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Abstract

Warehouses are vital in linking production to consumption, often using a forward-reserve
layout to balance picking efficiency and bulk storage. However, replenishing the forward
area from reserve storage is prone to delays and congestion, especially during high-demand
periods. This study investigates the strategic use of buffer areas—intermediate zones
between forward and reserve locations—to enhance flexibility and reduce bottlenecks.
Although buffer zones are common in practice, they often lack a structured decision-making
framework. We address this gap by developing an optimization model that integrates
demand forecasts to guide daily replenishment decisions. To handle the computational
complexity arising from large state and action spaces, we implement an approximate
dynamic programming (ADP) approach using certainty-equivalent control within a rolling-
horizon framework. A real-world case study from an automotive spare parts warehouse
demonstrates the model’s effectiveness. Results show that strategically integrating buffer
zones with an ADP model significantly improves replenishment timing, reduces direct
picking by up to 90%, minimizes congestion, and enhances overall flow of intra-warehouse
inventory management.

Keywords: forward-reserve; inventory management; ADP; replenishment; spare parts
warehouse

1. Introduction

Efficient warehouse management directly influences critical performance metrics such
as operating costs, throughput, and customer satisfaction. Among all warehouse activities,
order picking is one of the most resource-intensive and cost-sensitive processes, particularly
in spare parts supply chains where timely and accurate order fulfillment is paramount [1].
In order to address the challenges, many warehouses employ a forward-reserve area
configuration. The forward area serves to stock a limited quantity of spare parts for rapid
order picking, while the reserve area holds bulk inventory to replenish the forward area
as needed. This internal replenishment practice aims to balance accessibility and storage
capacity, but it also introduces operational complexities.

The forward-reserve replenishment process often faces significant challenges, such as
delays, congestion, and capacity constraints, particularly in high-demand environments.
To alleviate these issues, some warehouses utilize buffer areas as interim holding spaces.
The usage of a buffer area is a well-established practice in warehouse management, valued
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for enhancing overall warehouse flexibility. Despite the benefits of reduced handling times
and improved responsiveness, buffer areas can contribute to congestion if not properly
managed. This study introduces a replenishment policy that strategically incorporates
buffer areas into forward reserve operations. The policy prioritizes order picking from the
buffer area. Additionally, it restricts returning stock to the reserve area to avoid operational
disruptions. By focusing on reducing excess buffer inventory, the approach ensures a more
efficient flow of goods, maximizing the benefits of buffer areas. Thus, buffer areas not only
relieve pressure on reserve areas but also enable faster replenishment of forward areas,
enhancing throughput and operational fluidity.

The significance of this study lies in its ability to address a critical gap in warehouse
management practices: the absence of structured strategies for buffer area utilization. Al-
though buffer areas are commonly used across industries, they are often implemented
reactively as short-term solutions rather than as complementary components of a well-
designed replenishment strategy. This study’s novelty revolves around the development of
a tractable, integrated, and adaptive framework for this complex, real-world problem. The
methodological novelty lies in the synthesis of three components: (1) the explicit mathe-
matical modeling of unstructured buffer areas within the replenishment problem, (2) the
use of a rolling-horizon mixed-integer linear programming (MILP) model as a high-quality
policy evaluation engine, and (3) its integration with a dual-loop, adaptive forecasting
module. This combination provides a practical approximate dynamic programming (ADP)
framework for optimizing a high-dimensional, stochastic system where traditional dynamic
programming is computationally infeasible.

Motivational Case Study

The warehouse system of interest includes a reserve area, forward area, and buffer
area. The internal replenishment process in this system is carried out using cages with
constant batch sizes. On the other hand, the reserve area consists of narrow corridors
that accommodate the bulk storage of all parts. This area is equipped with specialized
machines capable of retrieving large cages that carry spare parts, which are not suitable
for order picking. Therefore, it is only preferred that parts from this area be picked up
if required. In certain instances of replenishment from reserve to forward, the cage is
added to the existing inventory on the shelf, potentially exceeding its capacity. In such
cases, the warehouse personnel use buffer areas instead of returning the excess inventory
to the reserve area. Warehouse managers determine these buffer areas arbitrarily, and
they are located next to the shelves without any physical designation as special zones.
Their primary purpose is to prevent flow obstruction in the reserve area by avoiding the
transportation of partially filled cages. However, if these areas are not effectively managed,
they can accumulate a significant amount of stock, leading to congestion in the warehouse.
To address this issue, the prioritization of this area is emphasized during the order picking
process. Consequently, when inventory is present in both the buffer area and the shelves of
the forward area, pickers are instructed to take the stock in the buffer area first. Figure 1
shows the overview of the system.

