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Abstract

Taohuawu woodblock New Year prints are one of the most representative traditional mul‑
ticolor woodblock print forms from the Jiangnan region of China and are recognized as
an Intangible Cultural Heritage at the provincial level in Jiangsu. However, the develop‑
ment of mechanized and high‑tech production methods, combined with the declining role
of traditional festive customs in modern society, has posed significant challenges to the
preservation and transmission of this art form. Existing digital preservation efforts mainly
focus on two‑dimensional scanning and archival storage, largely neglecting the essential
processes of color separation and multicolor overprinting. In this study, a digital restora‑
tion method is proposed that integrates image processing, color clustering, and edge de‑
tection techniques for the efficient reconstruction of the traditional multicolor woodblock
overprinting process. The approach applies the K‑means++ clustering algorithm to extract
the dominant colors and reconstruct individual color layers, in combination with CIELAB
color space transformation to enhance color difference perception and improve segmen‑
tation accuracy. To address the uncertainty in determining the number of color layers,
the elbow method, silhouette coefficient, and Calinski‑Harabasz index are employed as
clustering evaluation methods to identify the optimal number of clusters. The proposed
approach enables the generation of complete, standardized digital color separations, pro‑
viding a practical pathway for efficient reproduction and intelligent application of TWNY
Prints, contributing to the digital preservation and innovative revitalization of intangible
cultural heritage.

Keywords: Taohuawu woodblock New Year prints; digital restoration; K‑means++
clustering; Canny edge detection; cyclic U‑Net

1. Introduction
1.1. Introduction to Taohuawu Woodblock New Year Prints
1.1.1. History and Development

Taohuawu woodblock New Year prints (TWNY Prints) are an essential component
of China’s traditional woodblock art. Their origins can be traced back to the Song and
Ming Dynasties, with the art form reaching its peak during the Qing Dynasty. Together
with the Yangliuqing prints from Tianjin, the Yangjiabu prints from Shandong, and the
Mianzhu prints from Sichuan, the TWNY Prints are collectively known as one of the “Four
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Great Schools of Chinese New Year Prints” [1]. This unique art form not only embodies
a profound historical and cultural heritage but also reflects the aesthetic preferences and
spiritual aspirations of people across different historical periods.

The history of Chinese woodblock printing is long and distinguished, with its origins
dating back to the Tang Dynasty (618–907 AD). The earliest known surviving example of
woodblock printing is a Buddhist document known as the Jietie (ordination certificate),
dated to the 29th year of the Kaiyuan era (741 AD), which is currently preserved in Saint
Petersburg. This artifact features printed images of three Buddhas and serves as tangible
evidence of China’s early mastery of woodblock printing techniques [2]. This indicates
that woodblock printing technology was applied to religious and cultural dissemination
at a very early stage, laying the technical foundation for the later development of NewYear
prints. During the Song and Yuan Dynasties, woodblock printing experienced significant
growth, while the Ming and Qing Dynasties witnessed the diversification and flourishing
of this artistic tradition.

The Qing Dynasty marked the peak of TWNY Prints. During this period, TWNY
Prints were characterized by full and balanced compositions, smooth and elegant lines,
and bright, vivid colors, earning widespread popularity among the general public. Be‑
yond serving as festive decorations, these prints carried rich cultural symbolism, often
expressing wishes for good fortune and happiness. For example, the well‑known work
Yituan Heqi (Harmony and Unity) conveys people’s aspirations for social harmony and
personal well‑being.

The production process for the TWNY Prints is highly sophisticated, encompassing
three major stages: painting (designing the image), carving (engraving the woodblocks),
and printing (layered color application). Through generations of practice, experienced
artisans have developed a unique and refined set of craftsmanship techniques. The artis‑
tic style of TWNY Prints integrates elements of folk traditions and literati painting, with
particularly distinctive approaches to color application. The imagery within these prints
often embodies profound cultural symbolism. For instance, patterns such as the swastika
(wan symbol), the Chinese character for “blessing” (fu福), and the character for “longevity”
(shou寿) appearing on double‑handled vases symbolize wishes for good fortune and long
life. Similarly, motifs like plumblossoms, magpies, and bamboo on teapots convey the aus‑
picious message of “good news arrives with the plum and bamboo” (Zhumei Bao Xi) [3].

1.1.2. Production Process

Characterized by multicolor designs, TWNY Prints employ the “one block, one color”
overprinting technique, which involves carvingmultiple woodblocks, each corresponding
to a specific color layer. These color layers are printed successively, one on top of another,
to create the final image.

During this process, artisansmust rely on their experience to precisely align the differ‑
ent color plates, ensuring the accuracy and consistency of the overprinting. This highly in‑
tricate and labor‑intensive procedure demands both technical skill and artistic sensitivity.

Characterized by multicolor designs, the traditional production process of TWNY
Prints consists of three major stages: painting (designing the image), carving (engraving
individual woodblocks for each color layer), and printing (layer‑by‑layer application of
colors) [4]. Every step of the way, the old craftsmen’s unique experience and exquisite
skills are united.

The production of TWNYPrints beginswith the creation of the initial drawing, known
as the design draft. The subject matter of these drafts is broad and diverse, often depicting
folk traditions, auspicious symbols, and scenes from traditional operas, vividly reflecting
people’s aspirations for a better life. These drafts serve not only as the starting point for
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artistic creation but also as carriers of the rich folk wisdom and artistic essence of the Jiang‑
nan region.

The drawing process represents the first essential step in the productionworkflow, re‑
quiring artists to possess considerable experience and technical sensitivity. If the linework
is unsuitable for carving or if the color arrangements are impractical for printing, the de‑
sign draft will be returned or revised by the workshop before proceeding. The quality
of the carving and printing stages ultimately determines the overall quality of the final
TWNY prints.

TWNYPrints adopt a relief woodblock printingmethod characterized by overlapping
brush‑applied color layers. During the carving process, appropriate wood materials are
selected, with pear wood being the preferred choice, and the design draft is carefully ad‑
hered to the wooden surface using glue. Specialized tools are then used to engrave the
image onto the block with precision.

The multicolor overprinting process follows a strict sequence. First, the black ink
outlines (key lines) are printed, establishing the framework of the image. Subsequently,
each color layer is applied one by one, with each color corresponding to a single, dedicated
woodblock.

1.1.3. Traditional Color Options

The use of color in TWNY Prints is renowned for its vibrant, eye‑catching style and
strong contrasts, fully reflecting the distinctive aesthetics of Jiangnan folk art. The color
palette primarily features highly saturated hues, including red, peach pink, green, and
bright yellow. Traditionally, the dominant colors consist of black, white, red, green, and
yellow. The edges of color blocks are sharp, well‑defined, and visually separated, with
color combinations following the principle of “clear hierarchy and strong contrast.” Black
ink outlines are used to delineate contours, creating a visual structure that emphasizes
color layers without relying heavily on internal linework. This is a characteristic known
as the “color without lines” effect. Within this traditional color paradigm, red symbol‑
izes good fortune and festivity, green represents vitality, and yellow conveys wealth and
splendor, together forming a highly recognizable and culturally symbolic color system.

In addition to global initiatives such as UNESCO and Europeana, recent technical
studies have further shaped the methodology of digitally recording traditional craftsman‑
ship. Zabulis (2022) proposed a structured framework for identifying and digitally rep‑
resenting the core data, processes, and tacit knowledge embedded in craft practices, res‑
onating with this study’s objective of reconstructing the color layers from TWNY Prints [5].
Similarly, restoration of intricate craft textures (e.g., Miao embroidery) has been advanced
using GAN‑enhanced U‑Net architectures with spatial channel attention, achieving supe‑
rior reconstruction performance in metrics such as PSNR and SSIM [6]. Broader AI‑driven
restoration efforts for cultural heritage artifacts, including image enhancement, denoising,
inpainting, and colorization tasks, have been systematically reviewed, demonstrating the
versatility of intelligent image processing in heritage conservation [7,8]. Furthermore, a
recent bibliometric analysis revealed a rapid growth of deep learning applications in cul‑
tural heritage image recognition and restoration between 1995 and 2024 [9]. Complement‑
ing these 2D approaches, advanced 3D technologies have substantially contributed to the
preservation of intangible cultural heritage through faithful digital documentation andpre‑
sentation [8,10].

1.2. Existing Issues

As an element of intangible cultural heritage, TWNYPrints face significant challenges
in heritage preservation and transmission. Firstly, the inefficiency of manual production
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is a prominent problem, as a piece of work needs to go through more than five overlay
printing processes, and the craftsmen rely on their manual alignment experience to easily
produce millimeter‑level errors, resulting in a high rate of misalignment of colors. Sec‑
ondly, as shown in the research conducted by scholars Yuan Xia Liu [11] and Yongling
Huang [12], the current methods of digital preservation are still rather rudimentary, and
related research in this area is still at the initial stage of high‑definition scanning and record‑
ing. Most of these efforts are limited to two‑dimensional image preservation and neglect
themost critical aspects of the art form, namely the craftsmanship of color plate production
and the layered overprinting techniques.

Thirdly, the cultural context of traditional New Year prints has undergone significant
changes. With the acceleration of urbanization, these prints have gradually become de‑
tached from their original role within the folk traditions of the Chinese New Year. As a
result, younger generations lack awareness and understanding of this cultural heritage,
leading to a shrinking market and further endangering its survival.

Beyond technical innovation in image processing, preserving traditional craftsman‑
ship through digital technologies has become a central theme in global cultural heritage
discourse. UNESCO, through its 2003 Convention for the Safeguarding of the Intangible
Cultural Heritage, categorizes traditional craftsmanship as one of five domains of intan‑
gible heritage, emphasizing the transmission of artisan skills and knowledge, which are
considered fundamental to cultural continuity, rather than merely focusing on material
objects [13]. UNESCO further advocates for community‑led documentation efforts and
the use of media production to record and revitalize these living traditions.

