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Abstract: The integration of Artificial Intelligence into industrial maintenance remains
challenging due to the scarcity of high-quality data representing faulty conditions. Machine
Learning models trained on laboratory testbed data often fail to generalize effectively in
real workshop environments. This study evaluated the effectiveness of Transfer Learning
models in handling this domain shift challenge compared with Machine Learning models.
Their potential to address the generalization gap was assessed by analyzing the model
adaptability from lab-recorded data to data from emulated workshop conditions, where
real-world variability was replicated by embedding synthetic noise into the lab-recorded
data. The case study focuses on detecting rotor unbalance through bearing vibration signals
at varying speeds. A Support Vector Classifier was trained on the transformed features for
both models for binary classification. Model performance was assessed under varying data
availability and noise conditions to evaluate the impact of these factors on classification
accuracy, sensitivity, and specificity. The results show that Transfer Learning outperforms
Machine Learning, achieving up to 30% higher accuracy under high-noise conditions.
Although the Machine Learning model exhibits greater sensitivity, it misclassifies balanced
cases and reduces specificity. In contrast, the Transfer Learning model maintains high speci-
ficity but has difficulty detecting mild unbalance levels, particularly when data availability
is limited.

Keywords: rotor unbalance detection; domain adaptation; bearing failure identification;
model generalization; transfer component analysis; transfer learning

1. Introduction
The integration of Artificial Intelligence (AI) has accelerated in various fields, includ-

ing industrial applications [1]. Modern production environments require automated fault
detection systems to maintain operational efficiency and ensure equipment reliability [2].
However, the adoption of AI in condition-based and predictive maintenance remains
limited [3]. A critical limitation of AI-based maintenance models is their dependence on
large volumes of high-quality fault data, which is often scarce in real-world industrial
settings. Unlike domains where data collection is scalable, acquiring comprehensive fail-
ure data in the industry is expensive, time-consuming, and often impractical because
of safety concerns: deliberately running machinery to failure is not a viable option in
most cases.

One common approach to overcome the data scarcity problem is to train Machine
Learning (ML) models using lab-recorded testbed data, where operating conditions are
controlled, and data acquisition follows a structured approach. Although this facilitates
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the systematic analysis of failure modes, it does not fully capture the complexity of a
real industrial environment, leading to poor generalization when deployed in produc-
tion [4]. This challenge arises due to the domain shift—the significant differences between
a controlled testbed environment and a workshop condition caused by factors such as
ambient noise [5]. The fundamental assumption of traditional ML models that training
and deployment data have similar distributions is frequently violated in real workshop
environments [6].

Transfer Learning (TL) has emerged as a promising solution for addressing gener-
alization challenges by allowing knowledge transfer from laboratory-recorded data to
real workshop conditions [7]. A summary of the main concepts of TL for Industry 4.0,
its taxonomy, and its applications in maintenance is provided in [8]. Domain adaptation,
a subset of TL techniques, explicitly aims to reduce the domain shift, enabling models to
adapt to new environments by leveraging existing knowledge [6].

Maximum Mean Discrepancy (MMD) is a widely used metric in domain adaptation
for measuring the distribution divergence and aligning feature distributions between do-
mains [9]. Various MMD-based algorithms have been proposed, with Transfer Component
Analysis (TCA) demonstrating strong performance and effectively handling cases where
little or no labeled data are available in the target domain [10].

TCA has been extensively used in predictive maintenance, including bearing fault di-
agnosis [11], gearbox condition monitoring [12], lithium-ion battery health estimation [13],
and heat pump fault detection [14]. Among these applications, bearing failure detection
has received significant research attention due to the critical role of bearings in rotating
machinery [15]. Bearings are subjected to diverse failure modes and operate under varying
conditions, including different loads and speeds. TCA addresses these challenges by trans-
ferring knowledge across different operating conditions, thereby enhancing the robustness
of fault classification. Several modifications have been proposed to further optimize TCA
performance. Improved TCA incorporates local discriminant weights [16]. Weighted TCA
addresses both marginal and conditional distribution mismatches [17]. TCA with Preserv-
ing Local Manifold Structure retains the feature locality and label information [18]. Feature
Transfer TCA introduces online feature transfer frameworks, enabling fault diagnosis mod-
els to be dynamically updated using real-time sensor data [11]. While several modified
versions of TCA have demonstrated enhanced performance on specific datasets, this study
employs the standard TCA as a widely recognized and well-established baseline to ensure
general applicability and comparability of results across broader contexts.

