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Abstract

From the point of view of the intelligent operation and maintenance of high-speed train
tracks, this paper examines the research status of high-speed train rail damage detection
technology in the field of high-speed train track operation and maintenance detection
in recent years, summarizes the damage detection methods for high-speed trains, and
compares and analyzes different detection technologies and application research results.
The analysis results show that the detection methods for high-speed train rail damage
mainly focus on the research and application of non-destructive testing technology and
methods, as well as testing platform equipment. Detection platforms and equipment
include a new type of vortex meter, integrated track recording vehicles, laser rangefinders,
thermal sensors, laser vision systems, LiDAR, new ultrasonic detectors, rail detection
vehicles, rail detection robots, laser on-board rail detection systems, track recorders, self-
moving trolleys, etc. The main research and application methods include electromagnetic
detection, optical detection, ultrasonic guided wave detection, acoustic emission detection,
ray detection, vortex detection, and vibration detection. In recent years, the most widely
studied and applied methods have been rail detection based on LiDAR detection, ultrasonic
detection, eddy current detection, and optical detection. The most important optical
detection method is machine vision detection. Ultrasonic detection can detect internal
damage of the rail. LIDAR detection can detect dirt around the rail and the surface, but the
cost of this kind of equipment is very high. And the application cost is also very high. In
the future, for high-speed railway rail damage detection, the damage standards must be
followed first. In terms of rail geometric parameters, the domestic standard (TB 10754-2018)
requires a gauge deviation of £1 mm, a track direction deviation of 0.3 mm/10 m, and a
height deviation of 0.5 mm/10 m, and some indicators are stricter than European standard
EN-13848. In terms of damage detection, domestic flaw detection vehicles have achieved
millimeter-level accuracy in crack detection in rail heads, rail waists, and other parts, with
a damage detection rate of over 85%. The accuracy of identifying track components by the
drone detection system is 93.6%, and the identification rate of potential safety hazards is
81.8%. There is a certain gap with international standards, and standards such as EN 13848
have stricter requirements for testing cycles and data storage, especially in quantifying
damage detection requirements, real-time damage data, and safety, which will be the key
research and development contents and directions in the future.

Keywords: track rail; intelligent operation and maintenance; non-destructive testing;
intelligence; life prediction
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1. Introduction

With the rapid development of China’s railway network, especially the proposal
of “new infrastructure”, the deployment of high-speed maglev trains with a speed of
600 km per hour has put forward higher requirements for the safety of railway tracks.
As a new and important means of transportation, railways play an extremely important
role. The safety and reliability of railways are receiving increasing attention from relevant
research scholars, and the advancement of technology has led to higher requirements for
the transportation functions of railways, especially for heavy-duty, high-speed, and other
functions. Due to the contact friction between train wheels and rails, during heavy-load
and high-speed movements, there is contact sliding friction between the wheels and rails.
During the sliding friction process, various types of damage are easily generated on the
surface of the rails. As long as there is damage on the surface of the rails, it is inevitable
for the wheels to wear out. Some defects in the rails themselves can easily cause train
derailment, resulting in unnecessary losses and threatening personal safety.

Regarding the detection of rail damage, experts and scholars at home and abroad
have conducted in-depth research and proposed some detection methods and theories.
However, with the increase in train speed, the requirements for maintenance and operation
technology are also increasing. Currently, there are still some shortcomings in the rail
damage detection methods, including hardware detection in vehicles and supporting
infrastructure. For example, the current manual detection method has disadvantages such
as a high false-detection rate, low efficiency, and significant subjective influence. The
eddy current testing method has high requirements for its own materials, which must be
conductive materials, and has disadvantages such as low detection speed, low efficiency,
and susceptibility to magnetic fields. The X-ray detection method has high detection costs,
low detection speed, and low efficiency, and radiation has a significant impact on human
health. The ultrasonic detection method has low detection accuracy and cannot accurately
detect the precise location of rail damage, and the detection speed is easily affected. It has
a series of problems and disadvantages such as low detection accuracy for rail structures
with complex structures. The detection speed of the leakage magnetic detection method
is highly susceptible to the influence of magnetic flux, and there are certain requirements
for the lift-off value of the rail surface, which also has a significant impact on the detection
speed. Although machine vision inspection can quickly and efficiently detect surface
defects on railway tracks in a non-contact manner, there are still certain limitations in
detecting internal damage in railway tracks.

The comparison of common methods for detecting rail damage is shown in Figure 1.
From Figure 1, it can be found that the common drawback of several detection methods is
low detection efficiency. To solve the problem of the efficient detection of rail damage, it
is necessary to collect and analyze real-time data during the operation of the rail, that is,
monitor and provide real-time feedback on the status of the rail during operation, achieving
zero delay in operation and maintenance.

As shown in Figure 2, the national railway passenger and freight volumes in the past
5 years have been increasing year by year, despite being affected by certain factors. This
reflects the increasing importance of railway transportation, as well as the importance of the
maintenance and operation of railway transportation. In the face of the current operation
and maintenance of high-speed and ultra-high-speed trains, more efficient, intelligent,
and digital non-destructive testing technologies and methods are needed to monitor the
real-time status of rails and perform intelligent operation and maintenance.

How to quickly, accurately, and intelligently detect railway damage has always been
an important challenge for many scientific researchers, and it is also a very important task
in the railway maintenance process. Currently, there is a great demand for very complete
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and intelligent railway maintenance, upkeep, and detection systems and equipment, the
development of which is a difficult problem for many scientific and technical personnel
to tackle. At present, the main method of rail inspection still relies on manual inspec-
tion, such as manual patrol, the scattering detection magnetic powder method, and other
manual methods for inspection. Methods based on new eddy current meters, compre-
hensive track recording vehicles, laser rangefinders, thermal sensors, laser vision systems,
laser radar, new ultrasonic detectors, rail inspection vehicles, rail inspection robots, laser
vehicle-mounted rail inspection systems, track recorders, self-propelled carts, etc., have
certain applications in rail inspection, but there are still certain limitations. Developing
more efficient, reliable, fast, accurate, and intelligent systems and detection equipment is
particularly important for ensuring the safety of railway track quality.

Inefficient

Figure 1. Comparison of shortcomings of common rail damage detection methods.
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Figure 2. Passenger and freight volume of railway national railways in the past 5 years.

2. Research Status of Non-Destructive Testing for Rail Damage

As railways are an important means of transportation, track life detection and reliabil-
ity analysis have gone from manual inspection to a series of detection methods and means
such as radar technology detection, eddy current detection, machine vision, ultrasonic
detection, etc. For common defects, cracks, and fasteners on the surface of railway tracks,
detection is still quite time-consuming.

In recent years, with the rapid development of computer technology, image detec-
tion methods based on computer vision technology and deep learning have been used
for railway inspection. For example, Reed et al. [1] proposed a method for region de-
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tection with CNN features (R-CNN), which has significantly improved the accuracy of
object detection and is considered a major breakthrough in the field of object detection.
Neubeck et al. [2] constructed a Feature Pyramid Network (FPN), which is a universal fea-
ture pyramid extraction method located in deep convolutional networks, to help detection
models detect feature objects on a large scale.

In terms of railway maintenance and upkeep equipment, developed Western countries
often use handheld systems (such as ultrasonic speed measuring rods) or high-speed
dual-use railway/road vehicles equipped with various non-destructive testing sensors
for manual inspection. However, the railway standards and maintenance standards of
different countries are different, which also leads to some difficulties and challenges in the
inspection process of railway maintenance and upkeep equipment. Below, Figure 3 shows
the detection standards for the direct relationship between railway track operating speed
and tonnage in the UK.
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Figure 3. Test standard for the direct relationship between railway track speed and tonnage in the
United Kingdom.

