular RC columns reaches 94%, while for circular
RC columns, it is 86%. The performance in the latter case is affected by the size of the
training and testing datasets, rather than by the number of decision trees used in the
random forest algorithm. Lastly, brittle failures—particularly in circular RC columns—
show relatively low precision and recall scores.

Within this context, the present study demonstrates that integrating physical
knowledge—via experimental databases—into machine learning (ML) approaches can
lead to accurate predictions of RC column failure modes. The results show that the ANN
model effectively predicts failure modes for both circular and rectangular RC columns and
for ductile and brittle failure mode types. The model achieved an overall accuracy of 94%
for rectangular RC columns and 95% for circular ones. In comparison, as shown in Section 2,
the traditional code-based method incorporating nonlinear structural analysis attained
accuracies of 97% and 81% for rectangular and circular columns, respectively. These results
indicate that the ANN approach outperformed the traditional engineering mechanics-based
method in predicting the failure modes of circular columns. The latter was also confirmed
by the precision and recall scores for brittle failure modes in circular RC columns. These
findings suggest neural networks or deep learning may offer better performance in these
cases compared to other ML methods such as random forests [36,47,49].

5. Conclusions
Accurately predicting the failure modes of RC columns is critical for developing

effective retrofitting strategies for modern buildings and bridges. Traditional methods,
which primarily rely on nonlinear structural analysis, are often time-consuming and require
substantial effort to achieve reliable results. This study explores the integration of physical
knowledge with machine learning (ML) techniques to enhance failure mode prediction for
RC columns. Leveraging the PEER structural performance database, the research proved
that supervised ML models—specifically ANNs—can effectively classify failure modes
when applied to a randomly selected test set from the PEER database, especially when
supplemented with physical insights. In several instances, the ML model’s predictions
matched or surpassed those obtained using conventional building code-based methods.
Importantly, this study is the first to apply its methodology to the whole PEER database,
through nonlinear structural analysis using both traditional methods and supervised ML
techniques, to predict RC column failure modes. It also addresses the influence of column
cross-sectional geometry—a factor often overlooked in previous studies that predominantly
focused on circular columns. These outcomes underscore the significant potential of ML
to advance the field of earthquake engineering. Future research endeavors of the authors
could include a real-world structural case for seismic assessment and retrofit based on
ML methods.
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Appendix A

Table A1. Feature values and true label values of circular RC columns from the PEER structural
performance database.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

2.00 0.00 0.51 37.5 0.42 1

2.00 0.00 0.51 37.2 0.29 1

2.50 0.00 0.51 36 0.37 1

2.00 0.00 0.51 30.6 0.42 2

2.00 0.00 0.76 31.1 0.47 1

1.50 0.00 0.51 30.1 0.57 2

2.00 0.00 0.38 29.5 0.41 2

2.00 0.20 1.02 28.7 0.69 1

2.00 0.20 1.02 31.2 0.64 1

2.00 0.20 0.51 29.9 0.59 1

1.50 0.10 1.02 28.6 0.78 1

2.00 0.10 1.02 36.2 0.58 1

2.00 0.00 0.51 33.7 0.43 1

2.00 0.00 0.51 34.8 0.31 1

2.00 0.10 0.51 33.4 0.51 2

2.50 0.10 0.51 34.3 0.44 1

1.50 0.10 0.51 35 0.68 2

1.50 0.10 0.38 34.4 0.59 2

1.75 0.17 0.38 36.7 0.64 2
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Table A1. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