The findings reveal that incorporating a strategic buffer area policy within the forward-
reserve replenishment framework significantly enhances warehouse operations. Key results
include a dramatic reduction in direct picking activities up to 90% in some scenarios along-
side optimized buffer area utilization and decreased handling costs. The use of demand
forecasts, combined with the integration of ADP, enables the system to dynamically adapt
to fluctuating demand, enhancing replenishment efficiency even under labor constraints.
By showcasing these benefits, this study presents a scalable and adaptable model for
optimizing warehouse operations in high-demand, multi-product environments.
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Figure 1. Internal replenishment process.

This paper makes an essential contribution to the forward reserve area problem and
reveals that internal replenishment processes can be carried out more smoothly with a
well-managed buffer area.

The specific objectives of the work in this paper can be further described as follows:

e To overcome the computational challenges of in-warehouse replenishment pro-
cesses and progressively improving policies by adopting an ADP approach with
certainty equivalent.

e  To evaluate the impact of the ADP method in managing intuitively placed buffer points
for internal replenishment and develop strategies to alleviate warehouse congestion.

e  Todemonstrate that internal replenishment processes can be carried out more smoothly
in a well-managed buffer area.

This paper is structured as follows: Section 2 reviews the relevant literature on the
forward-reserve problem and identifies existing gaps. Section 3 details the methodology,
including the ADP framework and the MILP model. Section 4 presents the experimental
results from different scenarios and analyzes the model’s performance. Section 5 discusses
managerial insights, limitations, and future research directions. Finally, Section 6 provides
concluding remarks.

2. Literature Review

The forward-reserve area problem has been studied repeatedly in the literature.
Ref. [2] solved the problem of selecting items to store in automated storage and retrieval
systems and allocating space for inventory keeping. They developed a heuristic solution
and applied it to a naval supply center’s small-sized items where it is assumed that they are
continuously divisible. This paper is the first to solve the internal replenishment problem:
restocking a primary area from a secondary location in the facility using a mathematical
model. The model focuses on maximizing profit by allocating sufficient items in the volume
base, considering the replenishment cost. Ref. [3] considered busy and idle periods in a
distribution center. The busy period means the order picking operations will occur, and the
idle period means replenishment operations of the forward area from the reserve area may
happen. They also assumed that one trip from the reserve to the forward area is sufficient,
replenishment is performed with one unit load, and order picking from the reserve area is
possible at a higher cost. They formulated the model as a binary programming problem
that minimizes the total labor time and aims to prevent accidents in busy periods. They
solved it with greedy knapsack and dynamic programming. Also, a constraint for limiting
replenishment capacity is added, and the computational outcomes are compared.

Ref. [4] presented a mathematical model and a heuristic for assigning items and
deciding the size of a warehouse’s five functional areas: receiving, shipping, forward,
reserve, and cross-docking. They mention that determining the sizes of the areas and
assigning products to those areas affect warehouse management on strategic, tactical, and
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operational levels. The model is formulated as a mixed-integer linear programming model
(MILP) and solved with the proposed heuristic and branch and bound algorithms. The
computational results show that the heuristic algorithms take much less time. Ref. [5]
applied three storage strategies to the forward area, analyzed the results, and determined
which was better. The first one is the equal space strategy, which allocates equivalent space
for each item; the other ones are the equal time strategies, which allocate space for each
item that is sufficient for the same amount of time, and the optimal strategy. They applied
strategies to small parts of the data by extending the model in [2] with new inventory level
constraints based on the strategies. Ref. [6] considered a forward reserve area problem
in a picker-to-belt system where order pickers collect orders from the forward area and
put them on the conveyor. It is assumed that if the pickers face a stockout, the belt stops,
and they must perform emergency replenishment. They have compared and evaluated
the computational results of replenishment methods, and six heuristic policies have been
proposed. Ref. [7] presented the results of early heuristic methodology studies and an
alternative branch and bound algorithm that can solve the problem optimally. They applied
the algorithms to two different data sets that belong to different warehouses, and the
computational performance of the algorithms was presented. It is shown that when the
number of stock-keeping units (SKUs) gets smaller, the optimality difference is higher for
the aforementioned greedy heuristic in Hackman’s study. It is also observed that even
though the objective value is equal, the model’s outcomes differ between the optimal and
the heuristic solutions. Ref. [8] used simulation and what-if analysis to assign items to
forward areas and allocate space to them. In order to achieve effective solutions in an
acceptable amount of time, several storage policies have been implemented.