The train operation management automation system (COMTARC) of Japan’s Shinkansen
railway mainly uses fiber optic sensors to monitor foreign object intrusion limits. Each
monitoring point determines whether intrusion limits have occurred and the degree of
harm through the attenuation of optical signals. When the alarm control conditions are
reached, there is no need for dispatch personnel to manually confirm, and the train speed
limit control is immediately activated [3]. The continuous real-time tracking automation
system (ASTREE) and train automatic control system (TVM-430) [4] of French railways
mainly achieve the function of foreign object intrusion limit detection by setting up a
protective monitoring alarm network. When the alarm control conditions are reached, the
train speed limit is achieved, simultaneously using radar technology to detect whether
passengers have intruded into the track space on the platform and issue an alarm. With the
development of artificial intelligence technology, the combination of artificial intelligence
and robotic technology can minimize the errors caused by manual operations in railway
inspections. As shown in Figure 4, the ACFM [5,6] cane manual rail detector is used.

The ACFM probe inevitably causes lifting changes or magnetic changes along the
inspection direction (due to residual stress) at higher speeds, which may lead to an increase
in background signals. If the threshold is set too low, it may result in certain defects not
being detected. On the other hand, setting the threshold too high depending on the SNR
may result in multiple false alarms. Preliminary investigations into low-speed and high-
speed ACFM measurements on steel rails indicate that it is difficult to adjust the threshold
to detect all defects.



Appl. Sci. 2025, 15, 7725

5 of 30

Figure 4. ACFM Hand Stick Manual Rail Tester.

In recent years, China’s railway inspection technology has also developed rapidly.
Hu Qingwu proposed a mobile binocular vision measurement model for railway build-
ing clearance which calibrates and constructs the spatial relative relationship of various
elements in the stereo image through self-checking and multi-sensor system calibration.
A building clearance calculation model based on the automatic fitting calculation of the
spatial position of the centerline of the line was presented [7].

The traditional eddy current testing method mainly uses periodic pulse current signals
as excitation sources to perform post-inspection or the online testing of materials (Figure 5).
In 2006, Ding Tianhuai et al. used a time-division multiplexing-based eddy current array
testing method to achieve the real-time monitoring of the position of large-area metal
curved surface components using a flat flexible eddy current sensor array [8]. In 2017, Shi
Tongyu et al. used an analytical model of a disc eddy current drive based on the equivalent
magnetic circuit method [9]. In 2017, Cao Aisong studied the problem of using magnetic
conductor ring excitation pulse eddy current detection technology to detect circumferential
crack defects in small-diameter pipes [10].

Figure 5. Manual eddy current detector.

The main principle of ultrasonic testing is to use the piezoelectric effect of piezoelectric
chips to generate ultrasonic waves for the internal inspection of the specimen. In 2014,
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Sohn H. and Zhao, Y. conducted qualitative testing on metal fatigue cracks using nonlinear
ultrasonic modulation technology [11-13]. In 2017, Liu, Y. used Lamb waves to detect
surface microcracks based on the characteristic that the influence of randomly distributed
microcracks on the fundamental phase velocity of low-frequency SO can be ignored [14,15].
In 2017, Park, B. et al. proposed using multi-sensor ultrasonic pulse echo technology to
study the flow characteristics of wind-driven surface water film [16,17]. In 2017, Ohara, Y.
utilized ultrasound tomography technology to image the interior of materials [18-20].
The domestically produced GTC-80-1I-] rail flaw detection vehicle has outstanding
performance, with a maximum operating speed of 120 km per hour and a maximum
continuous flaw detection speed of 80 km per hour. The GTC-80-1I-] rail inspection car
was developed by Baoji CRRC Times Engineering Machinery Co., Ltd., Shaanxi, China and
officially put into use in 2023, breaking the technological monopoly of foreign countries
in the field of high-end rail inspection equipment. In terms of rail geometric parameters,
the domestic standard (TB 10754-2018) [21] requires a gauge deviation of =1 mm, a track
direction deviation of 0.3 mm /10 m, and a height deviation of 0.5 mm/10 m, and some
indicators are stricter than European standard EN-13848 [22]. The vehicle conducts non-
destructive testing by emitting and receiving ultrasonic waves through inspection wheels.
A total of 18 probe chips and 26 ultrasonic channels are installed in the six inspection
wheels under the vehicle, which can accurately detect steel rails in all directions with
a damage detection rate of over 85%. To address the problem of detection deviation
caused by rail wear and vehicle “snake like” motion, 3D laser track profile measurement
technology is adopted, combined with adaptive wear compensation control, to dynamically
adjust the position of the probe wheel, and the error can be controlled at the millimeter
level. Its detection data support the synchronous storage and playback of A/B display
signals, coupled with the automatic analysis of high-definition images of the rail surface,
achieving the dual verification of “waveform+image” and greatly reducing the risk of
missed detections. The diverse service environment of high-speed trains, with large speed
fluctuations and unclear shock loads, leads to signals with strong nonlinearity [23-25].
Domestically, unmanned aerial vehicles equipped with laser radar, Al image recog-
nition, and other technologies are used in track detection. A rail surface defect detection
method based on unmanned aerial vehicle images has a recall rate of 93.75% and an accu-
racy rate of 93.6%. By combining 3DGIS and digital twin technology, air vehicle-ground
collaborative inspection can be achieved to improve detection efficiency. However, in
complex environments such as strong- or low-light conditions, defect features are easily
masked during drone detection.
The training data for foreign Al models are larger, and the algorithms are more mature.
For example, JR Kyushu in Japan uses AMD Kria K26 system modules combined with
FPGA technology to achieve high-speed image processing, with an accuracy rate of over
85% in rail sleeper damage classification. AMD Kria K26 system module was developed and
launched by AMD (acquired Xilinx, San Jose, CA, USA) and released in 2021. It focuses on
edge computing applications and aims to provide flexible and high-performance solutions
for industrial Internet of Things, machine vision, medical imaging and other fields. Multi-
sensor fusion technologies such as laser radar, infrared, and ultrasound are commonly
used abroad. For example, the French TGV detection system integrates subsystems such as
track geometry measurement and contact network detection to achieve the comprehensive
monitoring of railway facilities. However, there are shortcomings in the depth of multi-
sensor data fusion in China, and there is a lack of a unified standard framework.
Electromagnetic testing is based on the principle of electromagnetic induction, mainly
including magnetic particle testing, magnetic leakage testing, alternating current electro-
magnetic field technology (ACFM), and metal magnetic memory testing technology. In
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2014, Wen Xiaode et al. [26] used magnetic flux leakage testing technology to detect surface
crack defects. In 2017, He Yunze used the blind source separation method to process elec-
tromagnetic detection signals using BSS, which showed significant improvement compared
with traditional methods [27].

Research has found that current railway track characterization defects such as rolling
contact fatigue (RCF) cracks can be detected to a certain extent, but there are certain errors.
For example, the ACFM cane manual rail inspection instrument has significant errors in
detecting rail characteristic crack defects, with an automatic calibration error of about
20 mm for the robotic arm. It can be seen that researching and developing intelligent and
automated railway characterization defect detection equipment systems and methods is
currently an important task.

At the same time, with the development of intelligent transportation technology, it
is particularly important to ensure the service life and quality of high-speed train tracks.
This requires the real-time monitoring and detection of the service life and quality of tracks,
whether under conventional conditions or extremely harsh conditions. This will inevitably
bring great difficulties to track inspection, increase the cost and difficulty of intelligent rail
inspection, and further highlight the importance of intelligent, digital, and comprehensive
rail quality inspection and monitoring equipment and methods.