The existing research mainly focuses on transferring knowledge across varying op-
erating conditions of the same machine or among similar machines in controlled lab
environments. A critical challenge remains in adapting models from a laboratory to a work-
shop environment, where noise, external disturbances, and varying operational settings
significantly affect fault diagnosis performance.

This research aims to analyze the lab-to-field generalization gap and evaluate the
effectiveness of TL in improving the adaptability of diagnostic models trained on labeled
lab-recorded data (source domain) when applied to unlabeled data from emulated indus-
trial conditions (target domain). To reflect the complexities of a workshop environment,
synthetic noise is embedded into lab-recorded data across various operating scenarios,
enabling a systematic assessment of TL’s ability to mitigate domain shifts and enhance
model robustness against real-world variations.

This study identifies the strengths and limitations of TL through the case of ro-
tor unbalance detection through bearing vibration signals, a common problem in ro-
tating machinery [19]. Even a minor unbalance can generate excessive vibrations and
dynamic forces, leading to bearing wear, increased energy consumption, and system
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failure [20]. While frequency-domain analysis is commonly used for unbalance detec-
tion, variable-speed applications introduce additional challenges due to shifting fre-
quency components. For example, in machine tool spindles, rotational speeds fluctu-
ate based on the machining requirements, making it challenging to extract consistent
unbalance signatures.

This study used a binary classification approach to distinguish between balanced and
unbalanced cases to assess model performance. This provides insights into the feasibility
and effectiveness of TL in overcoming ML generalization challenges for maintenance
applications. The main contributions of this study are as follows:

• A comparative evaluation of ML and TL models for rotor unbalance classification
under variable speed conditions.

• Model performance benchmark on source-to-source (lab-to-lab) and source-to-target
(lab-to-emulated workshop) transfer tasks.

• Analysis of the influence of noise type, severity, and data availability on ML and TL
classification accuracy across 24 distinct configurations, each representing a unique
combination of these factors.

• Practical insights into the strengths and limitations of domain adaptation techniques
for industrial maintenance applications.

The remainder of this paper is organized as follows. Section 2 details the materials
and methods, covering experimental setup, data description, preprocessing, description of
analyzed configurations, and modeling of both ML and TL approaches. Section 3 presents
results and discussions, comparing ML and TL models through overall classification results,
accuracy analysis per noise type, sensitivity–specificity trade-off, and detailed evaluations
across unbalance levels and rotation speeds. Finally, Section 4 summarizes key findings,
highlights limitations, and suggests future research directions.

2. Materials and Methods
2.1. Experiment and Data

Laboratory-recorded data provide a controlled benchmark for assessing ML and
TL models under minimal external disturbances, allowing for the validation of baseline
trends and effectiveness of the proposed methodology. Once validated, these models
can be applied in real industrial environments. A typical testbed setup for identifying
unbalance consists of a rotating machinery system equipped with a motor, shaft, bearings,
and controlled mechanism to introduce unbalance at different levels. This study utilized
a publicly available vibration-based unbalance detection dataset from the Fraunhofer
Fordatis database [21].

2.1.1. Testbed

The test setup and its schematic representation are shown in Figure 1. It consisted
of an electronically commutated DC motor mounted on an aluminum base plate using a
steel bracket. A controller regulates the rotational speed of the motor, which can be con-
tinuously adjusted by varying the applied voltage, covering a range of approximately 300
to 2300 revolutions per minute (RPM). The DT9837 unit incorporates a frequency counter
to digitize the rotor position signal, thereby providing accurate motor speed acquisition.
A motor-driven shaft was connected to the second shaft of identical dimensions. A roller
bearing, securely housed in a steel roller bearing block, supported the rotational movement
of the shaft within this assembly. A 4-channel data acquisition system captures vibration
signals using accelerometers attached to both the bearing block and motor mount. A 3D-
printed unbalance holder is a nylon disc with axially symmetric recesses that accommodate
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inserted weights for controlled unbalance introduction and is positioned directly behind
the roller bearing [22].

(a) Testbed.
(b) Schematic drawing of the testbed.

Figure 1. Experimental setup [22].

2.1.2. Data Description

A controlled testbed experiment was conducted to capture the vibration data at
different unbalance levels and rotational speeds for model training and evaluation [22].
The dataset contains recordings of the input voltages of the motor controller, rotation speeds
of the motor, and signals from the first vibration sensor. The recordings were performed
in five configurations, as detailed in Table 1. Four levels of unbalance were introduced by
adjusting the mass and radius of the inserted weight, and a configuration without added
weight served as the balanced case.