In earlier studies, the forward pick area was assumed to be continuously divisible;
therefore, the models were fluid. Ref. [9] demonstrated a discrete space allocation for
forward reserve problems and analyzed the difference between the discrete and the fluid
models. They developed three models which serve different purposes. The first model
solves the problem of dividing the forward area for a given set of items, which is defined in
the paper as a discrete forward-reserve allocation problem (DFRAP). The second model
unifies the allocation and assignment problem, and the model’s outcome shows which
items must be held in the forward area and the size that belongs to the particular items.
The final model has an approach to the problem that considers the forward area size as a
variable and how the products must be allocated. The results showed that the gap between
the discrete and the fluid models is small and can be ignored.

The case study presented by [10] has been applied to a cosmetic firm’s warehouse
where they use a wave picking strategy. The objective is to avoid stockouts in an en-
vironment where picking and replenishment operations are performed simultaneously.
They proposed three prioritizing policies for replenishments and simulated to compare the
computational results and stockouts. Ref. [11] proposed an alternative storage allocation
policy to reduce the picking time for the picking area of a warehouse. The proposed policy
assumes several empty locations in the picking area that can be used for items whose
requested quantities are higher than those in their stock. The study compared the proposed
policy with the conventional warehouse layout by simulation and analyzed its performance
regarding operator travel and order fulfillment time. The study also considered the im-
pact of congestion on the proposed policy. The paper provides insights to improve the
performance of the warehouse order-picking system.

Ref. [12] identified the best storage strategies for an automated storage and retrieval
system. The research used analytical and numerical methods to compare the performance
of different storage strategies. The paper also presents the factors affecting the performance
of storage strategies and the experimental results used to determine the best strategies.
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Ref. [13] aimed to design efficient work schedules for human pickers in mobile rack
warehouses using human-robot co-coordinated order picking systems. The article discusses
the challenges of designing good work schedules for human pickers in such systems. It
proposes a model that allows mobile racks with different workloads to be assigned to
pickers and schedules the racks assigned to each picker to minimize the expected total
picking time. The paper uses a stochastic dynamic programming model and an approximate
dynamic programming-based branch-and-price solution approach to solve the problem.
The results show that the proposed approach can solve a moderate-sized problem of 50
racks in less than 2 min and produces high-quality solutions with picking times that are
10% shorter than those that do not account for schedule-induced fluctuations in the pickers’
work states. The article concludes that the proposed approach can be applied to other
warehouses to detect fluctuations in picker work states, incorporate these fluctuations into
robot schedules, and increase the productivity of a picking system.

Ref. [14] considered the storage replenishment and routing problem (SRRP) in a
warehouse environment where items are stored in separate forward and reserve storage
areas and replenished using a common reserve storage area. The authors propose an MIP
model and heuristic approaches to solve the problem. Based on the inventory routing
problem (IRP) literature, the authors propose an MIP model to solve SRRP. They also
propose a priori routing heuristics to solve the problem. These heuristics are based on
the shortest path algorithm and graph theory-based heuristics. To further improve the
replenishment routes, they propose an a posteriori routing step. Ref. [15] examined the
ADP method for solving multidimensional bag problems. ADP provides fast and effective
solutions to complex and large-scale optimization problems using approximate calculations
of the value function. The results show that this approach provides high-quality and
practical solutions, especially under multidimensional constraints. Ref. [16] developed an
optimization tool intending to replace Zara’s manual and experience-based pricing process
with a more systematic approach based on demand forecasting and price optimization
models. In the study, the certainty equivalent approach was used by substituting expected
values for uncertain future sales, and an MIP model was formulated with this approach.
The developed model was tested in controlled field experiments in Zara’s Irish and Belgian
stores, and this new process increased revenue from discount sales by 6%. As a result, this
method began to be used in Zara’s discount decisions worldwide.