3. Non-Destructive Testing Methods for High-Speed Train Rails
3.1. Ultrasonic Waveguide Testing Methods

The detection of surface defects on railway tracks based on ultrasonic waveguide
technology is currently widely used in the field of high-speed train rail surface defect
detection. With the development of intelligent transportation technology, the requirements
for the service life and quality of railway tracks are becoming increasingly high. At the
same time, various types of surface quality defects, such as dents, cracks, surface burns,
weld defects, joint defects, etc., have also occurred during the service of railway tracks. The
most important components in the ultrasonic waveguide detection process are the linear
ultrasonic head and the angular ultrasonic head [28]. At the same time, different angles are
arranged according to the layout of the railway track, with the aim of covering relevant
areas in different regions of the railway track. In Germany, two linear ultrasonic heads
emitting longitudinal waves are used to simultaneously detect contact surfaces running
parallel to the railway tracks, and a matching reflector is used to detect the height of the
railway tracks. One of the two ultrasonic heads adopts a dual element setup, installed on
the rail head and reflector near the contact surface of the rail, while the other ultrasonic
head is installed on the rail web and rail foot. Normally, the installation covers an angle
range from +35 ° to +70 ° and from —35 ° to —70 °, as shown below in Figure 6.

Installation position of
ultrasonic transmitter head
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Figure 6. Schematic diagram of ultrasonic head installation.

By using ultrasonic sensors to collect the characteristics of rail defects, the quality and
accuracy of the surface defect feature map of the rail are relatively high, and the acquisition
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efficiency is high. However, in order to obtain complete and high-quality rail defect feature
images [29], the ultrasonic head still needs to be installed at different angles. Shown in
Figure 7 is a schematic diagram of ultrasonic wave acquisition at different angles.

Ultrasonic transmitter head

iy

iy | 1 DA

Figure 7. Ultrasonic wave acquisition schematic diagram at different angles of ultrasonic head.

Electromagnetic ultrasonic testing technology excites and receives ultrasonic waves
through the principle of electromagnetic coupling. A coil with alternating current is placed
near the surface of the rail to be tested. Under the influence of the alternating current, eddy
currents are generated inside the rail. The eddy currents inside the rail are affected by the
Lorentz force under the action of the alternating magnetic field, generating ultrasonic waves
inside the rail. Compared with traditional ultrasonic testing techniques, electromagnetic
ultrasound has the characteristics of non-contact implementation, no need for coupling
agents, and fast detection speed [30,31]. Currently, Rose J.L. et al. in the United States have
used electromagnetic ultrasound testing technology to achieve damage detection in steel
rails [32]. Xu Ji et al. [33] in China studied a digital signal processing method suitable for
the electromagnetic ultrasonic testing of rail treads. This method can improve the signal-to-
noise ratio of electromagnetic ultrasonic testing signals and achieve the localization and
imaging of rail tread damage. Compared with the disadvantage of traditional ultrasonic
detection technology being susceptible to external interference, laser ultrasonic detection
technology can adapt to complex and harsh detection environments with high detection
accuracy [34]. Cavuto [35] et al. developed a non-contact air coupled laser ultrasonic
detection system, demonstrating the applicability of laser ultrasonic programs in improving
the ultrasonic detection performance of train axles, and it has been applied to the inspection
of high-speed train axles by Italian railway companies. Sun Jihua et al. [36] applied a laser
electromagnetic ultrasound technology to defect detection in the rail waist area which can
detect through-hole defects of 6 mm~8 mm in the rail waist area. The study by scientist
Rayleigh [37] on the propagation of elastic waves on solid surfaces is considered the
beginning of guided wave research, and these elastic waves are named Rayleigh waves.
Horace Lamb [38] studied elastic waves inside a flat plate based on Rayleigh’s research,
derived the wave equation of elastic waves in a free state plate structure, obtained Lamb
waves by solving the wave equation, and expressed the dispersion characteristics of the
elastic waves using this wave equation, making a historic contribution to the development
of guided waves. In 1959, Gazis [39,40] studied the propagation of guided waves on
the surface of tubular structures. By using Helmholtz decomposition to obtain arbitrary
values of the physical parameters involved, characteristic equations applicable to hollow
cylindrical structures were obtained, and complete analytical expressions for axisymmetric
and non-axisymmetric guided waves were derived.

In the research and design of ultrasonic guided wave excitation and reception devices,
the commonly used excitation and reception guided wave methods are divided into three
types: piezoelectric, electromagnetic, and laser pulse. Loveday P.W. et al. [41] studied a
guided wave excitation sensor that can be used for rail detection and verified the feasibility
of using piezoelectric transducers in rail detection through simulation analysis and experi-
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mental verification. Rose J.L. et al. [32] used non-contact air coupling and electromagnetic
ultrasonic transducers (EMATSs) to excite and receive ultrasonic guided waves at the rail
head and rail waist and effectively detect the structural state of the rail. Rizzo P. et al. [42]
designed a transducer applied to the rail head and collected and analyzed the sensing
signals received by the rail head. Lu [43] and Loveday [41] designed and optimized, re-
spectively, electromagnetic ultrasonic guided wave transducers for damage detection in
steel rail bottoms.

The phase velocity of a guided wave is the propagation velocity of a point with a
fixed phase in the direction of its propagation, while the group velocity of a guided wave
is the propagation velocity of an envelope composed of waves with similar frequencies.
The group velocity represents the propagation velocity of the wave group. The general
definitions of group velocity and phase velocity are

Cp
Ce

(1)

S~

Among them, w is the angular frequency, k = 27” is the wavenumber, and A is the
wavelength. Further deformation results in the relationship between group velocity and
phase velocity, expressed as

C2
_ p
Cg = c dc, @
P Yhw

In the process of rail damage detection, the commonly used method for solving the

dispersion curve is the potential function method, which is implemented with the particle

motion equation derived by the Lame—Navier equation [42,44]:
Wt ji + ()\ + .u)'uj,ji + p-fi = p-ﬁi(i,j =1,2,3.. ) 3)
Among them, A and y are Lame Changshu parameters, p is the density, u is a unique
particle, and f; is the force acting on the particle.
Although ultrasound can achieve the identification and localization of rail damage,
there are still certain limitations in the refinement of damage types and quantitative analysis.
The detection speed reaches 15 km per hour, and the detection rate can reach 91%. There

is still significant research to be conducted in the field of the intelligent identification and
detection of rail damage.

3.2. Terahertz Detection Methods

Terahertz (THz) radiation typically refers to electromagnetic waves with frequencies
between 0.1 THz and 10 THz (wavelengths between 30 pm and 3 mm), which fall between
the microwave and infrared wavelengths and belong to the far-infrared band. For the
online real-time detection of surface defects on high-speed train tracks, terahertz time-
domain spectroscopy systems can achieve the detection of quality defects on the track
surface. They mainly include a terahertz time-domain spectroscopy system based on the
femtosecond laser excitation of photoconductive antennas. The terahertz optical path
system is composed of a fiber-coupled terahertz transmitter, a fiber-coupled terahertz
receiver, a 100 V high-voltage generator, a fiber-coupled delay line, a high-speed data
acquisition board, a portable computer, an external lens mounting bracket and a TPX lens,
control software, and an acrylic protective plate. The overall optoelectronic scheme of the
whole fiber terahertz time-domain spectroscopy system is shown below in Figure 8.

When terahertz waves are incident at a certain angle and come into contact with the
surface of the steel rail through the sample, they are completely reflected, resulting in
the total reflection of terahertz waves by the steel rail. The thickness detection of THz
TDS using the reflective THz method involves the incident terahertz wave E (w) on a rail
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damage feature with a thickness of d. Eper is emitted from the upper surface of the rail
damage feature, with an arrival time denoted by T. E is emitted from below the sample,
with an arrival time denoted by T. The thickness of the sample can be expressed as [45,46]

d= cAT . C(Tz*Tl)
2v/n?2 —sinf  2v/n? — sinf

(4)

Fiber

Electric Line

Attenuator Sample
Fiber Femtosecond IHz 5 IHz
2 Emitter Allenuator Detector
laser Tiber Time )
| Delay Line| Output Signal
A A
C ¢ Lock-in
omputer e
p Amplifier

Figure 8. Overall structure of terahertz time-domain spectroscopy system.