At the European level, Europeana operates as a comprehensive digital aggregator,
bringing together over 50 million cultural objects, including craft‑related artifacts and nar‑
ratives, frommore than 3000 institutions [14]. Within this ecosystem, theCRAFTEDproject
has actively promoted the transfer of European crafts by enriching and sharing both tangi‑
ble heritage and the intangible skills behind them. It features exhibitions, blogs, galleries,
and video stories showcasing artisans and their techniques [15].

Recent research further underscores the value of digital approaches in systematically
capturing traditional craft knowledge. A notable example is Zabulis (2022), who intro‑
duced a methodical framework for identifying and digitally representing core data, in‑
formation, and procedural knowledge inherent in traditional craft processes [5]. This ap‑
proach aligns closely with our goal of reconstructing color layers in TWNY Prints, empha‑
sizing the necessity of structured digital documentation to preserve the tacit and procedu‑
ral dimensions of artisanal heritage.

Collectively, these initiatives reflect a growing global commitment to digitally doc‑
ument, preserve, and circulate the intangible dimensions of traditional craftsmanship.
They provide an enriching comparative framework and underscore the cultural and
methodological relevance of our study on digitally reconstructing color layers within
TWNY Prints.

2. Materials and Methods
2.1. Image Processing Related Methods

Color clustering algorithms in image processing, especially those based on K‑means
and its variants, have experienced a long period of development and evolution, and play
a key role in the fields of image segmentation, color quantization, and target recognition.

K‑means as a distance‑based clustering algorithm has been rapidly introduced for
color clustering due to its simplicity and efficiency. Songul Albayrak et al. improved the
K‑means algorithm for color quantization. Themethod determines the center of each color
cluster by calculating a weighted average using histogram values and employs an average
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distortion optimization strategy to improve the perceptual quality of the quantized image.
This study also conducted experiments in two color spaces, RGB and CIELAB, to investi‑
gate the effect of color space on clustering effects [16]. A real‑time color image segmen‑
tation method based on K‑means clustering was proposed and implemented by Takashi
Saegusa and Tsutomu Maruyama [17]. They recognized the computationally intensive
and time‑consuming problem of K‑means in processing large images and a large number
of clusters and worked to improve its performance by optimizing the distance computa‑
tion for real‑time processing on FPGAs. Y‑C Hu and B‑H Su also addressed the computa‑
tional cost of the K‑means algorithm for palette design by proposing two test conditions to
accelerate the K‑means algorithm [18]. The experimental results show that the method sig‑
nificantly reduces the computational effort. Md. Rakib Hassan and Romana Rahman Ema
explored image segmentation using automated K‑means clustering in RGB and HSV color
spaces [19]. They pointed out that despite the plethora of image segmentation algorithms,
evaluating their accuracy remains challenging. Sangeeta Yadav and Mantosh Biswas pro‑
posed an improved color‑based K‑means algorithm for clustering of satellite images [20].
The method is carried out in two phases, where initial clustering centers are first selected
and computed through an interactive selection process, and then clustering is performed
on this basis, aiming to improve the recognition accuracy of image clustering.

One of the main drawbacks of the K‑means algorithm is that it is highly sensitive to
the location of the initial clustering centers, which may cause the algorithm to converge to
a local optimum solution [21]. In order to solve the problem of uncertainty in the number
of clusters, Abd Rasid Mamat et al. investigated the application of K‑means algorithm in
three color models (RGB, HSV, and CIELAB) for determining the optimal number of clus‑
ters for an image with different color models, and evaluated the clustering effect by using
the Silhouette index [22]. Ting Tu et al. proposed a K‑means clustering algorithm based
on multi‑color space, which solves the problem that the parameters and initial centers of
K‑means need to be input manually in color image segmentation. Their study found that
HSV and CIELAB color spaces perform better in color segmentation [23].

In recent years, with the development of deep learning, it has also been attempted
to combine the traditional K‑means clustering with deep learning. Sadia Basar et al. pro‑
posed a new adaptive initialization method for initializing the K‑means clustering of RGB
histograms to determine the number of clusters and find the initial centroids, which fur‑
ther optimizes the application of K‑means in unsupervised color image segmentation [24].
Curtis Klein et al. proposed a method for automated UAV labeling of training data for on‑
line differentiation between water and land. The method consists of converting images to
HSV color space, followed by image segmentation using K‑means clustering, and a com‑
bination of morphological operations and contour analysis to select key points [25]. Max‑
amillian A. N. Moss et al. conducted a comparative study of clustering techniques such
as K‑means, hierarchical clustering algorithm (HCA), and GenieClust, and explored the
integration of an auto‑encoder (AE) [26]. It was found that K‑means and HCA show good
agreement in terms of cluster profile and size, proving their effectiveness in distinguishing
particle types.

Edge detection remains a cornerstone technique in cultural heritage image process‑
ing. Feng et al. developed an automated generation method for mural line drawings by
integrating edge enhancement, neural edge detection, and denoising techniques [27]. Sim‑
ilarly, Li et al. demonstrated the efficacy of edge detection combined with semantically
driven segmentation for extracting architectural features in historical urban contexts [28].
The core objective is to suppress noise interference while maximizing edge detail and en‑
suring precise positioning of edges.
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The Roberts operator is one of the simplest and fastest gradient‑based edge detection
operators. It uses a pair of 2× 2 convolution kernels to compute a gradient approximation
of the image intensities, and is mainly used for detecting diagonally oriented edges [29].
The advantage is that it is computationally inexpensive, but it may not work well with
noisy images and the detected edges are usually thin [30]. The Prewitt algorithm, similar
to the Sobel algorithm, is a gradient‑based method that uses a pair of 3 × 3 convolutional
kernels to compute the horizontal and vertical gradients. The Prewitt algorithm strikes a
balance between edge detection performance and computational complexity [31]. It is ef‑
fective at highlighting boundaries in an image, but its edge detection results can be coarser
than more accurate algorithms such as the Canny algorithm. The Sobel algorithm is one
of the most commonly used edge detection operators, and it detects edges by calculating
a gradient approximation to the image intensity function. Similar to the Prewitt operator,
the Sobel operator uses a 3 × 3 convolutional kernel, but it assigns a greater weight to the
center pixel, making it relatively more effective at suppressing noise. However, the tradi‑
tional Sobel algorithm has low edge localization accuracy and a limited ability to handle
noise and edge continuity. To address these problems, some studies have proposed im‑
age fusion algorithms based on improved Sobel algorithms, combining Canny and LoG
algorithms to optimize the edge detection results. Yuan et al. proposed a high‑precision
edge detection algorithmbased on improved Sobel algorithm‑assistedHED (ISAHED) [32],
The detection performance is improved by increasing the gradient direction. Zhou et al.
also proposed an improved Sobel operator edge detectionmethod based on FPGAs, which
utilizes the parallel processing capability of FPGAs to improve efficiency [33]. The LoG op‑
erator is a second‑order derivative operator that first smooths the image using a Gaussian
filter to reduce noise and then applies the Laplace operator to find zero crossings, which
correspond to the edges of the image. The LoG operator is sensitive to rapid changes in
the image intensity, and is able to detect fine edge details, but is very sensitive to noise.
Therefore, Gaussian smoothing is usually required first.

The Canny edge detection algorithm plays a pivotal role in the field of image process‑
ing. The success of the Canny algorithm lies in the fact that it takes into account the three
major criteria of detection (identifying as many real edges as possible), localization (deter‑
mining the edge position precisely), and suppressing false response (reducing false edges
due to noise). The Canny algorithm has become one of the most popular edge detection
tools in image processing due to its excellent performance. It achieves this by employing
a multi‑stage process that includes noise reduction, gradient finding, non‑maximum sup‑
pression, and hysteresis thresholding to reliably detect a wide range of edges. However,
with the complexity of image application scenarios and higher requirements for real‑time
and robustness, researchers have continuously improved and extended the Canny algo‑
rithm. CaiXia Zhang et al. proposed an improvedCanny algorithm, which combines adap‑
tive median filtering to enhance the noise reduction ability of the image, and utilizes local
adaptive thresholding for edge detection to solve the problem in the traditional Canny
algorithm of the salt‑and‑pepper noise and the poor resistance and poor adaptability of
threshold [34]. In their study, Yibo Li and Bailu Liu also proposed an improved algorithm
for the effect of salt‑and‑pepper noise on the Canny algorithm, which designs a novel filter
to replace the Gaussian filter in the traditional algorithm, aiming at removing the salt‑and‑
pepper noise and extracting the edge information of the region of interest [35]. Shigang
Wang et al. proposed an algorithm that fuses the improved Canny operator and morpho‑
logical edge detection to efficiently deal with noise in images through hybrid filters [36].
Ruiyuan Liu and Jian Mao suggested using a statistical algorithm for denoising and com‑
bined it with genetic algorithm to determine the optimal high and low thresholds to solve



Appl. Sci. 2025, 15, 9081 7 of 31

the problemof poor noise robustness and possible false edges or edge loss in the traditional
Canny algorithm [37].

In addition to the improvement in noise removal, researchers have also optimized
Canny itself for adaptive thresholding. Jun Kong et al. proposed an adaptive edge detec‑
tion model based on an improved Canny algorithm, replacing Gaussian smoothing in the
standard Canny algorithm with a morphological approach to highlight edge information
and reduce noise [38]. In addition, they utilized fractional order differential theory to com‑
pute the gradient values. Ziqi Xu et al. improved the Canny operator by Otsu’s algorithm
and the double threshold detection approach [39], enhancing its capability in medical im‑
age edge detection. Baoju Zhang et al. proposed an improved Canny algorithm for the
drawbacks of the traditional Canny operator that require manual intervention in Gaussian
filter variance [40]. The algorithm performs a hybrid enhancement operation after Gaus‑
sian filtering of multispectral images, aiming to avoid losing edge details while denoising.

2.2. Key Technologies
2.2.1. Swatch Clustering Based on K‑Means++

The RGB color space commonly used in computers is not “perceptually homoge‑
neous”, and the same mathematical distance is not equivalent to the same color difference
in human vision. To overcome this shortcoming, the CIELAB color space is introduced in
this study. Its components l, a, and b represent luminance, green–red, and blue–yellow,
respectively. The biggest advantage of this space is that the Euclidean distance between
two color points can be highly approximated by the “color difference” perceived by the hu‑
man visual system, which provides a mathematical basis for machine learning algorithms
to make judgments more in line with artistic intuition.