A broader view of buffer management reveals its strategic importance across indus-
tries. In manufacturing, buffers act as decoupling points in Just-in-Time (JIT) systems,
absorbing variability to maintain a smooth production flow [17]. In supply chain manage-
ment, inventory buffers are strategically placed to hedge against demand and lead-time
uncertainty, as analyzed in the seminal work by Simchi-Levi et al. [18]. While the function
of these formal, planned buffers is well-understood, the strategic management of informal,
dynamic buffer zones within a warehouse—which arise from operational constraints, as
addressed in our study—remain underexplored in the literature.

Recent developments in warehouse automation, such as the deployment of Automated
Storage and Retrieval Systems (AS/RS) and Autonomous Mobile Robots (AMRs), are
changing the landscape of internal logistics. A comprehensive review in [19] shows that
these technologies excel at executing physical movements efficiently. However, they require
a high-level strategy to provide the decision logic for what to move, when to move it, and
where to place it. The hierarchical nature of such systems, where strategic planning directs
tactical execution, is a key theme in the automation literature. Our ADP framework is
designed to serve as this strategic layer, providing optimized decisions that can then be
passed to an automated system'’s execution layer, thereby addressing a critical need in the
evolution towards smart warehouses.
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In the context of evaluating stochastic optimization models like ours, it is a standard
practice to benchmark performance against a theoretical optimum. This is often achieved by
solving the problem with perfect future information, a method known in the literature as a
“dynamic oracle” or perfect information benchmark [20]. This oracle provides a theoretical
upper bound on performance, and the gap between the stochastic solution and the oracle’s
performance quantifies the “cost of uncertainty” or the value of perfect information. This
benchmark is crucial for contextualizing the performance of any forecast-driven model.

Despite this extensive body of work, a critical gap remains in the literature regarding
the strategic and optimized use of buffer areas within the forward-reserve replenishment
context. While buffers are acknowledged as operational tools, they are rarely integrated as
a formal component of a dynamic, forecast-driven optimization model. Most studies focus
on the direct link between the forward and reserve areas, overlooking the potential of a
managed intermediate zone to absorb variability and reduce congestion.

This study fills this gap by explicitly modeling the buffer area and using an ADP
framework to make intelligent, proactive decisions about its use, thereby justifying its
contribution to the field. Alternative optimization methods, such as purely deterministic
models, often struggle with the uncertainty of real-world demand, while simple heuris-
tics may fail to find high-quality solutions. Our ADP approach provides a balance of
computational tractability and responsiveness to dynamic conditions.

3. Methodology
3.1. Application of Approximate Dynamic Programming (ADP)

This study utilizes ADP to manage and optimize the decision-making process un-
der uncertainty to address the complexities of internal replenishment in a spare parts
warehouse. ADP is particularly suitable for environments where the state and decision
spaces are too large for traditional dynamic programming (DP) techniques due to the
curse of dimensionality. It simplifies the problem by approximating the value function,
which assesses future costs associated with different states and decisions. While a formal
mathematical proof of convergence for this type of applied framework is beyond the scope
of this paper, we demonstrate its empirical stability in Section 4.3, where results are shown
to be consistent across varying planning horizons, suggesting the policy does not diverge.
The DP formulation for this problem is presented in Appendix A.

1.  Demand Forecasting

The efficacy of the ADP framework is fundamentally dependent on the quality of
its demand forecasts, which serve as the primary input for decision-making. To ensure
predictive reliability, we conducted a comparative analysis of state-of-the-art machine
learning models, including Extreme Gradient Boosting (XGBoost) and LightGBM, using
time-series cross-validation. Evaluation metrics included Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). LightGBM was ultimately selected due to its superior
performance across a holdout test set. To maintain robustness in a dynamic warehouse
environment, the model operates within a dual-loop learning framework:

e  Daily Operational Loop: At the end of each day, actual demand is captured and used
to update the inventory state for the next day’s MILP optimization run.

e  Periodic Retraining Loop: The same demand data is added to the historical training set,
and the LightGBM model is retrained periodically to reflect evolving demand patterns.
This adaptive retraining strategy ensures that the forecasts remain aligned with

changes in seasonality, customer behavior, or product life cycles. Inaccurate forecasts
can lead to over-replenishment or stockouts, especially in a cost-sensitive MILP environ-



Appl. Sci. 2025, 15, 7767

7 of 23

ment; hence, this mechanism is vital for sustaining high-quality replenishment decisions
over time.