2.00 0.00 0.38 33.2 0.37 2

2.00 0.00 0.39 30.9 0.41 2

2.00 0.00 0.76 32.3 0.47 1

2.00 0.00 0.77 33.1 0.47 1

2.00 0.19 1.42 38 0.60 0

2.00 0.39 0.47 37 0.64 1

2.00 0.39 1.42 37 0.76 0

6.22 0.05 0.63 38.8 0.07 0

6.22 0.09 0.63 36.2 0.08 0

2.93 0.05 0.63 35.9 0.19 1

2.92 0.10 0.63 34.4 0.21 1

7.50 0.24 1.45 34.5 0.18 0

3.75 0.24 1.45 34.5 0.39 0

3.75 0.35 1.45 34.5 0.40 0

6.01 0.07 0.63 35.8 0.12 0

3.01 0.07 1.49 34.3 0.31 0

3.00 0.10 1.41 24.1 0.27 0

3.00 0.21 1.41 23.1 0.31 0

6.00 0.10 0.68 25.4 0.13 0

3.00 0.10 1.41 24.4 0.26 0

3.00 0.20 1.41 24.3 0.32 0

6.00 0.11 0.68 23.3 0.13 0

4.50 0.09 0.94 29 0.19 0

4.50 0.09 0.94 29 0.19 0

4.50 0.09 0.94 35.5 0.17 0

4.50 0.09 0.94 35.5 0.21 0

4.50 0.09 0.94 35.5 0.18 0

4.50 0.09 0.94 32.8 0.19 0

4.50 0.09 0.94 32.8 0.17 0

4.50 0.09 0.94 32.5 0.18 0

4.50 0.10 0.94 27 0.20 0

4.50 0.10 0.94 27 0.19 0

4.50 0.10 0.94 27 0.19 0

1.50 0.06 0.28 30 0.26 1

1.50 0.06 0.17 30 0.37 1

6.00 0.15 0.89 41.1 0.19 0

1.99 0.31 1.14 38.3 0.61 0

1.99 −0.10 1.14 39.2 0.28 1

1.99 0.15 1.14 39.4 0.54 0

1.99 0.15 2.70 35 1.02 1
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Table A1. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

1.99 −0.08 0.85 35.2 0.41 1

1.99 0.33 3.04 35 1.14 0

8.00 0.30 0.92 36.6 0.19 0

8.00 0.27 1.38 40 0.17 0

8.00 0.28 0.92 38.6 0.19 0

4.00 0.07 0.70 31 0.18 0

8.00 0.07 0.70 31 0.09 0

10.00 0.07 0.70 31 0.06 0

4.00 0.07 0.70 31 0.11 0

4.00 0.07 0.70 31 0.30 0

3.00 0.09 0.89 34.5 0.32 0

8.00 0.09 0.89 34.5 0.12 0

10.00 0.09 0.89 34.5 0.11 0

3.00 0.04 0.54 34.6 0.26 0

3.00 0.04 0.81 33 0.28 0

6.58 0.31 1.54 65 0.18 0

6.58 0.31 3.49 65 0.17 0

6.58 0.42 1.74 90 0.17 0

6.58 0.21 1.54 90 0.16 0

6.58 0.42 1.54 90 0.17 0

2.58 0.00 0.10 34.7 0.19 1

2.58 0.00 0.26 35.4 0.23 1

2.00 0.00 0.13 29.8 0.25 2

2.00 0.00 0.13 26.8 0.22 2

2.00 0.00 0.13 31.2 0.20 2

Table A2. Feature values and true label values of rectangular RC columns from the PEER structural
performance database.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

2.18 0.26 1.50 23.1 0.48 0

2.18 0.21 2.30 41.4 0.42 0

2.18 0.42 2.00 21.4 0.48 0

2.18 0.60 3.50 23.5 0.47 0

4.00 0.38 2.83 23.6 0.25 0

4.00 0.21 2.22 25 0.21 0

4.00 0.10 0.86 46.5 0.18 0

4.00 0.30 1.22 44 0.26 0
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Table A2. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