Determining the appropriate number of clusters, K, is crucial before performing a
clustering operation. In this study, an introduction and a comparison of the following
three commonly used evaluation methods are provided.

1. Elbow method;
2. Contour coefficient;
3. CH index.

The elbow method is evaluated by calculating the within‑cluster sum of squares
(WCSS) for different values of K. The WCSS measures the sum of the squares of the dis‑
tances of all points within each cluster to its center of mass. Its calculation formula is
as follows:

WCSS =
K

∑
j=1

∑
i∈Cj

||xi − µj||2 (1)

where K is the number of clusters; Cj is the first clustering; x is the sample point in the
cluster; and ci is the center of the first cluster. Theoretically, as the K value increases, the
WCSS value decreases. By plotting the WCSS versus K value, the “inflection point” (i.e.,
the “elbow point”) where the slope of the curve changes dramatically is determined to be
the recommended optimal K value.

The contour coefficient combines the cohesion and separation of the clusters. For a
single sample point i, The profile factor s(i) is calculated as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2)

where a(i) is the average distance between the point and all other points in the cluster to
which it belongs (this is a measure of cohesion) and b(i) is the average distance between
the point and all other points in the cluster to which it is closest (this is a measure of sepa‑
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rateness). s(i) has a value in the range of [−1, 1], and the closer the value is to 1, the better
the clustering is. The average profile coefficient is calculated for all samples, with the value
of K yielding the highest score being selected as the optimal choice.

The Calinski‑Harabasz (CH) index, also known as the variance ratio criterion, assesses
the quality of clustering by calculating the ratio of inter‑cluster scatter to intra‑cluster scat‑
ter. Its score is defined as follows:

sCH =
Tr(Bk)

Tr(Wk)
× N − k

k − 1
(3)

The total number of samples, the number of clusters, the trace of the inter‑cluster
scatter matrix (which indicates the degree of separation between clusters), and the trace
of the intra‑cluster scatter matrix (which indicates the degree of closeness within clusters)
are related concepts. A higher score on the CH index implies that the clusters themselves
are more tightly grouped, and that the clusters are further apart, and the clustering will be
more effective.

The specific procedure of K‑means++ is as follows: first, a sample point from the
dataset is randomly selected as the first clustering center. Next, for each sample point
in the dataset, the shortest distance from that point to the most recently selected clustering
center is calculated:

D(xi) = min
1≤j≤k

(d(xi, cj)) (4)

The shortest distance D(xi) is calculated, where d(xi, cj) denotes the Euclidean distance
between sample point xi and cluster center cj, as defined in Formula (5):

d(xi, cj) =

√
n

∑
m=1

(xi,m − cj,m)2 (5)

Based on the distance calculated above, the probability of selecting the next clustering
center is proportional to the square of the distance:

P(xi) =
D(xi)

2

∑
j

D(xj)2 (6)

The formula suggests that the further a point is from an already selected cluster center,
the higher the probability that it will be selected as the next cluster center. With this strat‑
egy, newly selected clustering centers are moved away from the already existing centers,
thus increasing the dispersion of clustering centers throughout the data space.

2.2.2. Canny Edge Detection Technology

In order to accurately extract the contours of individual color blocks from the K‑
means++ clustering processed layered image of the TWNY Prints (referred to as Ilayered
here), we apply the Canny edge detection algorithm. The algorithm is widely used be‑
cause it seeks to achieve the best balance between the three core goals of accurately label‑
ing the true edges, precisely locating the edge positions, and ensuring that the edges are
single‑pixel thin lines through a series of rigorous mathematical steps. The resulting edge
image E, which is the key input for the subsequent optimization steps, can be summarized
as follows:

E = Canny(Ilayered) (7)

The whole Canny algorithm process begins with Gaussian filtering. After the color
clustering on Ilayered of the TWNY Prints, although distinct color blocks are formed at the
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macro level, there may still be a small amount of noise or unsmooth areas on the micro
level. To prevent these imperfections from being misclassified as edges, the algorithm first
smooths the image. This step is accomplished by convolving the imagewith a 2DGaussian
kernel with the core formula:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (8)

Here σ (standard deviation) controls the strength of the smoothing and choosing the
right σ value can strike a balance between effective noise suppression and preservation of
the original details of the print. The smoothed image Ismoothed is obtained by convolving
the original layered image with a Gaussian kernel:

Ismoothed = Ilayered ∗ G (9)

Next, the algorithm enters the gradient computation phase, which aims to locate the
boundaries between the different color blocks in the TWNYPrints image. The nature of the
edges is a dramatic change in the intensity of the image, and the gradient is amathematical
tool to measure this change. The algorithm usually employs the Sobel operator, which
approximates the intensity changes Gx and Gy of the smoothed image in the horizontal
and vertical directions by means of convolution kernels in both directions. Subsequently,
based on these two gradient components, the gradient intensity G and gradient direction
Θ can be computed for each pixel.

The gradient strength is calculated by the following formula:

G =
√

G2
x + G2

y (10)

The value G reflects the “strength” of the edge. In the TWNY Prints, this means that
the greater the difference in color between the two blocks, the higher the G value.

The gradient direction is given by the following:

Θ = arctan
(

Gy

Gx

)
(11)

However, a gradient intensity map alone is not enough, as the edges thus produced
are blurred and have width. In order to distill these rough boundaries into clear single‑
pixel lines, the algorithm performs non‑maximal value suppression. This step examines
the gradient directionΘ of each pixel and compares the gradient intensity of that pixelwith
the two neighboring pixels before and after it along this direction. A pixel is retained only
if its gradient strength is a local maximum in the neighborhood of its gradient direction;
otherwise, the pixel is suppressed. This process is like fine‑tuning the blurred color block
boundaries of a print, eliminating all non‑centered pixels to produce clear, slim candidate
edge lines.

The final step is dual thresholding with hysteresis linking, which is a key decision‑
making process to determine which candidate edge lines end up as definitive edges. The
algorithm sets a high threshold, Thigh, and a low threshold, Tlow. Pixels with gradient
strengths higher than Thigh are considered strong edges, which are reliable building blocks
for the main contours of the TWNY Prints. Pixels with gradient strength lower than Tlow
are considered as noise and are rejected, and pixels with gradient strengths in between are
defined as weak edges. Then, the algorithm finds and connects all the weak edge pixels
connected to it along the path from all the strong edge pixels through a lagged connection
strategy. Eventually, only the weak edges that can connect to the strong edges are retained
to form a complete contour line. This mechanism allows the algorithm to preserve continu‑
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ous but varying strength lines in the prints (e.g., folds in clothing), while effectively filtering
out isolated false edges caused by subtle textures, thus providing high‑quality edge maps
“E” for subsequent contour optimization.

2.2.3. U‑Net Model and Cyclic U‑Net Model

U‑Net is an encoder–decoder architecture for image segmentation, named for its sym‑
metrical U‑shaped structure. U‑Net was proposed by Olaf Ronneberger, Philipp Fischer,
and Thomas Brox in 2015 [41]. It is mainly designed to address the problem of scarce train‑
ing data and the need for accurate pixel‑level localization in biomedical image segmen‑
tation. The encoder (left path) consists of multiple convolutional and pooling layers that
are progressively downsampled to capture the global contextual information of the image;
the decoder (right path) progressively recovers the spatial resolution by upsampling (e.g.,
transposed convolution) and fuses the feature maps of the same layer with the encoder
through jump connections to preserve the detail information. The jump connection com‑
bines shallow high‑resolution features with deep semantic features to resolve the conflict
between localization accuracy and semantic understanding in segmentation tasks. The
output layer is convolved to generate pixel‑level segmentation masks. U‑Net and its vari‑
ants have demonstrated excellent performance in medical image segmentation, and have
become one of the most mainstream deep learning architectures in this field [42], These
variants further optimize feature fusion through dense jump connections and nested struc‑
tures, and improve segmentation accuracy for complex textures (e.g., gradients; halos).
The high accuracy makes U‑Net suitable for the needs of processing hierarchical works
such as TWNY Prints. The encoder part uses a multi‑stage downsampling module, each
stage contains two convolutional layers (with ReLU activation function) and a maximum
pooling layer, whose mathematical expression is.

El = MaxPool(ConvBlock(El−1)) (12)

In this, the deep semantic features of the image are gradually extracted by stacking
convolutional kernels, while the pooling operation compresses the spatial dimensions to
enhance the generalization ability of themodel. The decoder part implements up‑sampling
by transposed convolution with the kernel formula:

Dup
l = ConvTranspose(Dl+1),Dl = ConvBlock(Concat(Dup

l ,El)) (13)

Here, the transposed convolution (step size) learns the spatial extension of the feature
map by backpropagation, and the computation in the equation relies on the reconstruc‑
tion of the input features by the convolution kernel. The hopping connection between the
encoder and decoder fuses the shallow high‑resolution details with the deeper semantic
information through channel splicing (concatenation), bywhich the problems of edge blur‑
ring and detail loss are effectivelymitigated. The output layer uses convolution tomap the
final features of the decoder to a pixel‑level categorization space and combines them with
Softmax functions to generate a multiclass segmentation mask:

Mask(i, j) = So f tmax(
C

∑
c=1

D1(i, j, c) · Wc) (14)

This project proposes the Cyclic U‑Net architecture, an innovative model designed
for hierarchical image segmentation, as shown in Figure 1, to address the unique charac‑
teristics of TWNY Prints.
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Figure 1. The architecture of the proposed Cyclic U‑Net. The network is comprised of a symmetric
encoder–decoder structure. The encoder path contains four downsampling blocks that sequentially
reduce spatial dimensions while increasing feature channels from 32 to 256. A bottleneck layer with
512 features connects the encoder to the decoder. The decoder path then uses four upsampling blocks
to progressively restore the spatial resolution, with feature channels decreasing from 512 back to 32.
Skip connections are utilized to feed featuremaps from each encoder block to its corresponding block
in the decoder. The final component is a cyclic feedback path, which routes the output segmentation
mask back to be concatenated with the input image.