2. ADP Model with Certainty Equivalent Approach

The ADP model incorporates state variables for inventory levels, decision variables
for replenishment and picking, and an objective to minimize total expected costs. Value
function approximation is achieved by implementing a certainty-equivalent control policy, a
practical approach for complex problems chosen here for its interpretability, data efficiency,
and stability. In this approach, the stochastic future demand is replaced by deterministic
point forecasts from the machine learning model. This simplification allows the problem
to be resolved at each step by the finite-horizon MILP. The solution to this MILP provides
the optimal actions, and its objective value serves as the practical approximation of the
true value function for the current state. This method of using a deterministic optimization
model within a larger stochastic framework is a practical approach for complex problems,
and a similar strategy was successfully used by Caro et al. [16].

While this certainty-equivalent approach simplifies the problem at each step, uncer-
tainty is managed over the long term through a rolling-horizon implementation. This
mechanism is clarified by the daily operational cycle:

a.  Forecast and Optimize: At the start of the day, we generate a forecast for the planning
horizon. The MILP is solved using the current inventory state, and this forecast
produces an optimal plan.

b.  Implement: Only the decisions for the immediate first day are implemented.

c. Observe and Update: At the end of the day, we observe the actual demand and
update the inventory levels to reflect the true state of the system.

d.  Repeat: On the next day, the entire process repeats from the new, true state. The old
plan is discarded, and a new optimization is performed.

This constant cycle of re-planning based on real-world feedback allows the system
to continuously correct its course, effectively managing uncertainty without needing to
model the full probability distribution of demand.

3. Rolling-Horizon Implementation

The implementation of ADP follows a rolling-horizon approach, which is particularly
effective for managing operations in dynamic environments like warehouses. The optimiza-
tion model is performed over discrete time periods such as daily. The decisions are made at
the beginning of each period based on the system’s current state using demand predictions
as inputs. At the end of each period, the state information is updated based on the actual
demand fulfilled and replenishment actions taken. This updated state information is then
used to make decisions in the next period. A feedback loop is incorporated whereby the
outcomes of previous decisions inform updates of the value function approximations,
refining the decision-making process over time.

To effectively apply ADP, certain assumptions are made about the operational context,
including but not limited to the predictability of demand variations, the reliability of
supply chain logistics, and the stability of replenishment lead times. These assumptions
help simplify the model while ensuring it remains robust enough to handle real-world
complexities. This detailed application of the ADP model with certainty equivalence
seeks to optimize internal replenishment processes by effectively handling uncertainties in
demand and supply, thus enhancing operational efficiency and reducing costs in the spare
parts warehouse setting.
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3.2. ADP Pseudo Code

The core of our framework is the iterative solving of the MILP model within the ADP
loop. The MILP serves as the policy function in our ADP framework. It is solved iteratively,
once per day, in our rolling-horizon simulation. At the beginning of each day ¢, the current
state (inventory levels) provides the initial boundary for the MILP. The MILP is then solved
to find an optimal set of actions over the planning horizon.

In this approach, the MILP’s finite-horizon objective function acts as the practical
approximation for the theoretical ADP value function, V(S). Since computing V(S) for all
possible states is interactable, we instead approximate the total cost-to-go by solving the
detailed MILP over a finite lookahead period. This is a common and effective technique in
ADP, allowing us to leverage the power of exact optimization for tactical planning within a
larger, adaptive framework.

Step 0: Initialization
0.1 Load historical demand data from the database;
0.2 Initialize state variables: forward inventory, buffer inventory and reserve inventory;
0.3 Define the planning horizon T (e.g., the next seven days);
0.4 Set MILP parameters.
Step 1: Main Loop
For each spare part (i=1,2,3, ..., N):
For each planning day (t=1, 2, ..., T):

Step 1.1: Generate forecasts (certainty equivalent);

Step 1.2: Solve MILP model with recursive state transitions (1)—(17).
Step 2: Update Initial States (Inventory levels)
2.1 Record the actual demand at the end of the day;
2.2 Update the initial states and historical data with the recorded actual demand
(iteratively refining value approximation).