Among them, c is the speed of light waves, and # is the refractive index of the material.
When terahertz waves are incident at a certain angle, the THz waves reflected by the
sample cannot be completely received by the terahertz receiver. To avoid this situation
and ensure that terahertz waves are vertically incident on the sample, the formula can be
simplified as
cAT _ ¢(To —Ty)
2n  2n
For the internal defects of laminated steel rails, non-destructive testing is carried out
using a terahertz time-domain system. The only improvements made are in signal and

d:

image processing, and the results obtained are not yet perfect. Therefore, it is necessary
to start with the hardware of the terahertz system to break the limitations of the terahertz
system itself and improve the quality of signals and images. At present, terahertz systems
are bulky and only remain in laboratories, making it difficult to perform on-site detection.
Under ideal conditions (such as a clean rail surface and a defect size > 0.1 mm), the
detection rate of surface open cracks using terahertz time-domain spectroscopy (THz TDS)
or terahertz imaging technology can reach over 90%.

Therefore, it is necessary to further optimize and improve various devices and pro-
cesses to truly achieve the miniaturization of terahertz systems and meet the requirements
of on-site detection. With the development of deep learning, algorithms for detecting and
classifying defects also need to be developed accordingly; otherwise, sometimes, defects
may be missed or incorrectly detected due to improper algorithms.

3.3. New Eddy Current Testing Methods

At present, many foreign scholars use eddy current pulse thermal imaging technology
to detect metal cracks, and their research results also prove the feasibility of eddy current
pulse thermal imaging non-destructive testing technology for metal crack detection [47,48].
Robin Clark summarized the defect detection techniques currently used for rolling contact
fatigue cracks in railway rails and also stated that pulse eddy current thermal imaging
non-destructive testing technology will be widely applied to the detection of surface and
subsurface defects in rails [6]. Wilson et al. used pulsed eddy currents to detect surface and
subsurface defects in steel rails and pointed out that processing time-domain and frequency-
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domain signals can improve the efficiency of defect detection in the detection system [49].
Beata conducted a study on the thermal response of surface cracks in magnetic materials
and found that crack depth has an impact on the thermal response. Simulation analysis
was conducted, and a formula for calculating crack depth was ultimately derived [50].
Thomas et al. found that eddy current pulse detection technology can identify two different
types of defects at the same location and verified it using simulation analysis [51]. Wilson
et al. proposed that boundary effects affect the detection efficiency of eddy current pulse
detection and proposed using normalized input signals to improve detection efficiency.
The results showed that this method can improve the detection efficiency of defect areas
in specimens [49]. Liu Zewei et al. used an eddy current pulse thermal imaging detection
method to detect small fatigue cracks on metal surfaces and designed a non-destructive
testing system [52].

With the development of technology, higher requirements have been put forward for
the capacity of modern transportation, and at the same time, the load-bearing capacity of
railway tracks has also increased. Under high-speed and high-load conditions, the stress
on the railway track is also greater, and so is the damage to the railway track contact
surface caused by the contact between the wheel and the rail. The main type of defect is
the contact fatigue crack on the outer side of the railway track surface, also known as the
rail head crack. In response to such defects in railway tracks, BAM [29] has collaborated
with German [53] railways and other partners to develop a new eddy current measurement
system that can perform real-time detection in the rail surface to determine the degree of
rail damage and perform effective maintenance (Figure 9).

Equipment cabinet

with EC devices

Measuring trolley

Figure 9. New eddy current detection system.

The new eddy current testing car can achieve real-time recording, real-time data
processing, and the analysis of surface defects on rails. It can simultaneously collect
and analyze eddy current signals from eight probes in real time. Based on the real-time-
collected rail surface defect data, it can select, convert, and provide real-time feedback
on the strongest eddy current signal [54], including the depth, location, and remaining
number of eddy current head inspections of rail surface defects, as well as the continuous
availability of its data (Figure 10).

Changhang et al. applied eddy current pulse thermal imaging non-destructive testing
technology to defect detection in composite materials, and the experimental results proved
that this testing technology provides a new idea for defect detection in non-conductive
materials [55]. Eddy current pulse thermal imaging non-destructive testing technology is a
relatively efficient and fast active non-destructive testing technology. Eddy current pulse
thermal imaging non-destructive testing technology uses the principle of electromagnetic
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induction to induce eddy currents on the surface of the test piece and then uses the principle
of induction heating to achieve temperature differences between the defective and non-
defective areas on the surface or subsurface of the test piece. Finally, infrared images are
obtained through an infrared thermal imaging instrument to achieve defect detection. The
process of the induction heating of the test piece can be roughly divided into three parts:
when a high-frequency excitation current is applied to the induction coil, induced eddy
currents will be generated on the surface of the test piece; after inducing eddy currents on
the surface of the specimen, a large amount of Joule heat will be generated; Joule heating in
defective areas can be achieved through thermal conduction and other methods to heat
non-defective areas.

Alternating Magnetic
currente N _,,_\fleld

Figure 10. Principle diagram of new eddy current testing.

For surface open cracks with a length > 0.5 mm and a depth > 0.1 mm, the detection
rate can reach 90~95%. When a high-frequency alternating current with an excitation
frequency of f is applied to the excitation coil, an induced current will be generated on
the surface of the test piece according to the principle of electromagnetic induction. At
this point, the physical relationship between magnetic and electric fields can be clearly
explained through Maxwell’s equations, so it is necessary to focus on introducing Maxwell’s
equations here. The differential form of Maxwell’s equations is as follows:

V-D=p

V-B=0
VE_ o8 (5)
VH=]+%

Among them, B is the magnetic flux, H is the magnetic field strength, E is the electric
field strength, | is the current density, and p is the charge density.

3.4. Laser Ranging Detection Methods

Laser rangefinders typically operate based on the principle of laser propagation
time. The laser emitter emits a laser beam towards the surface of the rail and measures
the time required for the pulse to reflect off the rail surface and return to the sensor.
The measurement principle is shown in Figure 11. At the same time, corresponding
laser heads and laser emitters can be arranged according to the arbitrary shape of the
rail, such as longitudinal horizontal, alignment, transverse horizontal, and torsion of the
rail. Multiple laser rangefinders can be used for measurement, which is called the chord
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method. Figure 11 shows the principle of the chord method for measuring the longitudinal
horizontal length of the rail. This method usually uses the distance between the front bogie
and the rare bogie as the reference chord and measures the main vector at 10 midpoints [56].
Extracting specific objects plays an important role in laser ranging data processing.

2D Sensors

CCD Sensors

Figure 11. Laser ranging detection system.

Wuhan University has developed a system for measuring the external dimensions of
steel rails using laser ranging sensors [57], which integrates sensor technology, laser mea-
surement technology, multi-sensor integration and control technology, computer software
technology, and network communication technology. Laser ranging sensors belong to a
type of point structured light, which utilizes advanced laser triangulation technology to
achieve fast measurement response speed and high measurement accuracy.

In terms of the detection principle, the line structured light measurement method
uses optical technology for 3D measurement, which has the advantages of non-contact
deployment, fast speed, simple implementation, high accuracy, and good anti-interference
ability and currently makes it one of the most widely used methods in 3D measurement. The
point structured light rail shape measurement method developed by Wuhan University has
been applied to Wuhan Welding Rail Factory and has achieved certain results, confirming
the superiority of optical technology in rail shape detection. Line structured light is superior
to point-by-point scanning and slow-point structured light while avoiding the complex
algorithm of encoding and decoding required for multiline structured light, making it more
suitable for the development of this system. Using a pulse laser rangefinder, the ranging
accuracy of the rail surface can reach £0.05~0.1 mm. A 1550 nm fiber laser is used in
conjunction with a high-precision time measurement chip.

Laser sensors are currently highly mature products in the industrial sector, widely
used in machine tools, production lines, the rubber industry, and the steel industry. Their
measurement accuracy can reach 0.019 mm. At the same time, the displacement sensor
accuracy is 0.015 mm, and the guide rail accuracy is 0.012 mm, ensuring the accuracy of the
system in all aspects.