While traditional U‑Net extracts all target categories in a single forward propagation,
Cyclic U‑Net adopts a recursive processing strategy to extract different color palette layers
in the image layer by layer through multiple iterations, which is more suitable for pro‑
cessing TWNY prints with a clear hierarchical structure. Different from traditional U‑Net,
Cyclic U‑Net introduces a recursive processing mechanism. The input of the model in‑
cludes not only the original image, but also the cumulative mask of the previously ex‑
tracted layers, which can be expressed as follows:

Xt = [I, Mt−1] (15)

where I is the original image and Mt−1 is the combination of all layer masks extracted
in the previous t − 1 iterations. This design allows the model to “remember” what has
been extracted and focus on finding new layers that have not yet been extracted. Cyclic
U‑Net introduces an adaptive stopping mechanism based on the area ratio and layer over‑
lap, which automatically stops the iteration when the area of the newly extracted layer is
smaller than a preset threshold or the overlap with the extracted layer exceeds a threshold:

Stop =


True, if Area(Mt)

Area(I) < τarea

True, if |Mt∩Mt−1|
|Mt∪Mt−1|

> τiou

False, otherwise

(16)

2.3. Research Route

In this study, 200 TWNY Prints were selected from the Complete Collection of Chinese
Woodblock New Year Prints as the sample set [43]. Since the dataset consists of scanned
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images from books, the overall colors tend to be dull and grayish, with extraneous back‑
ground tones. To address this, batch preprocessing was performed using computer‑based
image enhancement techniques to restore the original color fidelity of the images and re‑
move the unnecessary background. No dedicated ICC color correction profile was applied
due to the dataset being derived from published book scans; instead, a consistent pre‑
processing pipeline was applied to all samples to maintain relative color fidelity across
the dataset.

To ensure accurate input data for subsequent processing, all TWNY Print images first
undergo preprocessing to restore color fidelity and remove extraneous background tones.
This step involves white balance correction, contrast enhancement, mild saturation adjust‑
ment, background normalization, and light edge sharpening, effectively compensating for
the dull, grayish tones and color deviations introduced during book scanning.

Following this, the proposed technical framework—comprising four core stages—is
applied to achieve precise digital layer separation and standardized color reconstruction.
The method automatically determines the necessary number of color layers and performs
color clusteringwithin a perceptual color space alignedwith human visual perception, ulti‑
mately generating pure, discrete color layers suitable for standardized digital production.
To illustrate the preprocessing stage of this study, two representative images of TWNY
Prints, shown in Figure 2a,b, were selected from the sample set to present a side‑by‑side
comparison of the original scanned images and the results after color restoration and back‑
ground removal.

 

 

(a) (b) 

Figure 2. Preprocessing examples of TWNY Prints used throughout this study, showing the original
scanned image (left) and the processed image after color restoration and background removal (right):
(a) Blossoms bring wealth and honor; (b) Fruit bowl.

In addition, a Cyclic U‑Net model is introduced to improve the efficiency of layer sep‑
aration for TWNY Prints. This model is designed to learn the interrelationships between
different layers, enabling direct output of the separated color layers.

2.3.1. Contour Extraction Using the Canny Operator

Given the artistic characteristics of TWNY Prints, which feature clear black ink out‑
lines as the structural framework, preprocessing of the input images was first performed
using the Canny edge detection algorithm. The purpose of this step is to extract the “black
outline layer,” which serves as the foundation for the print composition. This approach not
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only aligns with the traditional “one block, one color” overprinting process but also pro‑
vides precise layer boundaries for the subsequent extraction of pure color plates, thereby
improving the accuracy of color segmentation.

To optimize the performance of the Canny edge detection algorithm, systematic com‑
parative experiments were conducted, focusing on two key parameters: the low threshold
and high threshold. The Canny algorithm uses a dual‑threshold strategy for edge detec‑
tion, where the high threshold identifies strong edges, while the low threshold helps con‑
nect these edges to form complete and continuous contours.

Figures 3 and 4 present the Canny edge detection results for selected representative
images of TWNY Prints.

Figure 3. Canny edge detection threshold test 1 and parameter settings. (a) The original input image.
(b–g) The resulting edge maps produced by the Canny algorithm with low/high thresholds set to
30/60, 60/90, 90/120, 120/150, 150/180, and 180/210, respectively. The figure visually demonstrates
the algorithm’s sensitivity to threshold selection, showing the progression from an excessively noisy
output at low thresholds (e.g., (b)) to the loss of fine details at high thresholds (e.g., (g)).

Figure 4. Canny edge detection threshold test 2 and parameter settings. (a) The original image for
this case (fruit bowl). (b–g) show the Canny edge detection results using low/high thresholds of
30/60, 60/90, 90/120, 120/150, 150/180, and 180/210, respectively. This series of images also visually
demonstrates the progression from an output with co‑existing detail and noise at low thresholds
(b) to one with only major contours and a loss of detail at high thresholds (g).
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Testing successive threshold intervals of 30–60–90–120–150–180–210 showed that the
combination of a low threshold set to 90 and a high threshold set to 120, as shown in
Figures 3d and 4d,most accurately captures the ink line characteristics of the TWNYPrints.
The advantage of this parameter combination lies in the fact that the lower low threshold
(60) can capture enough potential edge information to avoid line breakage, while the mod‑
erate high threshold (90) effectively filters out the false edge generated by the color tran‑
sition region and texture details, preserving the integrity and continuity of the ink lines.
Excessively high threshold combinations (e.g., 150–180 or 180–210) result in the loss of fine
ink lines, while excessively low threshold combinations (e.g., 30–60) introduce too much
noise and non‑ink line structures that interfere with subsequent color clustering.

2.3.2. Minimum Number of Clusters (K_min) Based on Color Dominance Analysis

To enhance the specificity of clustering analysis and prevent the omission of key dom‑
inant colors, the design of a preprocessing mechanism was implemented to determine the
minimum number of clusters (K_min) based on color dominance analysis. This mecha‑
nism adaptively identifies K_min by performing statistical analysis of the image’s color
space and detecting visually significant colors.

First, a color histogram is constructed in the RGB color space by discretizing the color
value range into a 16 × 16 × 16 three‑dimensional grid, with each dimension correspond‑
ing to the R, G, and B channels. This partitioning preserves sufficient color detail while
avoiding excessive subdivision that could lead to increased computational cost. The color
area distribution is then derived by calculating the percentage of pixels in each non‑empty
grid cell relative to the total number of pixels.

Next, an area threshold of 1% (during color extraction) is applied to filter out all col‑
ors whose area ratio exceeds this value, defining them as “dominant colors.” These colors
play a key role in visual perception and must be retained during clustering, with their
pairwise Euclidean distances subsequently computed. If the distance between two colors
is below a predefined merging threshold (set to 20.0), they are considered visually similar
and are merged into a single dominant color. During merging, smaller area colors are ab‑
sorbed by larger area colors to ensure that the resulting colors accurately reflect the visual
characteristics of the original image.

After the merging process, the remaining colors are re‑ranked by area size, and a sec‑
ond area threshold (2% during color extraction) is applied to finalize the dominant color
set. The number of remaining dominant colors is defined as K_min, representing the min‑
imum number of clusters required to capture the primary color information in the image.

K_min serves as the lower bound for subsequent cluster number determination using
methods such as the elbow method, silhouette coefficient, and Calinski‑Harabasz (CH)
index, with the search range set as [K_min, K_max]. In our experiments, K_max is set to 12,
considering the typical color characteristics of TWNY Prints and balancing computational
precision and efficiency.

The core advantage of this preprocessingmechanism lies in its adaptability to dynami‑
cally adjust clustering parameters according to the image’s inherent color complexity. This
approach prevents both under‑clustering, which could result in the loss of key dominant
colors, and over‑clustering, which increases computational burden and introduces noise.
Experimental results demonstrate that this mechanism is particularly effective for images
with distinct color hierarchies, such as TWNY Prints, accurately capturing essential color
layers and providing a reliable foundation for subsequent digital restoration and color
reconstruction. Figure 5 illustrates the color merging process applied to representative
sample images.
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(a) 

(b) 

Figure 5. The process of determining the minimum number of clusters (K_min) through area share
sorting and merging. This figure illustrates the method used to determine the number of main color
clusters (K_min) for the sample images previously defined in the text. The process involves two steps:
first, extracting dominant colorswith an area share greater than 1.0%, and subsequently, determining
the final K_min by merging similar colors and applying a stricter area threshold of 2.0%. (a) Shows
the process applied to the “fruit bowl” sample image, for which the calculation results in a final
K_min = 2. (b) Shows the result of applying the same process to the “vase” sample image from
the “TWNY Prints” collection. Due to its higher complexity in color and composition, the method
adaptively determines its minimum number of clusters to be K_min = 4.

2.3.3. Optimal Number of Clusters (K) and Method Selection Based on
Multi‑Indicator Assessment

To ensure that color difference calculations align more closely with human visual per‑
ception, the conversion of image color data from the RGB color space to the CIELAB color
space was performed. The perceptual uniformity of the CIELAB space provides a more
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reliable mathematical foundation for subsequent clustering evaluations. During prepro‑
cessing, standardization was applied, and a weighted strategy was introduced across dif‑
ferent channels: the a* and b* channels in the CIELAB space, which carry the chromatic
information, were assigned a weight factor of 1.5 to enhance color distinction capability.

To balance local color block integrity with global color consistency, the feature con‑
struction process incorporated spatial coordinate information, assigning a weight ratio of
5.0 to color information and 0.3 to spatial positioning. This design enables the clustering
algorithm to effectively distinguish color differences while maintaining spatial continuity.