4.00 0.30 0.80 44 0.26 0

4.00 0.30 0.57 40 0.26 0

4.00 0.22 1.56 28.3 0.25 0

4.00 0.39 1.99 40.1 0.27 0

4.00 0.50 0.66 41 0.29 0

4.00 0.50 0.32 40 0.29 0

4.00 0.70 1.26 42 0.29 0

4.00 0.70 0.70 39 0.30 0

4.00 0.70 2.33 40 0.31 0

4.00 0.20 2.55 25.6 0.21 0

4.00 0.20 2.55 25.6 0.21 0

4.00 0.20 2.55 25.6 0.22 0

4.00 0.20 2.55 25.6 0.21 0

3.00 0.10 1.70 32 0.23 0

3.00 0.10 1.70 32 0.24 0

3.00 0.30 2.08 32.1 0.36 0

3.00 0.30 2.08 32.1 0.36 0

2.97 0.10 2.17 26.9 0.32 0

1.50 0.33 1.18 20.6 0.57 0

1.50 0.17 0.81 21.6 0.47 2

1.50 0.35 1.39 21 0.61 1

4.00 0.03 0.32 24.8 0.15 0

4.00 0.03 0.32 24.8 0.14 0

4.00 0.03 0.32 24.8 0.14 0

2.00 0.14 0.57 32 0.45 1

2.00 0.15 0.57 29.9 0.51 1

1.65 0.05 0.36 27.1 0.45 2

2.00 0.80 0.73 21.1 0.58 1

2.00 0.80 0.73 21.1 0.61 0

2.00 0.90 1.75 21.1 0.57 1

3.00 0.70 0.73 28.8 0.41 1

3.00 0.70 0.73 28.8 0.40 1

3.00 0.70 1.75 28.8 0.38 1

3.00 0.11 0.38 27.9 0.25 0

3.00 0.11 0.38 27.9 0.24 0

3.00 0.11 0.38 27.9 0.25 0

3.00 0.12 0.38 24.8 0.27 0

3.00 0.11 0.38 27.9 0.25 0

3.00 0.11 0.38 27.9 0.23 0

1.25 0.18 0.21 31.8 0.71 2
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Table A2. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

1.25 0.45 0.21 33 0.72 2

2.50 0.40 1.61 85.7 0.66 0

2.50 0.63 1.61 85.7 0.65 0

2.50 0.63 1.61 85.7 0.67 0

2.50 0.25 1.61 115.8 0.59 0

2.50 0.25 1.61 115.8 0.59 0

2.50 0.42 1.61 115.8 0.67 0

2.50 0.42 1.61 115.8 0.67 0

1.50 0.26 0.91 25.8 0.64 1

1.50 0.62 0.91 25.8 0.67 1

2.00 0.35 0.50 99.5 0.66 0

2.00 0.35 0.75 99.5 0.66 0

2.00 0.35 0.61 99.5 0.69 0

2.00 0.35 0.50 99.5 0.65 0

2.00 0.35 0.50 99.5 0.65 0

2.00 0.35 0.50 99.5 0.67 0

2.00 0.35 0.50 99.5 0.65 0

1.16 0.74 0.89 46.3 0.98 1

2.88 0.12 0.33 34.7 0.36 1

2.88 0.12 0.33 34.7 0.37 0

2.88 0.15 0.48 26.1 0.44 1

2.88 0.15 0.48 26.1 0.41 0

2.88 0.11 0.33 33.6 0.35 1

2.88 0.11 0.33 33.6 0.39 0

2.88 0.07 0.33 33.6 0.33 2

2.88 0.07 0.33 33.6 0.35 0

2.88 0.11 0.67 33.4 0.38 1

2.88 0.11 0.67 33.4 0.37 0

2.88 0.11 1.47 33.5 0.45 1

2.88 0.11 1.47 33.5 0.45 0

2.88 0.11 0.92 33.5 0.45 1

2.88 0.11 0.92 33.5 0.45 0

5.50 0.10 1.54 29.1 0.12 0

5.50 0.09 0.93 30.7 0.12 0

5.50 0.10 1.54 29.2 0.12 0

5.50 0.10 0.93 27.6 0.15 0

5.50 0.20 1.54 29.4 0.15 0

5.50 0.18 0.93 31.8 0.14 0

5.50 0.26 1.54 33.3 0.15 0

5.50 0.27 0.93 32.4 0.15 0
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Table A2. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