3.5. LiDAR Detection Methods

In the research and application of non-destructive testing for surface defects on railway
tracks, in addition to the laser ranging detection method, another method is to use the laser
ground-penetrating radar (GPR) detection method, which mainly uses a radio wave source
to generate electromagnetic energy pulse waves on the detected railway track surface
(Figure 12). The electromagnetic energy pulse waves are transmitted in different material
media, accompanied by reflection between contact surfaces, and finally, the reflected energy
is received and analyzed [58]. Therefore, laser ground-penetrating radar can map the sur-
face structure of railway tracks and the underground conditions of railway track structures.
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The collected rail surface data information is processed through relevant algorithms and
serialized to achieve the non-destructive testing of rail surface quality. The commonly
used processing algorithms include machine learning algorithms, such as artificial neural
network (ANN) algorithms and CNNs [59].
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Figure 12. Laser radar detection method.

The clustering algorithm is commonly used in the field of LiDAR obstacle detection.
Its principle is to divide the sample into multiple categories, with the similarity between
points within the same category as high as possible and the similarity between different
categories as low as possible, in order to reveal the distribution of data. The commonly used
clustering algorithms include Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), the K-means clustering algorithm, and the Euclidean clustering algorithm.
The DBSCAN algorithm is a clustering algorithm based on data density features which
can cluster point cloud data of any shape. Cai Huaiyu et al. improved the traditional
DBSCAN algorithm by setting an adaptive clustering neighborhood radius that varies
according to the target distance, which improved the accuracy of obstacle detection [60].
Zhang Changyong et al. proposed an adaptive DBSCAN algorithm, which selects repre-
sentative core points and adaptive clustering radii to achieve the fast and accurate clustering
of obstacles with different densities [61]. Chen et al. designed the coplanar threshold as an
additional clustering condition, where the clustering threshold is automatically adjusted to
adapt to the local distribution of samples in the input dataset without the need to adjust
the parameters [62].

The method based on a ground grid usually involves projecting a 3D point cloud onto
a 2.5D grid map. A 2.5D grid map, also known as an elevation map, stores the height
information of point clouds. Douillard et al. extended the elevation map by combining
the average height within the grid and the voxel-based object model of the point cloud,
and the resulting model is also applicable to path planning [63]. Shao Jingtao et al. first
clustered the three-dimensional point cloud into grids based on gradients and finally used
cubic B-spline curves for smooth fitting and the segmentation of the ground. Himmelsbach
et al. used local geometric features of three-dimensional data to segment the ground and
objects, achieving good segmentation results in urban environments including smooth
and curved road surfaces [64]. The method based on plane fitting usually utilizes the
three-dimensional information of the original point cloud data to construct a ground
model and distinguishes ground points based on the degree of matching between each
point and the model. Himmelsbach et al. proposed an extended Gaussian regression
method to fit the ground, utilizing non-stationary covariance functions to locally adapt to
terrain data structures [65]. Plagemann et al. proposed a probabilistic technique based on
Gaussian processes which more reliably predicts the elevation of unseen locations than
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other methods while estimating the uncertainty of predictions [66]. Chen et al. used a one-
dimensional Gaussian process (GP) with non-stationary covariance functions to distinguish
ground points or obstacles in each segment, decomposing large-scale ground segmentation
problems into many simple GP regression problems [67]. Zermas, Guan Junzhi et al. used
the Random Sample Consensus (RANSAC) algorithm to fit a plane model to segment the
ground and fitted the ground plane into segments. For each segment, RANSAC was used to
extract the plane, effectively overcoming the problem of poor ground segmentation [68,69].
In the classification and recognition of point cloud objects, it is necessary to provide a
dataset with good performance in classification. However, the dataset only contains three
types of objects, cardboard boxes, pedestrians, and trains, and the number of object types is
relatively small. In future research, the dataset can be expanded to further validate and
improve the research method.

3.6. Laser Vision Inspection Methods

The railway track structure is not a large-area planar structure, so laser vision technol-
ogy is often used to detect surface defects on the railway track based on visual technology.
A laser vision system combines structural light sources with image acquisition devices to
capture 3D images of railway track surface features. In order to efficiently and effectively
capture railway track surface feature images, multiple angle acquisition devices are used
to coordinate with each other (Figure 13). For example, one acquisition device is respon-
sible for the inner feature image of the railway track, and another acquisition device is
responsible for the outer feature image of the railway track.

Left camera Right camera Main camera

b
A

Main light source

Left light source Right light source

Figure 13. Schematic diagram of laser vision inspection.

Through this method, real-time, efficient, and high-quality image data of rail surface
features can be obtained, providing data for the detection of rail surface wear and rolling
contact fatigue [70]. The laser vision system can also be combined with an inertial motion
unit (IMU) to collect and measure a series of geometric parameters of the railway tracks
in [71]. For example, the detection process of rail corrugation includes extracting effective
laser stripe areas, suppressing stripe highlight textures, extracting stripe centerlines, defin-
ing rail boundaries, and measuring the position of and deviation in laser measurement
points, as shown in Figure 14 [72]. Of course, gratings of different wavelengths can also be
used to capture surface feature image data of railway tracks through illumination.

In 2002, You Yang, Liu Ming, Cui Chunyan, and others from Hebei University applied
the light cutting method combined with visual inspection technology in the detection of rail
wear, greatly reducing the time required for rail image processing [73]. In 2014, Zhan Dong,
Yu Long, and others from Southwest Jiaotong University proposed a detection method for
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rail wear cross-sectional area based on existing rail inspection vehicles. They discretized the
analytical formula for the standard rail profile and calculated the step integration based on
profile registration to obtain the calculation formula for rail wear cross-sectional area [74].
Xiao Longfei, Li Jinlong, Gao Xiaorong, and others from Southwest Jiaotong University,
in 2015, proposed to reconstruct and restore the three-dimensional spatial contour of steel
rails based on phase measurement contour technology. The research results showed that
the online measurement of the three-dimensional contour of steel rails can be achieved.
This method has good application prospects in measuring rail wear [75].

Main camera
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Figure 14. Multiple-light-source layout for laser visual detection.

Wang Jiwu, Zhang Xianwen, Gao Weijie, and others from Beijing Jiaotong University
conducted in-depth research and analysis on the calibration method and accuracy impact of
cameras in measurement systems. They proposed a spatial coordinate conversion algorithm
for laser contour points and applied it to develop a non-contact dynamic measurement
device for rail wear, with an accuracy of 0.012 mm and a relative error of 0.28% [76]. In
2015, Xu et al. combined laser vision measurement technology to reconstruct the full
contour of the rail using the condition that the left and right rail head treads have the
same characteristics, combined with the iterative nearest-point algorithm for accurate
matching. They also achieved the dynamic measurement of rail wear within a certain
detection distance. The performed tests on a manually operated track inspection vehicle at
a track site. The results show that the calibration accuracy of the measurement system is
0.0049 mm, and the wear measurement accuracy can reach 0.1 mm [77].

3.7. Infrared Thermal Sensing Detection Methods

Infrared thermal sensor technology is widely used not only in the military field but
also in the field of industrial product quality inspection. Infrared thermal sensor technology
mainly relies on thermal sensor imaging to obtain thermal images of the detection object;
then, based on a series of processing and analysis algorithms developed, it is processed
and analyzed to obtain results. Due to the contact operation between the wheel and the
rail in high-load and high-speed scenarios, a significant amount of heat is generated on
the surface of the rail. The use of infrared thermal bed technology can effectively capture
thermal images of the rail surface features, thereby enabling the real-time detection of rail
surface defects. At the same time, in the processing of infrared thermal images of railway
tracks, there are a series of processing algorithms that can accurately identify and detect
surface defects, including damage and defects inside the railway tracks [78]. Infrared
thermal sensing detection technology is based on infrared radiation for detection, which
is a type of electromagnetic radiation. Infrared radiation is divided into four wavelength
bands, as shown in Figure 15: near-infrared (NIR), 0.78-3 um; mid-infrared (MIB), 3-6 um;
far infrared (FIR), 6-15 um; and extremely far infrared (XIR), 15-1000 um.
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Figure 15. Infrared heat sensing wave map.