Within a search range not lower than the initial minimum cluster number K_min (as
determined by the dominant color area analysis described previously), the determination
of the optimal number of clusters K was performed through a comprehensive evaluation
combining three classic clustering validation methods:

ElbowMethod: Thismethod analyzes thewithin‑cluster sum of squares (WSSs) curve
with respect to varying K values, identifying the point of maximum curvature as the op‑
timal K. The implementation of an improved algorithm based on second‑order difference
and slope change analysis, with the introduction of a positional weighting factor, was car‑
ried out to avoid the selection of excessively high cluster numbers.

Silhouette Score: This metric evaluates the compactness and separation of clusters,
with values ranging from−1 to 1, where scores closer to 1 indicate higher clustering quality.
To balance computational efficiency with accuracy for large datasets, the adoption of a
random sampling strategywas combinedwith silhouette score calculation based on 20,000
sampled pixels.

Calinski‑Harabasz Index (CH‑Index): This index assesses the clustering performance
based on the ratio of between‑cluster dispersion to within‑cluster cohesion, with higher
values indicating better clustering quality. The CH‑Index is particularly sensitive to data
distribution characteristics and performs well on TWNY prints with clearly separated
color regions.

A weighted majority voting decision mechanism was developed; when two or more
evaluation methods recommend the same number of clusters, that value is adopted as the
final K. In cases where all three methods yield inconsistent results, priority is given to the
value suggested by the silhouette score. Any recommended K values below the minimum
acceptable threshold (typically set to 3) are automatically adjusted to the minimum to en‑
sure sufficient color detail is preserved.

The layer separation results of representative sample images obtained using this
method are shown in Figure 6.

In practical applications, the clustering performance of three color spaces (RGB, HSV,
andCIELAB)was compared through simultaneous experiments, and the resultswere used
to determine the entire technical process.

2.3.4. Image Segmentation of TWNY Prints Based on the Cyclic U‑Net Model

To simplify the overall workflow and reduce the time required for layer separation,
training of a Cyclic U‑Net model was conducted to perform automated layer extraction
for TWNY Prints. The process begins with systematic mask segmentation of the prints,
where binary masks are generated for each individual color layer within every print. Sub‑
sequently, these layer‑wise masks are sequentially merged to create an accumulated mask
dataset tailored for Cyclic U‑Net training.

The Cyclic U‑Net model adopts the classical U‑Net architecture but is specifically de‑
signed for progressive, layer‑by‑layer color plate extraction. The input to the network con‑
sists of a four‑channel dataset (RGB image plus the cumulative extracted layermask), while
the output is a single‑channel binary mask representing the next layer to be extracted.
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Figure 6. The workflow of clustering analysis applied to the sample images. (a) Blossoms bring
wealth and honor; (b) Fruit bowl. The central column compares three evaluation methods (e.g., el‑
bowmethod, silhouette score) to determine the optimal number of clusters, which is indicated by the
red vertical line. The right column displays the final cluster profiles, illustrating the segmentation of
the original images into distinct components.

Structurally, the model comprises an encoder–decoder framework. The encoder con‑
tains four downsampling stages, each consisting of two 3× 3 convolutional layers followed
by max‑pooling, progressively increasing the number of feature channels (64 → 128 →
256 → 512) while halving the spatial resolution. The decoder uses transposed convolu‑
tions for upsampling and integrates skip connections from corresponding encoder stages
to preserve spatial details. Each convolutional block is equippedwith batch normalization
and ReLU activation functions, with dropout layers applied in deeper stages to mitigate
overfitting.

To ensure the reproducibility of our experimental setup, the Cyclic U‑Net was trained
using a progressive training strategy. The network employed an encoder depth of five lay‑
ers with decoder channel configuration [512, 256, 128, 64, 32], with attention mechanisms
enabled and a dropout rate of 0.3. The AdamW optimizer was used with a weight de‑
cay of 1 × 10−5, and the learning rate was gradually reduced from 1 × 10−3 to 1 × 10−4

during progressive training, dynamically adjusted via a CosineAnnealingWarmRestarts
scheduler. A decreasing batch size strategy was adopted, starting from 4 in the initial
stage and reducing to 1 in the final stage, over a total of 190 training epochs (split into
three phases: 80 + 60 + 50).
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Data augmentation was customized for TWNY Prints, including±15◦ rotation, trans‑
lation and scaling within a 0.1 range, brightness adjustment in the range [0.8, 1.2], hori‑
zontal flipping, Gaussian noise with a strength of 0.02, and elastic deformation. Vertical
flippingwas disabled to preserve the directional characteristics of the prints. Gradient clip‑
ping (maximum norm = 1.0) and early stopping were applied to ensure training stability
and prevent overfitting.

The Cyclic U‑Net operates in a recursive extraction manner: the initial input consists
of the original image combined with an empty mask, yielding the binary mask for the first
color layer. In subsequent iterations, the input is updated by combining the original image
with the accumulated extracted masks, allowing the model to predict the next color layer.

To ensure the quality and continuity of the extracted color layers, multiple valida‑
tion mechanisms are incorporated, including confidence thresholding, area proportion fil‑
tering, and clustering‑based evaluation. This recursive design enables a single model to
handle the extraction of an arbitrary number of color layers, significantly simplifying the
traditional layer separation process, which often requires repeated manual parameter tun‑
ing and training of multiple models.

Further improvements are achieved through clustering optimization in the CIELAB
color space and morphological post‑processing, including edge contour preservation and
connected region merging, which enhance mask precision and ensure accurate boundary
separation between different printing color plates.

This end‑to‑end automated layer separation approach greatly improves the efficiency
and accuracy of the digital processing workflow for TWNY Prints. Figures 7 and 8 demon‑
strate the iterative mask extraction process applied to representative sample images.

Figure 7. The cyclic mask generation process 1. This process involves the sequential accumulation
of original masks (top row) to create progressively denser cyclic masks (bottom row). This sequence
of accumulated masks serves as the training data for the cyclic in‑fill model.
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Figure 8. The cyclic mask generation process 2. This figure extends the process shown in Figure 7,
illustrating subsequent sequential accumulations of original masks (top row, continuing from mask
#4) to generate further progressively denser cyclic masks (bottom row). This extended sequence of
accumulated masks continues to serve as the training data for the cyclic in‑fill model.

2.4. Computational Resources and Runtime Efficiency

This study’s computational resource and runtime efficiency tests were conducted in
the following hardware environment: a single NVIDIA RTX 4090 GPU (24 GB VRAM), a
12‑core Intel Xeon Platinum 8352V processor (2.10 GHz), 90 GB system memory, running
Ubuntu 20.04, with PyTorch 2.0.0 and CUDA 11.8 acceleration.

Performance testing under this hardware configuration showed that the K‑means++
algorithm processed 512 × 512 resolution images in an average of 1.8 ± 0.3 ms, whereas
the full Cyclic U‑Net pipeline required 127 ± 15 ms end‑to‑end. K‑means++ was thus ap‑
proximately 67 times faster than Cyclic U‑Net. Specifically, the Cyclic U‑Net’s processing
time was distributed as follows: encoder forward pass–23 ms, six‑stage cyclic decoding–
89ms, and output generation–15ms, with peakGPUmemory usage of 19.2 GB. In contrast,
K‑means++ clustering optimization required only 0.8 GB VRAM, achieving a throughput
of 526 images/s over a 1000‑image test set, compared to 7.8 images/s for Cyclic U‑Net.

Despite the speed advantage of K‑means++, when used jointly with Cyclic U‑Net in
practical applications, the extra time cost of K‑means++ accounted for only 1.4% of the over‑
all pipeline, exerting minimal impact on total runtime while significantly improving seg‑
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mentation boundary precision and continuity. This demonstrates that the hybrid architec‑
ture achieves superior segmentation quality without sacrificing computational efficiency.

3. Results
3.1. Canny Contour Extraction

As shown in Figure 9, the Canny edge detection procedure completes the first stage
of contour extraction. The low and high thresholds are set to 90 and 120, respectively, as
discussed earlier. Taking Image 1 in the figure as an example, the application of Canny
edge detection with a low threshold of 90 and a high threshold of 120 reveals the complex,
multi‑layered structure of the original image in detail.

Figure 9. Demonstration of the line drawing extraction process on five different TWNYPrints. For
each numbered pair, the original print (left) is processed to generate a corresponding line drawing
(right), which effectively captures the essential contours and edges of the artwork.

First, the central circular motif of the image is clearly outlined, with both the primary
contour and the smaller concentric circular edges inside it beingwell preserved. Surround‑
ing the central motif, the edges of multiple curled, symmetrical patterns resembling petals
or leaves are also successfully detected, collectively showcasing the organic and ornate
nature of the design.

In addition to the central elements, the outer framing structures and corner decora‑
tions are also distinctly visible. The algorithm effectively captures the square frame lines
around the periphery of the image, as well as the decorative patterns located at each corner.
Furthermore, this parameter configuration preserves a significant amount of fine, grid‑like
or dotted textures used to enrich the background. While these dense edges increase the
visual complexity of the result, they also faithfully reflect the highly intricate and textural
style of the original print.

Thus, the threshold combination of a low threshold of 90 and a high threshold of 120
is identified as the most suitable parameter setting for Canny edge detection in the context
of TWNY Prints.
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3.2. K‑Means Color Clustering Extraction

K‑means++ clustering was performed without removing the edge contours extracted
by the Canny algorithm, ensuring that the structural outlines remained intact during the
color segmentation process. Meanwhile, three different evaluation methods were em‑
ployed to determine the optimal number of clusters for each Taohuawu woodblock print.

As shown in Table 1, the specific layer separation results for each print are presented,
illustrating the effectiveness of the proposed approach.

Table 1. This table displays the hierarchical results of K‑means++ clustering on five samples of TWNY
Prints. The ‘Original painting’ column shows the original images, ‘color x’ denotes the result of a par‑
ticular color layer’s segmentation, and ‘Clustering results’ indicates the final merged segmentation
results after further combining the layers.