5.50 0.28 1.54 31 0.16 0

5.50 0.27 0.93 31.8 0.15 0

1.11 0.16 0.28 34.9 0.58 2

1.98 0.16 0.31 34.9 0.47 2

1.11 0.27 0.28 42 0.67 2

1.50 0.10 0.26 29.9 0.42 2

3.00 0.21 2.19 39.3 0.36 0

3.00 0.31 1.26 39.8 0.37 0

2.86 0.00 0.85 43.6 0.34 0

2.86 0.14 1.69 34.8 0.38 0

2.86 0.15 2.54 32 0.47 0

2.86 0.13 1.95 37.3 0.46 0

2.86 0.13 1.95 39 0.45 0

4.56 0.30 1.22 80 0.23 0

4.56 0.30 1.22 80 0.22 0

4.56 0.20 1.22 80 0.18 0

4.56 0.20 1.22 80 0.25 0

4.56 0.20 1.83 80 0.25 0

4.56 0.30 1.83 80 0.23 0

4.56 0.30 1.83 80 0.23 0

4.56 0.20 1.83 80 0.20 0

4.56 0.20 3.66 80 0.18 0

4.56 0.30 3.66 80 0.23 0

4.56 0.20 3.66 80 0.24 0

4.56 0.30 3.66 80 0.24 0

4.56 0.20 1.22 80 0.31 0

4.56 0.30 1.22 80 0.30 0

4.56 0.30 1.22 80 0.31 0

4.56 0.20 1.22 80 0.37 0

4.56 0.20 1.83 80 0.29 0

4.56 0.20 1.83 80 0.35 0

4.56 0.30 1.83 80 0.31 0

4.56 0.30 1.83 80 0.31 0

4.56 0.20 3.66 80 0.31 0

4.56 0.20 3.66 80 0.31 0

4.56 0.30 3.66 80 0.30 0

4.56 0.30 3.66 80 0.32 0

3.83 0.10 0.37 27.2 0.30 0

3.83 0.24 0.37 27.2 0.33 0

3.83 0.09 0.48 28.1 0.31 0
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Table A2. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

3.83 0.23 0.48 28.1 0.35 0

3.22 0.09 0.08 26.9 0.26 2

3.22 0.07 0.08 33.1 0.20 1

3.22 0.28 0.08 25.5 0.29 1

3.22 0.26 0.08 27.6 0.30 2

3.22 0.26 0.25 27.6 0.32 2

3.22 0.09 0.08 26.9 0.25 2

3.22 0.07 0.08 33.1 0.19 1

3.22 0.28 0.25 25.5 0.35 1

2.00 0.10 3.67 76 0.58 0

2.00 0.20 3.67 76 0.67 0

2.00 0.10 3.67 86 0.46 0

2.00 0.19 3.67 86 0.53 0

2.00 0.10 1.63 86 0.45 1

2.00 0.19 1.63 86 0.54 1

2.00 0.60 0.90 118 0.61 0

2.00 0.60 1.41 118 0.66 0

2.00 0.60 1.82 118 0.74 0

2.00 0.35 1.41 118 0.67 0

2.00 0.35 1.82 118 0.67 0

7.64 0.34 0.12 40.6 0.13 0

6.04 0.50 3.15 72.1 0.19 0

6.04 0.36 2.84 71.7 0.19 0

6.04 0.50 2.84 71.8 0.19 0

6.04 0.50 5.12 71.9 0.19 0

6.04 0.45 4.02 101.8 0.21 0

6.04 0.46 6.74 101.9 0.21 0

6.04 0.45 2.72 102 0.18 0

6.04 0.47 4.29 102.2 0.19 0

4.70 0.43 1.00 34 0.27 0

4.70 0.43 2.00 34 0.27 0

4.70 0.20 2.00 34 0.23 0

4.70 0.46 1.33 34 0.29 0

4.70 0.46 2.66 34 0.33 0

4.70 0.46 2.66 34 0.31 0

4.70 0.46 1.26 34 0.30 0

4.70 0.23 1.26 34 0.28 0

4.70 0.46 1.26 34 0.31 0

4.70 0.46 2.66 34 0.33 0

3.00 0.05 1.00 69.6 0.20 0
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Table A2. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