The ADP process begins with Step 0: Initialization, where historical demand data
is loaded, state variables are set, and MILP parameters are configured. This establishes
the foundation for the iterative optimization. In Step 1: Main Loop, demand forecasts are
treated as fixed values and serve as inputs to the MILP model, which determines optimized
replenishment and buffer allocation decisions over the finite planning horizon. By solving
the MILP iteratively each day, the approach captures the dynamic nature of inventory
management while maintaining computational efficiency.

In Step 2: Update Initial States, when the actual demand at the end of the day is
observed, we update the initial states of the model for the next day’s run. These iterative
updates continually improve the accuracy of the model’s future decisions. It is important to
note that optimal decisions are made not with a complex, intractable DP model but with the
simple MILP model that we run continuously. This demonstrates that ADP offers a much
more practical solution than traditional DP. While this methodology does not solve the DP
problem exactly, it uses ADP principles to approximate the value function and optimize
decisions iteratively. The rolling-horizon framework recalibrates the optimization at each
step, balancing immediate and future costs dynamically. Although this method does not
provide a truly optimal solution, it provides a much more feasible and practical solution,
avoiding the difficulties of DP. The DP formulation of this problem and the DP pseudo
code are explained in detail in Appendix A.
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3.3. MILP Model for Forward Area Replenishment Problem with Buffer Area

A MILP model has been developed to address the specific challenges presented in
this paper. This model is designed to optimize decision-making by capturing the complex
dynamics and constraints of the problem. The model is structured around a key policy
that prioritizes order picking from the buffer area whenever the required spare part is
available there. By giving precedence to buffer stock, we aim to decrease the inventory
in the buffer area, reducing congestion and improving operational flow. If the buffer
stock is insufficient, the remaining quantity is picked from the forward area, ensuring that
the forward area is replenished only when necessary. This policy-driven approach has
demonstrated clear benefits in improving warehouse efficiency by reducing unnecessary
movements in warehouse and streamlining the replenishment process.

In developing the mathematical model, certain assumptions related to warehouse
operations were made to reflect realistic business practices. These assumptions include
the operational characteristics and warehouse policies that are critical to this study, as
outlined below.

1. Each spare part has a specific batch size for replenishment.

2. Due to the involvement of a limited number of staff members in the internal re-
plenishment process, the number of replenishments that can be accomplished daily
is limited.

3.  The stock needed to cover the demand is available in the warehouse in the forward,
reserve, or buffer areas.

4. A dedicated rack with a capacity of a specific batch size is allocated in the forward
area for each part.

5. A complete cage is transferred from the reserve area to the forward area for replenish-
ment purposes, i.e., all transferred cages are full.

6.  If there is any surplus beyond the forward area’s capacity, the remaining stock must
be located in the buffer area, which is adjacent to the shelf.

7. Ifacageis transferred from the reserve area while some parts exist in the associated
shelf in the forward area, this partially filled cage in the forward area is transferred to
the buffer area, and the new full cage is located in the forward area.

8.  In cases where the order picker exclusively visits the forward area and encounters
insufficient stock, they proceed to the reserve area to fulfill the order and perform
direct picking.

The mathematical model explained in this paper will undergo comprehensive ex-
amination alongside the notations employed for delineating the internal replenishment
problem. The methodologies for optimization utilized to address the issue will be explained.
The notations that will be used in the mathematical model are given in Abbreviations.

The framework aims to efficiently ascertain the inventory levels of shelves and enhance
product positioning. For this objective, the mathematical expression of the framework and
the resolution methods are elaborated thoroughly. The MILP model details are given below.

Model:

min) N7 Quc’ + CRe! + (WAR,, — DW, + WBRit)cw 4 X;Wews (1)

Subject to:
XAR;; = XBRj; + QN;,C; — X"V ieN,1<t<T 2)
XBRjs, 1 = XAR; — D3, ieN,1<t<T (3)

WAR; = XV + WBR;;, i€N,1<t<T (4)
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WBR;,1 = WAR; — DY +CP¢; — DF ieN,1<t<T (5)
Xy < QuGi i€EN, 1<t<T (6)

QNj < QitM; ieN,1<t<T @)
QN;C; + XBR; — X"V < F; i€EN,1<t<T ®)

DY + Di + D = D, ieN,1<t<T 9)
XV < XBRy ieN,1<t<T (10)

D} < cR¢; ieN,1<t<T (11)

DY <WAR; €N, 1<t<T (12)

QON;; < GF; ieN,1<t<T (13)

XAR; < F ieN,1<t<T (14)

Yo Qi< ieEN,1<t<T (15)

XBRy, XAR;;, WBR;, WARy, QN;,, X", D5, DY, DR, c2 >0 ieN,1<t<T (16)
Qit €{0,1} 17)

The objective function (1) minimizes overall costs, which include the costs associated
with internal replenishment (c"), direct picking (c?), inventory holding in the buffer area
(c*), and transferring inventory from the forward area to the buffer area (c*). Based on
Assumption 7, the cost of transferring inventory from the forward area to the buffer area is
incorporated to prevent unnecessary handling activities.