Serial
Number
Name

Original
Painting Color 1 Color 2 Color 3 Color 4 Color 5 Clustering

Results

1 None

2 None None

3 None None

4 None None

5 None

The reconstruction of the clustering results in Figure 10 for each of the three color
spaces (HSV, CIELAB, and RGB) using the three methods will also be shown. For simplic‑
ity, only one reconstructed and merged layer will be presented.

The optimal number of clusters (k) for each color space was determined using the
silhouette method, yielding k = 4 for RGB, k = 7 for HSV, and k = 4 for LAB. The figure
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visualizes the color segmentation results at both k = 4 (middle column) and k = 7 (right
column), with the optimal outcome for each color space explicitly labeled.

Figure 10. Comparison of image clustering results using three different color spaces (RGB, HSV, and
LAB) on the vase.

The processing of TWNY Prints involved K‑Means clustering in the CIELAB color
space, followed by layer optimization in the RGB space. The primary advantage of select‑
ing CIELAB lies in its spatial perceptual uniformity. This space is designed so that the
Euclidean distances between values better correspond to the color differences perceived
by the human eye. This means that when the algorithm searches for and aggregates pixels
with similar colors in this space, the results align more closely with human intuition about
“similar colors,” effectively avoiding the incorrect separation of colors that appear visually
similar but have significant differences in RGB values.

At the same time, the use of HSV (hue, saturation, value) space for this task was eval‑
uated and ruled out. Although HSV intuitively separates color (hue), purity (saturation),
and luminance (value), it has significant drawbacks in the field of image segmentation,
especially when dealing with those images that contain a large number of black, white,
and low‑saturation colors. The main problem with the HSV space lies in the instability of
its hue component. For colors that are close to black, white, or gray (i.e., colors with low
saturation or extreme brightness), the hue value becomes extremely unstable, and small
changes in noise or pixel values can cause the hue value to jump dramatically. As shown
in the clustering comparison diagram in Figure 10, there are more black lines, and this
instability of the hue component can severely affect the clustering algorithm, resulting in
contour lines that cannot be stabilized into a class, thus destroying the structural integrity
of the image.

The superiority of the CIELAB method can be clearly verified from our processing
results (as shown in the “CIELAB k = 12” and “CIELAB k = 17” figures). The algorithm
succeeds in accurately separating key visual elements in the image—the red halo at the top,
the skin color of the character, the green area of the robe, and the yellow background‑into
separate color layers. Crucially, the CIELAB space stabilizes the low‑saturation black con‑
tours so that they are preserved intact, maintaining the structure of the original artwork.
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In summary, while the HSV space is useful in some scenarios, its instability in near‑
colorless regions makes it unsuitable for complex art image segmentation that requires
precise preservation of black contours. On the other hand, the perceived homogeneity of
the CIELAB space provides a more stable and reliable basis for segmentation, ensuring
that the results both simplify the colors and remain faithful to the artistic character of the
original artwork.

3.3. Cyclic U‑Net Results Presentation

The output of Cyclic U‑Net is the same black and white binary mask as the output
of general U‑Net. In the previous section, the actual processing and generation of cyclic
masks for simulating the Cyclic U‑Net were presented. Instead of presenting the output
process, the output results are shown directly here in Table 2.

From the resulting images, it can be observed that the original K‑means clustering
method effectively segments the images, demonstrating excellent performance in handling
edge regions and noise suppression. Although the Cyclic U‑Net model does not achieve
the same level of accuracy as K‑means clustering, it significantly reduces the processing
time required for a single TWNY Print.

Table 2. This table showcases a comparison of the layering results between K‑means++ and Cyclic U‑
Net, using the vase as an example. K‑means++ decomposes the image into four layers, while Cyclic
U‑Net breaks it down into five layers. The table presents the mask results, original color results, and
the reconstruction results based on the layered segmentation for both methods.

K‑Means Clustering Results Cyclic U‑Net Results

Masking Result Chart

Layered results map
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Table 2. Cont.

K‑Means Clustering Results Cyclic U‑Net Results

Comparison chart of reconstruction
results

Performance evaluation of the Cyclic U‑Net model in the hierarchical segmentation
of TWNY Prints is shown in Figure 11. The results demonstrate that the model excels in ex‑
tracting primary artistic elements, with IoU, Dice, and F1 scores for the first layer reaching
0.612, 0.759, and 0.762, respectively, confirming its reliability in core pattern recognition.
Performance systematically declines with increasing layer depth, with the second layer
achieving 0.387, 0.558, and 0.551 for the same metrics, still maintaining moderate segmen‑
tation accuracy. From the third layer onward, performance drops markedly, reflecting the
inherent difficulty in extracting fine‑grained details and background elements.

Precision–recall analysis shows a consistently conservative prediction behavior across
all layers, with precision exceeding recall at all stages—from 0.834/0.701 in the first layer
down to 0.198/0.045 in the sixth layer. This characteristic is of particular value in the digi‑
tization of artworks, as high precision ensures the accuracy of extracted patterns and min‑
imizes false detections that could interfere with art analysis. Layer prediction accuracy
analysis reveals the dataset’s natural imbalance: simple compositions (1–2 layers) domi‑
nate, while complex multi‑layer compositions are relatively rare, with prediction accuracy
decreasing from 87.3% for single‑layer prints to 21.7% for six‑layer prints.

Performance decay analysis shows the steepest drop (26.5%) from the first to the sec‑
ond layer, followed by a relatively stable decline (28.1–28.4%) until the final layer, which
shows the largest drop (52.9%). The training convergence curve demonstrates the effec‑
tiveness of the three‑stage progressive learning strategy, with final training and validation
losses stabilizing at 0.143 and 0.196, respectively, confirming the model’s good generaliza‑
tion capability. These results highlight the practical potential of Cyclic U‑Net in the digital
preservation of cultural heritage, providing a reliable technical foundation for the artistic
study and digital restoration of TWNY Prints.

Moreover, this work provides a foundational framework for applying deep learning
techniques to the layer separation of TWNY Prints, paving the way for future advance‑
ments in digital restoration and automated processing. Historical or modern prints whose
original woodblocks have been preserved are selected, and the algorithm’s results are com‑
pared with the actual printing samples of each woodblock (Figure 12).
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Figure 11. Cyclic U‑Net performance analysis for layered segmentation of Taohuawu woodblock
New Year prints (TWNY Prints): (a) segmentation performance by layer; (b) precision vs. recall;
(c) layer prediction accuracy and sample distribution; (d) layer‑wise performance decay; (e) training
convergence.

Figure 12. The traditional woodblock New Year painting “Door God”, comparing the traditional
color‑printed woodblocks with the results obtained through algorithms. #1–#5 are the five over‑
printed color layers of the traditional color‑printed woodblocks.
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4. Discussion
4.1. Technical Advantages

This study’s technical solution fully leverages the unique value of computer vision
algorithms in the digital preservation of intangible cultural heritage. Targeting the dis‑
tinctive characteristics of TWNY Prints, which are marked by prominent dominant col‑
ors and smooth color gradients, a K‑means++ clustering algorithm optimized within the
CIELAB color space was employed. The optimal number of color gradients was deter‑
mined using contour compactness constraints combinedwith an automatic elbowmethod.
The clustering results demonstrated a high degree of consistency with manually crafted
gradient effects, effectively addressing the subjective bias inherent in traditional manual
color identification.

In the edge detection phase, a multi‑scale Canny operator system was innovatively
developed by setting adaptive Gaussian filter parameters (σ) to eliminate noise caused by
wood grain texture, alongside a dual‑threshold scheme (low threshold 90/high threshold
120) that preserves fine details while suppressing color cluster spurious edges.

A Cyclic U‑Net was adopted as the primary segmentation engine, showcasing signif‑
icant advantages in processing TWNY Prints. While the conventional U‑Net architecture
excels in medical imaging, it faces limitations when handling the unique layered color
structure of TWNYprints. The Cyclic U‑Net introduces a progressive iterativemechanism:
at each iteration, the original image combined with previously extracted layer masks is in‑
put to simulate the traditional artisan “one block, one color” overprinting technique.

This model embodies three core technical innovations. First, an adaptive stopping
mechanism based on area proportion and inter‑layer overlap ensures precise termination
of the extraction process. Second, an optimization algorithm integrating cluster validation
and morphological post‑processing markedly enhances the accuracy of color layer sepa‑
ration, particularly excelling at managing characteristic woodblock print features such as
ink diffusion and gradient areas. Third, through recursive learning, the model effectively
learns critical features of TWNY Prints even with a relatively limited training dataset.

This deep learning–based layer separationmethod, together with the aforementioned
K‑means++ clustering and Canny edge detection techniques, forms a comprehensive tech‑
nical pipeline that provides a systematic solution for the digital preservation and restora‑
tion of TWNY Prints.

4.2. Limitations

Several critical challenges remain to be addressed in the technical implementation of
this study. First, unique traditional craft features of TWNY Prints, such as cloud‑pattern
gradients and ink diffusion effects, present significant challenges to existing color segmen‑
tation models. The K‑means algorithm, when applied in the RGB color space, struggles
to accurately capture the nonlinear tonal transitions created by the overlapping of mineral
pigments, often resulting in abrupt color block segmentation or blurred boundaries in gra‑
dient regions. Meanwhile, although the Canny edge detector effectively identifies sharp
edges, it lacks sufficient sensitivity to the subtle overlaps of brushstroke smudging and
texture variations, frequently misclassifying these as noise and filtering them out.

While this study successfully demonstrates a novel framework combining traditional
image processingwith deep learning for the digital restoration of TWNYPrints, several im‑
portant limitations remain, framing the context of the results and guiding future research.

First, the primary constraint of this research is the dataset. Currently, there is no pub‑
licly available, large‑scale, and expertly annotated dataset for TWNY Prints. Our dataset
was compiled from various online sources, which introduces variability in image resolu‑
tion, color fidelity, and artifacting. This heterogeneity poses a significant challenge for
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training deep learning models and for rigorous quantitative evaluation. The ground‑truth
masks used for the Cyclic U‑Net were generated via a semi‑automated process, which,
while suitable for this preliminary exploration, does not possess the pixel‑perfect accuracy
required for calculating definitive performance metrics.