3.00 0.05 1.00 69.6 0.20 0

3.00 0.10 1.00 67.8 0.28 0

3.00 0.10 1.00 67.8 0.28 0

3.00 0.21 1.00 65.5 0.32 0

3.00 0.21 1.00 65.5 0.31 0

3.00 0.00 1.00 37.9 0.23 0

3.00 0.00 1.00 37.9 0.23 0

3.00 0.14 1.00 48.3 0.25 0

3.00 0.14 1.00 48.3 0.25 0

3.00 0.36 1.00 38.1 0.33 0

3.00 0.36 1.00 38.1 0.33 0

3.50 0.11 0.76 24.9 0.31 0

3.50 0.16 0.76 26.7 0.32 0

3.50 0.22 0.76 26.1 0.37 0

3.50 0.11 0.73 25.3 0.31 0

3.50 0.16 0.73 27.1 0.34 0

3.50 0.21 0.73 26.8 0.37 0

3.50 0.11 0.71 26.38 0.31 0

3.50 0.15 0.71 27.48 0.34 0

3.50 0.21 0.71 26.9 0.36 0

2.67 0.00 0.04 21.9 0.23 2

1.33 0.00 0.09 16 0.38 2

3.92 0.00 0.96 102.7 0.20 0

3.92 0.20 0.96 86.3 0.34 0

3.92 0.00 0.96 87.5 0.19 0

3.92 0.10 0.96 83.4 0.26 0

3.92 0.20 0.96 90 0.30 0

3.92 0.00 0.96 67.5 0.21 0

3.92 0.10 0.96 74.6 0.26 0

3.92 0.20 0.96 81.8 0.27 0

3.92 0.20 0.77 75.8 0.28 0

3.92 0.20 0.64 87 0.29 0

3.92 0.20 0.54 71.2 0.27 0

3.22 0.15 0.25 21.1 0.33 1

3.22 0.61 0.25 21.1 0.37 1

3.22 0.15 0.25 21.8 0.30 1

6.56 0.14 2.50 92.4 0.14 0

6.56 0.28 2.50 93.3 0.18 0

6.56 0.39 2.50 98.2 0.21 0
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Table A2. Cont.

Feature Values True Label Values
(0 = Flexure, 1 = Flexure–Shear, 2 = Shear)

Aspect Ratio Axial Load Ratio ρs (%) fc (MPa) vmax/
√

fc Failure

6.56 0.14 1.16 94.8 0.12 0

6.56 0.26 1.16 97.7 0.18 0

6.56 0.37 1.16 104.3 0.19 0

6.56 0.40 2.50 78.7 0.21 0

6.56 0.41 2.50 109.2 0.22 0

6.56 0.35 1.93 109.5 0.20 0

6.56 0.37 1.33 104.2 0.21 0

6.56 0.53 1.93 104.5 0.21 0

6.56 0.51 2.50 109.4 0.22 0

2.25 0.08 0.57 33.7 0.42 0

2.25 0.08 0.57 33.7 0.42 0

2.25 0.09 1.64 32.1 0.44 0

2.25 0.09 1.64 32.1 0.44 0

2.25 0.10 0.82 29.9 0.45 0

2.25 0.10 0.82 29.9 0.45 0

2.25 0.10 1.09 27.4 0.47 0

2.25 0.10 1.09 27.4 0.47 0

2.25 0.16 0.82 36.4 0.47 0

2.25 0.16 0.82 36.4 0.47 0

2.25 0.08 1.09 34.9 0.42 0

2.25 0.08 1.09 34.9 0.42 0

2.25 0.08 1.09 36.5 0.42 0

2.25 0.08 1.09 36.5 0.42 0

2.50 0.30 0.59 37.6 0.52 0

2.50 0.60 0.59 37.6 0.49 0

2.00 0.57 0.99 39.2 0.55 0

2.00 0.57 0.99 39.2 0.59 0

2.14 0.59 0.99 32.2 0.67 0

3.11 0.03 0.23 35.9 0.16 0

3.11 0.03 0.23 35.7 0.15 0

3.11 0.03 0.23 34.3 0.16 0

3.11 0.03 0.23 33.2 0.17 0

3.11 0.03 0.23 36.8 0.16 0

3.11 0.03 0.23 35.9 0.18 0

3.49 0.20 1.85 64.1 0.35 0

3.49 0.33 1.85 62.1 0.40 0

3.49 0.22 1.48 62.1 0.36 0

3.49 0.32 1.48 62.1 0.40 0

3.49 0.20 1.23 64.1 0.34 0

3.49 0.20 1.23 64.1 0.34 0



Appl. Sci. 2025, 15, 10175 29 of 30

References
1. Megalooikonomou, K.G. Modeling the Behavior of Shear-Critical Reinforced Concrete Columns Under Lateral Loads. Ph.D.