With the continuous development of infrared technology, people have increasingly
high requirements for the clarity of infrared images, and many new algorithms have been
proposed abroad for infrared image processing. In 2011, scholar H. Gokhan Ilk proposed
an adaptive Laplacian filtering algorithm for infrared image enhancement. This algorithm
achieves image edge sharpening by minimizing the objective function, improving the
clarity and contrast of infrared images [79]. In 2013, American scholar Kelly designed
an infrared image detection system based on pixel focal plane array which improved the
imaging capability of infrared images [80]. In 2015, Malaysian scholar Yuan T. proposed an
adaptive contrast enhancement algorithm for infrared image enhancement which improves
the visual quality of infrared images by increasing the difference in contrast between the
target and the background [81]. In 2016, Indian scholar Lincelles et al. proposed an infrared
image enhancement algorithm based on multimodal image fusion which combines multi-
scale decomposition and principal component analysis to improve contrast in infrared
images [82]. In 2010, Finnish scholar Bochko proposed a manual correction infrared image
segmentation algorithm which can analyze and measure the surface area of lesions in
human infrared images after segmentation processing and observe their changes over
time, which is helpful for clinical diagnosis and treatment [83]. In 2012, American scholar
Jadin applied infrared image segmentation technology to power equipment detection,
extracting the thermal distribution of electrical equipment from segmented images [84]. In
2015, Indian scholar Mangai proposed an infrared image segmentation algorithm based on
K-means clustering which uses the concepts of fitness and belonging to make the results of
image segmentation more applicable [85].

Infrared thermal wave non-destructive testing technology mainly includes three as-
pects: heating technology, thermal imaging technology, and thermal image processing
technology. It can be combined with other detection methods to improve the accuracy
of object detection. Compared with traditional non-destructive testing methods such as
electromagnetic and eddy current, infrared thermal wave non-destructive testing has the
advantages of wide applicability, fast detection speed, large detection area, one-way non-
contact detection, and quantitative detection. This article mainly introduces the principle
and detection methods of infrared thermal wave non-destructive testing, as well as the
application of infrared thermal wave non-destructive testing technology. Thermal waves
are temperature fields that vary over time. When any object in nature is disturbed by
external factors, its temperature field changes. Due to the unevenness of the material and
internal structure of the object, the internal heat conduction process of the object is different,
and different heat conduction velocities result in different temperature distributions on the
surface of the object. The transmission process of thermal waves, like that of any wave,
has its own specific transmission rules. During the transmission process, thermal waves
interact with the material and internal structure of the object. The theory of thermal waves
aims to study this interaction and analyze the transmission process of thermal waves inside
objects. The Fourier law proposed by French physicist Fourier in 1822 is a fundamental
law in the field of heat transfer, revealing the relationship between heat flow rate and
temperature gradient. Its expression for the differential equation of thermal conductivity is
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g(x,t) = —=AVT(x,t) (6)

Among them, q(x,t) is the heat flux vector, VT(x,t) is the temperature gradient,
T(x, ) is the instantaneous temperature, and A is the thermal conductivity.

3.8. Artificial Intelligence Detection Algorithms

At present, in practical applications, including digital twin technology [86], traditional
detection methods detect the surface defects of steel rails through manual visual inspection,
rail inspection vehicles, physical methods, etc. The main problem is that during the process
of manually inspecting or scanning the surface images of steel rails by rail inspection
vehicles, complex and changing natural environmental conditions such as background
conditions, light, and weather can interfere with the detection process to a certain extent,
resulting in low image quality and subsequently affecting the accuracy of detection [87,88].

When traditional methods cannot meet the requirements of automation and intel-
ligence, convolutional neural networks are applied to track surface damage detection,
opening up a new development path for detection work. To effectively compensate for the
shortcomings of traditional image processing methods, many researchers suggest using
deep learning methods to design fast and accurate track surface damage detection algo-
rithms. Jin Xiating et al. [89] improved the convolutional neural network by combining
attention mechanisms, focusing the model on the defect areas on the surface of the rail.
Using semantic segmentation methods, they achieved high segmentation accuracy for the
contour segmentation of rail surface defects. Joquab et al. [90] used classical networks as the
backbone extraction network and employed transfer learning methods to extract the surface
defect features of steel rails. They designed adaptive edge and spatial feature extraction
structures in the network to enhance the model’s expressive power. Su et al. [91] used the
Faster R-CNN object detection method to perform damage detection on B-type images
of internal track damage. Although this method can effectively identify surface damage,
its detection ability is single-focused on track damage due to the difficulty in obtaining
track defect datasets. Zhao et al. [92] conducted defect detection on key components of
railway tracks, which was mainly divided into two parts. Firstly, the position of the key
components was recognized, and based on the recognized images, defect classification
detection was carried out. The detection task was completed by segmenting the surface
defect images of the steel rails using super-resolution algorithms.

Zeiler et al. [93] used deconvolution to reconstruct images and improve the classi-
fication performance of the model. The results showed that the surface reconstruction
method was very effective in defect detection. Wang et al. [94] used convolutional neural
networks based on array methods to achieve the damage detection of rail scars and cracks.
Liu et al. [95] proposed the Wav2Vec neural network for piezoelectric array ultrasonic
guided wave localization based on ultrasonic guided wave SHM technology, achieving
the accurate localization of rail damage and building an ultrasonic guided wave detection
system. Zeng et al. [96] used fiber Bragg grating sensing technology to monitor rail damage
and obtain data, addressing the problem that traditional high-speed railway sensors cannot
cope with electromagnetic interference. They then used convolutional neural networks to
detect the damage [97]. Considering the large number of rail point cloud data obtained
through on-site scanning and the presence of a large number of noise points and outliers, a
point cloud simplification algorithm was proposed to detect rails through direct filtering,
maximizing the acquisition of detailed information about the rails. Zhang Xiaoyu et al. [98]
proposed a rail top defect detection method based on cascaded networks, targeting the
characteristics of rail top defects. On this basis, deep learning algorithms were added
to detect defects on the rail top surface. To address the drawbacks of traditional image
processing methods such as long processing time and low defect recognition accuracy,
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a new convolution kernel combined with a cascade-based feature fusion strategy was
chosen to design an improved Faster R-CNN rail defect detection method for implementing
detection tasks [99].

3.9. Multi-Sensor Fusion Methods

Multi-sensor data fusion and decision fusion of multiple classifiers both belong to the
category of information fusion, which originated from the sonar signal processing system
funded by the US Department of Defense in 1973. At present, the level of information fusion
can be divided into low level (data level or pixel level), middle level (feature level), and
high level (decision level) based on the different levels of fusion objects, which facilitates
the description of fusion behavior at all levels according to the fusion task.

Research on data fusion technology in China started relatively late, and it was not
until the late 1980s that reports on multi-sensor data fusion technology began to emerge.
Among them, An Xueli et al. studied multi-source features based on vibration signals in
the time domain, frequency domain, and envelope spectrum and used decision fusion
methods to construct a wind turbine bearing fault diagnosis model [100]. Gao Jingwei
et al. studied a fault diagnosis method for self-propelled artillery gearboxes based on
information fusion [101]. Jiang Wanlu et al. studied the information fusion fault diagnosis
method of Bayesian networks [102]. Zhai Xusheng et al. studied a multi-sensor information
fusion method for diagnosing vibration faults in aircraft engines [103].

The theory of data fusion has been widely applied in numerous military and civilian
fields, such as industrial control, robotics and intelligent instruments, air traffic control,
ocean surveillance and management, and more. In these fields, the fundamental theoretical
research of data fusion, the construction of a data fusion theoretical system, and the study
and establishment of a basic theoretical framework for multi-sensor integration and infor-
mation fusion are some of the research directions. In addition, for database management,
introducing various artificial intelligence technologies into the field of data fusion, reducing
computational complexity in the context of heterogeneous sensors on multiple platforms,
and solving the expression and inference operations of uncertain factors are also key areas
of future research. Relatively speaking, there are few examples of applying multi-sensor
data fusion technology to rail track detection. Some scholars have proposed using machine
learning methods to detect wheel crack states using multiple sensors [104], while others
have proposed the idea of using multiple sensors to detect obstacles in railways [105].
Finding a detection method for rail cracks is gradually becoming an increasingly urgent
need, and this project is based on the multi-sensor measurement of acoustic emission
signals to detect rail cracks, which currently has great development prospects.