This dataset issue leads to a crucial distinction in how our two proposedmethods can
be evaluated:

For the K‑means++ algorithm, performance is guided by established internal clus‑
tering validation metrics. In the methodology, the elbow method, silhouette score, and
Calinski‑Harabasz index are used to determine the optimal number of color layers in a
data‑driven manner, providing a quantifiable and reproducible basis for the color separa‑
tion component of the framework.

For the Cyclic U‑Net model, however, providing external evaluation metrics such as
intersection over union (IoU) is challenging and could be misleading at this stage. The
performance of such metrics is highly sensitive to the quality of the ground‑truth annota‑
tions. Given the limitations of our current dataset, an IoU score would reflect the dataset’s
inconsistencies as much as the model’s true capability. Furthermore, the Cyclic U‑Net is
framed not as a final, precise segmentation engine, but as a rapid, assistive tool intended
to accelerate the workflow by generating a strong initial proposal for the layers. Its value
lies in its efficiency and the capacity to learn the layering concept, a contribution that IoU
alone cannot capture.

Therefore, the evaluation in this paper is intentionally bifurcated: a quantitative‑
driven assessment for the K‑means++ process and a qualitative, proof‑of‑concept assess‑
ment for theCyclicU‑Net. This is considered themost intellectually honest approach given
the current resource constraints.

Additionally, the selection of Canny edge detection thresholds in this study was per‑
formedmanually, based on expert evaluation of traditional woodblock ink line characteris‑
tics. While this ensured that the extracted contours aligned closelywith artisanal standards
of clarity and continuity, it also introduces a degree of subjectivity. Future work will incor‑
porate objective, data‑driven parameter optimization methods to enhance reproducibility.

4.3. Future Directions

Our future work will be a direct response to these limitations. Our foremost priority
is the development of a high‑resolution, consistently captured, and expertly annotated
benchmark dataset for TWNY Prints. This will not only enable the training of a more
accurate Cyclic U‑Net model but also allow for a fair and direct quantitative comparison
between it and other methods using standard metrics like IoU. This will transition the
model from an assistive tool to a verifiable, high‑precision restoration solution.

Second, the future work includes the development of an “intelligent assistance plus
manual refinement” collaborative design platform, featuring a visual color plate editing
system. This platform will enable artisans to adjust parameters such as gradient tolerance
and edge feathering in real time using a stylus, while the system simultaneously gener‑
ates AI‑optimized suggestions (e.g., color palette recommendations based on style transfer
models). At the same time, it preserves the traditional craft control of manual fine‑tuning
for layer overlay opacity. This hybrid intelligent approach leverages convolutional neu‑
ral networks for batch processing of repetitive color plate separation tasks, while utilizing
human–computer interaction to pass down artisans’ tacit knowledge. Ultimately, it forms
a virtuous cycle of “algorithmic inference–experiential correction–data feedback,” provid‑
ing a digital preservation solution for intangible cultural heritage that balances technical
rigor with artisanal craftsmanship.
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Furthermore, in response to the need for broader applicability across heritage, muse‑
ology, and art history communities, future research will incorporate an interdisciplinary
discussion on integrating the proposed methodology into museum workflows, heritage
center operations, and citizen participation initiatives. This will explore strategies for low‑
ering technical entry barriers, enabling institutions with limited technological infrastruc‑
ture to benefit from the framework, thereby enhancing its real‑world adoption and cul‑
tural impact.

5. Conclusions
This study employs image processing and machine learning techniques to digitally

restore the woodblock printing technology of TWNY Prints. Compared with traditional
two‑dimensional scanning and archiving methods, the developed algorithm intelligently
identifies and extracts color blocks, simulating themulti‑layer printing technique character‑
istic of TWNY prints. The resulting data can also be utilized for standardized production.

Canny edge detection effectively extracts the edge features of TWNY Prints. The op‑
timized K‑means++ algorithm for TWNY prints can automatically determine the optimal
number of clusters and perform layered clustering. However, in practical applications,
methods such as the elbow method, silhouette coefficient, and Calinski‑Harabasz (CH) in‑
dex must first be applied in the CIELAB color space to determine the optimal cluster num‑
ber. Afterward, the data need to be converted back to the RGB color space for layer sepa‑
ration and reconstruction. Notably, the clustering performance of K‑means/K‑means++ in
the CIELAB or HSV color spaces for actual color layering is suboptimal, indicating a need
for further optimization of these algorithms tailored to specific color spaces.

Additionally, the introduction of a Cyclic U‑Net model enables the learning of pixel‑
level color distinctions for layer segmentation of TWNY Prints, with the aim of reducing
the complexity of the combined Canny and K‑means++ segmentation steps. However, the
current Cyclic U‑Net model falls short of pixel‑level segmentation accuracy. The observed
results are hypothesized to stem from the U‑Net architecture’s limited capacity to fully
capture features in color images, in combination with the sparse features in mask maps
and the relatively low precision of dataset annotations, which primarily consist of manual
fine‑tuning assisted by algorithmic generation.

Based on the current experimental results, the introduction of a color attention mech‑
anism into the Cyclic U‑Net is proposed. Each color layer would be trained individually
while ensuring that each model focuses on segmenting the most similar color layers (con‑
sidering color similarity, area, and other factors), followed by transfer learning after train‑
ing individual layers. This approach could mitigate cumulative errors and excessive loss,
thereby improving overall segmentation accuracy.

The solutions provided herein offer a feasible pathway for the inheritance, protec‑
tion, and innovative application of intangible cultural heritage. On a dynamic inheritance
level, the system supports designers in rapidly generating cultural creative products that
blend traditional charm with modern aesthetics, including constellation‑themed trendy
toys produced with screen printing techniques and smart New Year print folding screens
incorporating dynamic light and shadow effects.

Furthermore, AR digital collectibles and intangible cultural heritage research appli‑
cations have been leveraged to establish a three‑dimensional inheritance ecosystem that
integrates digital twin technology, virtual reality interaction, and scenario activation. This
ecosystem not only preserves the craftsmanship genes of traditional New Year prints in
their entirety but also integrates them into contemporary living spaces through new forms
such as digital ink animation and immersive art installations. This approach pioneers a full‑
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chain protection model for intangible cultural heritage, encompassing “digital analysis–
intelligent production–scenario regeneration.”

The system can be extended to similar intangible cultural heritage projects, such as
blue calico printing and Yangliuqing woodblock prints, providing replicable technical
pathways and business models for the modern transformation of traditional crafts. Future
work will focus on further optimizing algorithmic stability, expanding application scenar‑
ios, and promoting the deep integration of traditional culture and modern technology.

Author Contributions: Conceptualization, F.J.; methodology, F.J.; software, Y.W.; validation, Y.D.,
F.J. and Y.W.; formal analysis, Y.D.; investigation, Y.D.; resources, Y.D.; data curation, Y.D.;
writing—original draft preparation, Y.D.; writing—review and editing, F.J.; visualization, Y.D.; su‑
pervision, F.J.; project administration, F.J.; funding acquisition, Y.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the China National College Students’ Innovation and En‑
trepreneurship Training Program (2024), grant number 202410298079Z.

Acknowledgments: The authors are thankful for the support from Nanjing Forestry University to
conduct this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pan, S.; Dong, B.; Fu, R. Product Design for YangliuqingWoodblockNewYear Paintings Based on EyeMovement Experiment. In

Proceedings of the International Conference onAppliedHuman Factors and Ergonomics, Virtually, 25–29 July 2021; pp. 375–383.
2. Rong, X. The Earliest Extant Example of Woodblock Printing: The Precept Certificate of the 29th Year of Kaiyuan (741 AD). Pis’

Mennye Pamiat. Vostoka 2021, 18, 118–126.
3. Liu, F.; Zhang, M.; Zheng, B.; Cui, S.; Ma, W.; Liu, Z. Feature fusion via multi‑target learning for ancient artwork captioning. Inf.

Fusion 2023, 97, 101811. [CrossRef]
4. Qian, W.; Sharudin, S. Research on animation design of woodblock print characters based on audience aesthetic differences.

Insights Media J. 2024, 1, 6–14. [CrossRef]
5. Zabulis, X.; Meghini, C.; Dubois, A.; Doulgeraki, P.; Partarakis, N.; Adami, I.; Karuzaki, E.; Carre, A.‑L.; Patsiouras, N.; Kaplanidi,

D. Digitisation of traditional craft processes. J. Comput. Cult. Herit. (JOCCH) 2022, 15, 1–24. [CrossRef]
6. Zhong, C.; Yu, X.; Xia, H.; Xie, R.; Xu, Q. Restoring intricateMiao embroidery patterns: AGAN‑basedU‑Netwith spatial‑channel

attention. Vis. Comput. 2025, 41, 7521–7533. [CrossRef]
7. Münster, S.; Maiwald, F.; di Lenardo, I.; Henriksson, J.; Isaac, A.; Graf, M.M.; Beck, C.; Oomen, J. Artificial intelligence for digital

heritage innovation: Setting up a r&d agenda for europe. Heritage 2024, 7, 794–816. [CrossRef]
8. Skublewska‑Paszkowska, M.; Milosz, M.; Powroznik, P.; Lukasik, E. 3D technologies for intangible cultural heritage

preservation—Literature review for selected databases. Herit. Sci. 2022, 10, 3. [CrossRef]
9. Liu, E. Research on image recognition of intangible cultural heritage based on CNN and wireless network. EURASIP J. Wirel.

Commun. Netw. 2020, 2020, 240. [CrossRef]
10. Hou, Y.; Kenderdine, S.; Picca, D.; Egloff, M.; Adamou, A. Digitizing intangible cultural heritage embodied: State of the art. J.

Comput. Cult. Herit. 2022, 15, 1–20. [CrossRef]
11. Liu, Y.; Yin, J. Digital Cultural Design for TaohuawuWoodblock New Year Paintings Based on Cultural Translation. Packag. Eng.

Art Ed. 2022, 43, 326–334.
12. Huang, Y.; Tan, G. Research on digital protection and development of China’s Intangible Cultural Heritage. J. Cent. China Norm.