Thesis, Department of Civil and Environmental Engineering, Faculty of Engineering, University of Cyprus, Nicosia, Cyprus,
December 2019. [CrossRef]

2. Megalooikonomou, K.G. Seismic Assessment and Retrofit of Reinforced Concrete Columns, 1st ed.; Cambridge Scholars Publishing:
Newcastle upon Tyne, UK, 2024; p. 387.

3. Mangalathu, S.; Jeon, J.-S. Machine Learning-Based Failure Mode Recognition of Circular Reinforced Concrete Bridge Columns:
Comparative Study. ASCE J. Struct. Eng. 2019, 145, 04019104. [CrossRef]

4. Xie, Y.; Sichani, M.E.; Padgett, J.E.; DesRoches, R. The promise of implementing machine learning in earthquake engineering: A
state-of-the-art review. Earthq. Spectra 2020, 36, 1769–1801. [CrossRef]

5. Ghosh, J.; Padgett, J.E.; Dueñas-Osorio, L. Surrogate modeling and failure surface visualization for efficient seismic vulnerability
assessment of highway bridges. Probab. Eng. Mech. 2013, 34, 189–199. [CrossRef]

6. Jeon, J.-S.; Shafieezadeh, A.; DesRoches, R. Statistical models for shear strength of RC beam-column joints using machine-learning
techniques. Earthq. Eng. Struct. Dyn. 2014, 43, 2075–2095. [CrossRef]

7. Krishnan, N.; Mangalathu, S.; Smedskjaer, M.M.; Tandia, A.; Burton, H.; Bauchy, M. Predicting the dissolution kinetics of silicate
glasses using machine learning. J. Non-Cryst. Solids 2017, 487, 37–45. [CrossRef]

8. Mangalathu, S.; Heo, G.; Jeon, J.-S. Artificial neural network based multi-dimensional fragility development of skewed concrete
bridge classes. Eng. Struct. 2018, 162, 166–176. [CrossRef]

9. Mangalathu, S.; Jeon, J.-S. Classification of failure mode and prediction of shear strength for reinforced concrete beam-column
joints using machine learning techniques. Eng. Struct. 2018, 160, 85–94. [CrossRef]

10. Wang, Z.; Pedroni, N.; Zentner, I.; Zio, E. Seismic fragility analysis with artificial neural networks: Application to nuclear power
plant equipment. Eng. Struct. 2018, 162, 213–225. [CrossRef]

11. Zhang, Y.; Burton, H.V.; Sun, H.; Shokrabadi, M. A machine learning framework for assessing post-earthquake structural safety.
Struct. Saf. 2018, 72, 1–16. [CrossRef]

12. Mitra, N.; Mitra, S.; Lowes, L.N. Probabilistic model for failure initiation of reinforced concrete interior beam-column connections
subjected to seismic loading. Eng. Struct. 2011, 33, 154–162. [CrossRef]

13. Yaseen, Z.M.; Afan, H.A.; Tran, M.T. Beam-column joint shear prediction using hybridized deep learning neural network with
genetic algorithm. IOP Conf. Ser. Earth Environ. Sci. 2018, 143, 012025. [CrossRef]

14. Tang, Y.; Wang, Y.; Wu, D.; Liu, Z.; Zhang, H.; Zhu, M.; Chen, Z.; Sun, J.; Wang, X. An experimental investigation and machine
learning-based prediction for seismic performance of steel tubular column filled with recycled aggregate concrete. Rev. Adv.
Mater. Sci. 2022, 61, 849–872. [CrossRef]

15. Tang, Y.; Wang, Y.; Wu, D.; Chen, M.; Pang, L.; Sun, J.; Feng, W.; Wang, X. Exploring temperature-resilient recycled aggregate
concrete with waste rubber: An experimental and multi-objective optimization analysis. Rev. Adv. Mater. Sci. 2023, 62, 20230347.
[CrossRef]

16. Khalilpourazari, S.; Mirzazadeh, A.; Weber, G.-W.; Pasandideh, S.H.R. A robust fuzzy approach for constrained multi-product
economic production quantity with imperfect items and rework process. Optimization 2020, 69, 63–90. [CrossRef]

17. Khalilpourazari, S.; Khalilpourazary, S. SCWOA: An efficient hybrid algorithm for parameter optimization of multi-pass milling
process. J. Ind. Prod. Eng. 2018, 35, 135–147. [CrossRef]
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