4. Railway Non-Destructive Testing Platforms and Equipment

In the field of transportation, the safety and reliability of railway tracks play a crucial
role in the entire transportation system. And some instruments and equipment used for
reliability fault prediction and rail defect detection in the early stage have also become hot
research topics in recent years. Based on the above summarized railway track detection
technology and methods, related railway track detection platforms, railway track detection
robots, and railway track detection equipment have been developed and have a certain
range of applications.

4.1. Rail Inspection Robot System

Faced with the characteristics of multiple categories, types, and features of surface
defects on railway tracks, the railway track detection robot system based on 2D vision
technology [106] has become a research hotspot. The main method is to collect surface
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feature images of railway tracks through image acquisition sensors, perform relevant
algorithm feature analysis and processing on the railway track feature images, and finally
identify defect features and provide feedback on the results. The rail inspection robot
system based on 2D vision technology mainly recognizes and detects the surface defects
of railway tracks, such as cracks, pits, wear, pitting, scratches, and deformation, as shown

in Figure 16.

Figure 16. Surface defects.

The rail inspection robot collects real-time images of the rail surface through installed
image acquisition sensors. The core principle is image processing. After processing the
defect images of the rail surface, the processing results are fed back in real time and
uploaded to the cloud in real time. The system framework diagram is shown in Figure 17.
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Figure 17. Orbit inspection robot system.

4.2. Hand-Pushed Rail Inspection Trolley

In order to facilitate the inspection of the surface quality of rails at different joints and
of multiple-joint rails, a manually pushed rail inspection trolley is used for the inspection of
rail surface quality due to its light weight, small size, and flexible operation [56], as shown
in Figure 18. Due to its small size and light weight, the hand-pushed small car is very easy
to install on the railway track, with low professional requirements for the operators and a
low threshold for manual operation. Ultrasonic sensors, laser measurement and detection
systems, and structural sensors are installed on the crossbeam of the car to detect the
surface quality of the rail and transmit detection information signals. As the handcart relies
on manual pushing to inspect the surface quality of the rails, the overall inspection speed
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and efficiency depend entirely on the operator’s travel speed and efficiency. Therefore, the
inspection efficiency of this manual rail inspection trolley is not too high, and the operator
needs to stop the inspection when fatigued.

Figure 18. Hand-pushed rail inspection trolley.

4.3. Active Rail Inspection Car

The above manual rail inspection car has the advantages of light weight and small
size and also has lower requirements for the operator. However, there are also some
shortcomings, while the active rail inspection car [107] realizes the automation of rail
inspection. The overall structure of the active rail inspection car is similar to that of the
manual rail inspection car, but the most prominent feature is its ability to automatically
walk and inspect the rails, as shown in Figure 19. The active rail inspection car carries
instruments such as ultrasonic sensors, visual sensors, and laser sensors to actively detect
the surface quality of the rail.

Figure 19. Active rail inspection car.

4.4. Vehicle-Mounted Rail Inspection Vehicle

The active rail inspection car overcomes the problem that the manual rail inspection
car cannot actively complete the inspection. However, the active rail inspection car has
limited endurance due to the lack of continuous external alignment for power supply,
which greatly affects the efficiency of rail inspection. The vehicle-mounted rail inspection
vehicle [108,109] effectively solves such problems. As the name suggests, the vehicle-
mounted rail inspection vehicle installs relevant rail inspection instruments or sensor
systems on the rail inspection car. The vehicle-mounted car can be a free-type inspection
car, an improved car, or a detection train, as shown in Figure 20. A series of sensor devices
can also be installed on the inspection vehicle, such as visual laser systems [110], ultrasonic
sensors, eddy current sensors, EMAT [72] sensors, etc.
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Figure 20. On-board rail inspection vehicle.

4.5. Comparison and Discussion of Platform Characteristics for Four Detection Methods

Different rail inspection methods and platform equipment can achieve the non-
destructive testing of rails to a certain extent. Table 1 shows a comparative analysis
of the characteristics of the summarized rail inspection methods and platform equipment.

Table 1. Comparison of detection characteristics.

Serial . . . Digital Twinand  Normal Testing
Number Testing Methods Detection Advantages Disadvantages Life Prediction Pass Rate
Defects are easil 70-85%
Manual Viewing with Direct judgment . . Y (depending on
1 X missed, fatigue, and NO .
detection methods human eyes of defects . testing
low efficiency .
experience)
Ultrasonic Ultrasonic Lopg detection POOF noise resistance 85~95% (internal
2 . distance and and inability to reflect NO
testing methods technology . defects)
high accuracy defect types
o —90%
Eddy current Eddy High detection Low S}gnal to-noise 80-90%
3 testing methods current effect accurac ratio and low NO (surface/near-
& Y anti-interference ability surface defects)
4 Laser vision Image recognition Non-contact and Internal defects cannot NO 85~95% (visible
inspection methods & sn high precision be detected surface defects)
Infrared Fhermal Infrar.ed thermal Non-contact and POO? noise resistance 70~80% (thermal
5 sensing sensing image hich precision and inability to reflect NO anomaly defects)
detection methods recognition shp defect types y
. ~ 0,
LiDAR Electromagnetic Non-contactand  High cost and inability 90-95 /0.
6 . energy pulse . . NO (geometric
detection methods : high precision to reflect defect types
detection damage)
Terahertz . Terahertzl Non-contact and High cost and limited o
7 - time-domain . - . . NO 60~80%
detection methods high precision detection thickness
spectroscopy
- N —98%
Hand-pushed track Manual Pushmg Small size, light Low efficiency and slow 95-98% .
8 . . and multi-sensor weight and easy . NO (comprehensive
inspection trolley . . detection speed .
fusion to install testing)
Active track Automatic Autonomous 95~98%
9 . . multi-sensor detection and Low battery life NO (comprehensive
inspection car . . .- .
fusion high efficiency testing)
. . 0R0
Rail inspection A.ctlve Large detection Unable to be controlled 95~98% .
10 multi-sensor angle and . NO (comprehensive
robot . . remotely and high cost :
fusion high accuracy testing)
. . . —98%
Vehicle-mounted AFtlve Large detection Unable to be controlled 95~98% '
11 track multi-sensor angle and ; NO (comprehensive
. . . . . remotely and high cost .
inspection vehicle fusion high accuracy testing)

From Table 1, it can be seen that different detection methods and platform equipment
have their own advantages and disadvantages. Suitable detection methods and equipment
can be selected according to specific rail conditions. Electromagnetic detection methods
have relatively deep development and application in theoretical research and technical
application. Currently, they mainly focus on the quantitative analysis and research of
rail defect detection, as well as the formulation of detection standards, including rail
surface quality detection under multi-physical field coupling. However, they have certain
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limitations and cannot accurately judge the rail life. Machine visual inspection methods
based on image processing technology have solved the problem of low accuracy in rail
surface quality inspection to a certain extent, and non-contact detection methods have also
become a hot research topic. However, rail surface quality detection systems based on
visual technology have poor robustness and huge computational complexity and makes it
difficult to achieve high-speed rail detection, making it impossible to directly determine
the rail operating status and conduct life health monitoring. Although ultrasonic testing
methods can theoretically detect the surface quality of railway tracks well, there is still
room for research and verification in practical applications, especially in large-scale trial
and formal testing applications. Although terahertz technology has high detection accuracy
in rail surface quality inspection and has certain advantages in non-contact detection
and high-speed detection, there are certain limitations on the detection thickness for rail
surface defects.