Univ. Humanit. Soc. Sci. 2012, 51, 49–55.
13. Unesco. Available online: https://www.unesco.org/en (accessed on 10 June 2025).
14. Schotte, L. Sharing Stories of European Crafts and Artisanship. Available online: https://pro.europeana.eu/post/sharing‑stories‑

of‑european‑crafts‑and‑artisanship (accessed on 18 May 2025).
15. CRAFTED: Enrich and Promote Traditional and Contemporary Crafts. Available online: https://pro.europeana.eu/project/

crafted (accessed on 7 May 2025).
16. Albayrak, S. Color quantization by modified k‑means algorithm. J. Appl. Sci. 2001, 1, 508–511. [CrossRef]

https://doi.org/10.1016/j.inffus.2023.101811
https://doi.org/10.70088/50b4mv13
https://doi.org/10.1145/3494675
https://doi.org/10.1007/s00371-025-03821-z
https://doi.org/10.3390/heritage7020038
https://doi.org/10.1186/s40494-021-00633-x
https://doi.org/10.1186/s13638-020-01859-2
https://doi.org/10.1145/3494837
https://www.unesco.org/en
https://pro.europeana.eu/post/sharing-stories-of-european-crafts-and-artisanship
https://pro.europeana.eu/post/sharing-stories-of-european-crafts-and-artisanship
https://pro.europeana.eu/project/crafted
https://pro.europeana.eu/project/crafted
https://doi.org/10.3923/jas.2001.508.511


Appl. Sci. 2025, 15, 9081 30 of 31

17. Saegusa, T.; Maruyama, T. Real‑time segmentation of color images based on the K‑means CLUSTERING on FPGA. In Pro‑
ceedings of the 2007 International Conference on Field‑Programmable Technology, Kitakyushu, Japan, 12–14 December 2007;
pp. 329–332.

18. Hu, Y.C.; Su, B.H. Accelerated k‑means clustering algorithm for colour image quantization. Imaging Sci. J. 2008, 56, 29–40.
[CrossRef]

19. Hassan, R.; Ema, R.R.; Islam, T. Color image segmentation using automated K‑means clustering with RGB andHSV color spaces.
Glob. J. Comput. Sci. Technol. F Graph. Vis. 2017, 17, 25–33.

20. Yadav, S.; Biswas, M. Improved color‑based K‑mean algorithm for clustering of satellite image. In Proceedings of the 2017 4th
International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2–3 February 2017; pp. 468–472.

21. Vardakas, G.; Likas, A. Global k‑means++: An effective relaxation of the global k‑means clustering algorithm. Appl. Intell. 2024,
54, 8876–8888. [CrossRef]

22. Mamat, A.R.; Mohamed, F.S.; Mohamed, M.A.; Rawi, N.M.; Awang, M.I. Silhouette index for determining optimal k‑means
clustering on images in different color models. Int. J. Eng. Technol. 2018, 7, 105–109. [CrossRef]

23. Tu, T.; Zhou, Z.; Xiao, P. Clustering color segmentation in multi‑color space. In Proceedings of the 2018 2nd International
Conference on Video and Image Processing, Hong Kong, China, 29–31 December 2018; pp. 118–122.

24. Basar, S.; Ali, M.; Ochoa‑Ruiz, G.; Zareei, M.; Waheed, A.; Adnan, A.; Raza, M. Unsupervised color image segmentation: A case
of RGB histogram based K‑means clustering initialization. PLoS ONE 2020, 15, e0240015. [CrossRef]

25. Klein, C.; Speckman, T.; Medeiros, T.; Eells, D.; Basha, E. UAV‑based automated labeling of training data for online water and
land differentiation. In Proceedings of the 2018 International Symposium on Experimental Robotics, Buenos Aires, Argentina,
5–8 November 2018; pp. 106–116.

26. Moss, M.A.N.; Hughes, D.D.; Crawford, I.; Gallagher, M.W.; Flynn, M.J.; Topping, D.O. Comparative Analysis of Traditional
and Advanced Clustering Techniques in Bioaerosol Data: Evaluating the Efficacy of K‑Means, HCA, and GenieClust with and
without Autoencoder Integration. Atmosphere 2023, 14, 1416. [CrossRef]

27. Feng, H.; Hu, Q.; Zhao, P.; Zheng, D.; Ai, M.; Chen, S.; Hu, X. Automatic generation of Chinesemural line drawings via enhanced
edge detection and CycleGAN‑based denoising. npj Herit. Sci. 2025, 13, 345. [CrossRef]

28. Li, D.; Huang, Y.; Inoue, T.; Inoue, K.; Zhang, Z. Image processing in the conservation of historic urban areas: The case of
Dujiangyan, China. Built Herit. 2025, 9, 7. [CrossRef]

29. Yao, G.; Sun, A. Multi‑guided‑based image matting via boundary detection. Comput. Vis. Image Underst. 2024, 243, 103998.
[CrossRef]

30. Zhou, X.; Chen, Y.; Lin, Z.; Su, Z.; Chai, Z.; Wang, R.; Hu, C. Non‑spherical Janus microparticles localization using equivalent
geometric center and image processing. Opt. Commun. 2024, 560, 130494. [CrossRef]

31. Dixit, K.; Gupta, P.; Kamle, S.; Sinha, N. Structural analysis of porous bioactive glass scaffolds using micro‑computed tomo‑
graphic images. J. Mater. Sci. 2020, 55, 12705–12724. [CrossRef]

32. Yuan, Y.; Chen, W.; Tang, J.; Yang, J. A High‑Precision Edge Detection Algorithm Based on Improved Sobel Operator‑Assisted
HED. In Proceedings of the 2024 IEEE 14th International Conference on CYBER Technology in Automation, Control, and Intelli‑
gent Systems (CYBER), Copenhagen, Denmark, 16–19 July 2024; pp. 83–88.

33. Zhou, G.; Guo, S.; Chen, Z. Fpga‑based improved sobel operator edge detection. Front. Comput. Intell. Syst. 2023, 5, 6–11.
[CrossRef]

34. Zhang, C.; Zhang, N.; Yu, W.; Hu, S.; Wang, X.; Liang, H. Improved Canny‑based algorithm for image edge detection. In
Proceedings of the 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanchang,
China, 28–30 May 2021; pp. 678–683.

35. Li, Y.; Liu, B. Improved edge detection algorithm for canny operator. In Proceedings of the 2022 IEEE 10th Joint International
Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; pp. 1–5.

36. Wang, S.; Ma, K.; Wu, G. Edge detection of noisy images based on improved canny and morphology. In Proceedings of the
2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 29–31 October 2021;
pp. 247–251.

37. Liu, R.; Mao, J. Research on improved Canny edge detection algorithm. Proc. MATEC Web Conf. 2018, 232, 03053. [CrossRef]
38. Kong, J.; Hou, J.; Liu, T.; Jiang, M. Adaptive image edge detection model using improved canny algorithm. In Proceedings of

the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
BC, Canada, 1–3 November 2018; pp. 539–545.

39. Xu, Z.; Ji, X.; Wang, M.; Sun, X. Edge detection algorithm of medical image based on Canny operator. Proc. J. Phys. Conf. Ser.
2021, 1955, 012080. [CrossRef]

40. Zhang, B.; Wang, F.; Li, G.; Zhang, C.; Zhang, C. A multispectral image edge detection algorithm based on improved canny
operator. In Communications, Signal Processing, and Systems: Proceedings of the 8th International Conference on Communications,
Signal Processing, and Systems, Urumqi, China, 20–22 July 2019; Springer: Singapore, 2020; pp. 1298–1307.

https://doi.org/10.1179/174313107X176298
https://doi.org/10.1007/s10489-024-05636-2
https://doi.org/10.14419/ijet.v7i2.14.11464
https://doi.org/10.1371/journal.pone.0240015
https://doi.org/10.3390/atmos14091416
https://doi.org/10.1038/s40494-025-01908-3
https://doi.org/10.1186/s43238-025-00175-2
https://doi.org/10.1016/j.cviu.2024.103998
https://doi.org/10.1016/j.optcom.2024.130494
https://doi.org/10.1007/s10853-020-04850-w
https://doi.org/10.54097/fcis.v5i2.12122
https://doi.org/10.1051/matecconf/201823203053
https://doi.org/10.1088/1742-6596/1955/1/012080


Appl. Sci. 2025, 15, 9081 31 of 31

41. Taghanaki, S.A.; Abhishek, K.; Cohen, J.P.; Cohen‑Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and medical
images: A review. Artif. Intell. Rev. 2021, 54, 137–178. [CrossRef]

42. Hussain, T.; Shouno, H. MAGRes‑UNet: Improved medical image segmentation through a deep learning paradigm of multi‑
attention gated residual U‑Net. IEEE Access 2024, 12, 40290–40310. [CrossRef]

43. Feng, J. China Woodblock New Year Pictures Integration: Taohuawu; Zhonghua Book Company: Beijing, China, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10462-020-09854-1
https://doi.org/10.1109/ACCESS.2024.3374108

	Introduction 
	Introduction to Taohuawu Woodblock New Year Prints 
	History and Development 
	Production Process 
	Traditional Color Options 

	Existing Issues 

	Materials and Methods 
	Image Processing Related Methods 
	Key Technologies 
	Swatch Clustering Based on K-Means++ 
	Canny Edge Detection Technology 
	U-Net Model and Cyclic U-Net Model 

	Research Route 
	Contour Extraction Using the Canny Operator 
	Minimum Number of Clusters (K_min) Based on Color Dominance Analysis 
	Optimal Number of Clusters (K) and Method Selection Based on Multi-Indicator Assessment 
	Image Segmentation of TWNY Prints Based on the Cyclic U-Net Model 

	Computational Resources and Runtime Efficiency 

	Results 
	Canny Contour Extraction 
	K-Means Color Clustering Extraction 
	Cyclic U-Net Results Presentation 

	Discussion 
	Technical Advantages 
	Limitations 
	Future Directions 

	Conclusions 
	References