In this model, the cost structure is defined with the assumption that direct picking
incurs the highest cost, followed by forward-to-buffer area transfer, then buffer area usage,
with replenishment having the lowest cost. This hierarchy reflects the labor intensity and
resource requirements of each operation.

Constraints (2) and (3) determine the stock levels in the forward area based on the
inventory from the preceding time period and the replenishment quantity within the
current timeframe. Constraints (4) and (5) model the inventory movement between the
buffer and forward areas. Constraints (6) and (7) are the either-or constraints that help the
variables X;"Y, ON;, and the binary variable Q;; to be assigned correctly. In Equation (18),
the replenishment decision is also shown. This binary decision is critical as it triggers the
sequence of subsequent inventory adjustments and movements.

1, if forward area is replenished
Qi = {O, if forward area is not replenished (18)

Equation (19) shows the process of stock relocation from the forward area to the buffer
area within a warehouse. If the transfer meets certain capacity conditions, the binary
variable is set to 1, indicating replenishment. If no stock is moved, the variable is set to 0.

1, ifC;> X"V >0
Qit = v W (19)
0, if X' =0

Function (20) shows the logic of the inclusion of QN; is particularly important as
it integrates the replenishment decision with the physical quantity of inventory moved,
ensuring that our model reflects the practical constraints of the warehouse’s operational
capacity. Together, these equations fine-tune our inventory management and enhance
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the overall efficiency of warehouse operations, leading to a reasonable balance between
availability and the cost implications of inventory holding and movement.
1, if M > QN;; >0
Qit = fM; 2 QNi B (20)
0, if ON; =0

Constraint (9) ensures that the total demand is met through a combination of stocks
from the forward area, the buffer area, and direct picking. Constraint (10) ensures that the
inventory transferred from the forward area to the buffer area does not exceed the existing
stock in the forward area. Constraint (11) ensures that the cages required for direct picking
are adequately supplied. Constraint (12) limits the amount of demand covered from the
buffer area to the available stock within that area.

Constraints (8), (13), and (14) ensure that the quantity of parts brought from the reserve
area for replenishment is limited to the capacity of the forward area. Finally, constraint
(15) ensures compliance with the daily replenishment capacity, preventing overstocking
and optimizing resource allocation. The objective function and the constraint set in (1)-(20)
constitute our mathematical model for effectively managing warehouse inventory.

4. Results and Analysis

The results presented in this section are based on a one-month simulation conducted
for spare parts groups of 50, 200, and 300 items. To provide robust validation for our
findings, we performed 30 independent simulation runs for each scenario. In each run,
the actual demand was generated stochastically to reflect real-world uncertainty, while the
model only had access to its deterministic forecast. Different random seeds were used to
ensure demand variability across the runs. All reported metrics for these scenarios show the
mean and the 95% confidence interval. The proposed optimization model’s performance is
evaluated against three distinct benchmarks:

e (s,S) Policy: A standard inventory control policy from the academic literature, serving
as a rigorous algorithmic benchmark.

e  Business as Usual: The current, manual practice in the case study warehouse, serving
as a practical baseline.

e Simulation with Known Demand (Simulation KD): A theoretical, perfect-information
case, corresponding to the “dynamic oracle” benchmark discussed in the literature [20],
used to establish an upper bound on performance.

Our proposed model, Simulation with Predicted Demand (Simulation PD), is driven
by the ADP framework with machine learning forecasts. The findings illustrate the benefits of
integrating predictive demand models and buffer area strategies into warehouse operations.

4.1. Metrics and Scenarios
The performance of the optimization model was evaluated using four key metrics:

1.  Direct Picking: This represents the percentage of items picked directly from the
reserve area, bypassing forward and buffer areas. A lower percentage indicates a
more streamlined replenishment process.

2. Replenis