In recent years, a research hotspot has been rail inspection robot systems, which
are undoubtedly pieces of rail inspection platform equipment with high reliability and
authenticity in the field of rail inspection. They can be equipped with multiple sensors
to achieve the real-time online detection of rails in all directions and angles and realize
active detection with long detection distance. Rail inspection robots are currently widely
used in the field of rail inspection platforms and equipment. However, there is still room
for improvement in remote control, remote communication, remote interaction, and other
aspects of rail inspection robot systems, as Bluetooth WIFI, local area networks, and other
technologies cannot meet the requirements of remote control. At the same time, with the
rapid development of modern transportation technology, digital twin technology will be
a very important research method and technology in the field of rail inspection, realizing
the full life-cycle detection of rail surface quality and providing accurate predictions of
alignment life.

5. Conclusions

With the development of modern transportation technology, the quality and service life
requirements for railway tracks are becoming increasingly high. Surface quality inspection
and service life prediction of railway tracks have become hot and difficult research topics.
Therefore, it is particularly important to adopt modern means, technologies, and methods
to improve the detection of railway track surface quality. Adopting a certain technical
method may allow for the effective solution of the surface quality inspection of railway
tracks in certain aspects, but in railway track inspection under some characteristic working
conditions, it requires that the inspection methods, techniques, and methods used be
adapted to special working conditions, and some intelligent methods and technologies are
preferred. Subsequent research on rail inspection will focus on the following areas.

(1) Intelligent Al track inspection robot systems. In the era of digitization, intelligence,
and the Internet of Things, endowing rail inspection robots with more intelligent and
digital functions is expected to be a hot and difficult research topic in the field of rail
inspection robots in the future. Various sensing technologies will be more integrated,
not only in the process of collecting rail characteristic data but also in the entire process
of data analysis and processing, as well as in the process of interacting with humans.
This fully embodies the “four layer” theory that includes the physical model layer, data
layer, service layer, and application layer. The physical model layer of the rail inspection
robot system and the rail inspection robot’s independently constructed rail digital twin
model includes geometric models, physical models, and digital models of different rails.
The data layer includes physical model data, information model data, and fused data.
After data preprocessing, the data fusion algorithm generates twin data. The service layer
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operates in three stages, namely, the observation stage, the analysis stage, and the decision-
making stage, including twin data-driven rail fault prediction and health management. The
application layer includes rail health status assessment, rail fault diagnosis, fault prediction,
and fault maintenance decision making. In the future, there will be more and more rail
inspection robot systems with more intelligent and digital capabilities.

(2) Digital twin technology. In the modern transportation field, the quality require-
ments for rail tracks are becoming increasingly high. Therefore, it is crucial to be able
to warn of rail faults and predict the service life of rails. Digital twin technology will be
widely applied, and rail inspection technology based on digital twin technology will solve
such problems. Digital twin technology can break through many physical limitations, and
through simulation, prediction, monitoring, optimization, and control driven by data and
models, it can achieve the continuity of rail inspection, the real-time response of detection
data, and the upgrading and optimization of detection models. Based on the advantages of
rail models, rail feature data, and rail data services, digital twins will undoubtedly become
a hot topic in the field of rail inspection research in the future.

(3) Wireless remote interaction technology. The rail inspection vehicles, rail inspec-
tion robot systems, and vehicle-mounted rail inspection vehicles mentioned earlier can
achieve wireless control and data transmission to a certain extent, but there is still room for
development in long-distance wireless interaction. In the field of modern intelligent trans-
portation, in the era of interconnected and digitized everything, rail inspection systems
will be expected to have the most basic and necessary functions of wireless remote inter-
action. The wireless remote interaction of rail inspection systems is essentially a wireless
network interconnection among people, machines, and objects. Through the comprehen-
sive and in-depth perception of rail operation detection data, the real-time transmission
and exchange of rail detection data, and the rapid analysis and modeling of data, it is
the transformation and embodiment of the rail inspection system to achieve digitization,
intelligence, intelligent interaction, and wireless remote intelligent interaction. In the future,
rail inspection intelligent systems with wireless remote intelligent interaction will be an
inevitable development trend.

(4) Real-time online status monitoring and digital and intelligent operation and main-
tenance of railway systems. With the deepening of research on high-speed and ultra-high-
speed train technology, damage detection in track infrastructure such as roadbeds, rail
fasteners, and vehicles, in addition to railway tracks, will undoubtedly be a key direction
of future transportation research. How to use more digital and intelligent methods to solve
real-time online rail status monitoring and ultimately achieve intelligent operation and
maintenance is a key and difficult point of research. At the same time, it is necessary to
consider the impact of resonance on railway tracks, vehicles, and roadbeds, as well as the
analysis, processing, and feedback timeliness of real-time online status monitoring data of
railway tracks, vehicles, and roadbeds. Based on this, the development of non-destructive
testing methods and equipment based on intelligent algorithms for the online status mon-
itoring of railway track damage and intelligent operation and maintenance algorithms
under multi-source data signals is a key direction and a trend for the future development
of high-speed and ultra-high-speed train technology.

(5) Intelligent and digital detection methods for rail damage. Domestically, unmanned
aerial vehicles have been equipped with technologies such as LIDAR and Al image recogni-
tion to detect track geometry parameters and surface defects. The surface defect detection
method for steel rails based on drone images has a recall rate of 93.75% and an accuracy rate
of 93.6%. By combining 3DGIS and digital twin technology, air vehicle ground collaborative
inspection can be achieved, significantly improving efficiency. The highest detection speed
of the domestically produced GTC-80-II-] rail flaw detection car is 80 km/h, with a damage
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detection rate of over 85%. Combined with 3D laser track profile measurement technology,
the position of the probe wheel is dynamically adjusted, and the error is controlled at the
millimeter level. The vehicle is equipped with 18 probe chips and 26 ultrasonic channels,
which can detect internal cracks in the steel rails in all directions. Al and big data analysis:
The 4C contact network detection system analyzes more than 10 million images through
Al algorithms, and the number of defect detection operations is more than 10 times that
of manual labor, with significantly better accuracy than manual labor. The intelligent
detection system for railway sleepers can identify fine cracks at the 0.1 mm level and
monitor production environment safety indicators in real time. The track inspection car
adopts dynamic adjustment technology, with a track direction/height standard deviation
of <0.3 mm, meeting the smoothness requirements of high-speed railways. Some railway
bureaus are piloting predictive maintenance systems based on digital twins, which combine
historical data to predict rail wear trends and optimize maintenance cycles.

(6) Future challenges in track damage detection. In terms of future challenges, complex
environmental interference, rust, oil stains, and changes in lighting on the surface of steel
rails can lead to misjudgments in image recognition. Drone detection can easily mask defect
features in strong- or low-light environments. Electromagnetic interference and terrain
obstruction affect sensor signal transmission, leading to a decrease in GPS positioning
accuracy for mountainous railways. Real-time data collection and processing, with a single
flaw detection vehicle generating several GB of data in a single inspection, requiring real-
time analysis and output of results. Domestic Al chips (such as Horizon Journey 5) can
achieve an inference speed of 128FPS in YOLOvS5s, but there are still delays in complex
models (such as 3D point cloud segmentation). The fusion of multimodal data (images,
ultrasound, LiDAR, etc.) requires solving problems such as time synchronization and
coordinate system calibration, which is technically difficult. Rail damage includes cracks,
wear, corrosion, etc., and some defects (such as internal microcracks) are difficult to detect
through a single technique. For example, ultrasound is sensitive to longitudinal cracks but
has a lower detection rate for transverse cracks.

Domestic high-speed rail damage detection has initially achieved intelligence and
digitization. Equipment such as flaw detection cars and drones is close to international
standards in detection speed and some indicators, but there are still gaps in adaptability
to complex environments, multi-sensor fusion, and Al algorithm generalization ability. In
the future, it is necessary to strengthen the research and development of core technologies
(such as high-precision sensors and edge computing), promote the internationalization of
standards, reduce operation and maintenance costs through the “detection as a service”
mode, and further improve the detection efficiency and reliability.
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