Two separate measurements were conducted for each configuration, forming devel-
opment (D) and evaluation (E) datasets. Although both datasets originate from the same
test conditions, they serve distinct purposes. The development dataset is intended to
be used for training the models, while the evaluation dataset is designated for testing.
The unbalance setup was fully dismantled and reassembled between these two record-
ings to introduce additional variation and ensure a more realistic assessment of the
model generalization.

Table 1 provides detailed information on the parameters of the introduced unbalance
levels, including the added mass and installation radii for all recordings. Each row repre-
sents a specific setting, with the ID column indicating unbalance severity (0 = no added
unbalance, 1–4 = increasing unbalance levels, with 4 being the highest). The accompanying
letter specifies the intended use of the dataset: D for development and E for evaluation.

Table 1. Parameters of recorded datasets, adapted from [22].

ID Radius (mm) Mass (g)
Dataset Recording Duration (s)

Development Evaluation

0D/0E – 0 6438 1670
1D/1E 14 ± 0.1 3.281 ± 0.003 6434 1673
2D/2E 18.5 ± 0.1 3.281 ± 0.003 6434 1669
3D/3E 23 ± 0.1 3.281 ± 0.003 6430 1672
4D/4E 23 ± 0.1 6.614 ± 0.007 6340 1675

The dataset contains a continuous recording of the acceleration signal during
two cycles of stepwise rotational speed increases achieved by adjusting the voltage.
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The same speed level was maintained for 20 s during each recording before switching.
More details on the data acquisition settings and dataset descriptions can be found in [22].

2.2. Method Overview

To compare the traditional ML approach with TL in the context of knowledge transfer
from laboratory-recorded data (source domain) to an emulated workshop environment
(target domain), a structured workflow was implemented. This workflow consists of four
parts: raw data preprocessing, domain data preparation and splitting, scenario param-
eter variation, and feature extraction and modeling, as illustrated in Figure 2. Detailed
explanations for each stage are provided in the corresponding subsections.

Figure 2. The methodology workflow.

Binary classification was implemented to distinguish between balanced and unbal-
anced cases, with all unbalance levels grouped into a single class. In the modeling step,
an ML model was developed and evaluated on the source-to-source transfer task, where
both training and testing were performed using the source domain data. A TL model was
then executed for the same task, and its classification accuracy was compared with that of
ML models.

To assess model generalization, the ML and TL models were further evaluated on the
source-to-target task, where training was conducted on the source domain data, whereas
testing was performed on the target domain data. Model accuracy, sensitivity, and speci-
ficity were analyzed under different experimental conditions by varying three key parame-
ters as follows:

• Segmentation step—influences the amount of training and testing data (Section 2.3.2);
• Type of added noise—represents ambient noise in a workshop environment, affecting

the signal characteristics (Section 2.4.2);
• Severity of added noise—defines noise severity, simulating different levels of signal

disruption under workshop conditions (Section 2.4.2).

These parameter variations resulted in 24 distinct preprocessing configurations, re-
ferred to as scenarios. The ML and TL models were executed for each scenario, with a
detailed description of the parameters used in each scenario provided in Section 2.5.
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2.3. Part 1: Raw Data Preprocessing

The preprocessing of the raw data, described in Section 2.1.2, consists of two steps:
data exploration and cleaning and data segmentation (Figure 3). These steps were applied
to both the development and evaluation datasets for all unbalance levels.

Figure 3. The detailed workflow of Part 1, raw data preprocessing, and Part 2, domain data prepara-
tion and splitting.

2.3.1. Data Exploration and Cleaning

Proper data cleaning is essential to ensure that model performance variations stem
from actual model behavior rather than inconsistencies in data quality. Because this study
evaluates performance under varying conditions, eliminating outliers prevents biases that
could distort the results and ensures a fair comparison between ML and TL models.

To achieve this, raw time-series data, including vibration signals and the corresponding
voltage and speed values, were analyzed to detect distortions. Five criteria were established
to identify unreliable data segments that were excluded from further analysis. Figure 4
presents an example recording of the development dataset with no added unbalance (0D)
along with examples for each criterion, which are described below:

• Criterion 1: Beginning of recording. In [22], the authors recommended discard-
ing the first 50,000 data points (approximately 10 s). However, data exploration
revealed a longer unstable period, lasting up to 63 s in the development datasets
and up to 43 s in the evaluation datasets. Because of the lack of detailed informa-
tion on the recording procedure, the entire unstable segment at the beginning was
considered distorted.

• Criterion 2: Voltage change. The data points recorded one second before and one
second after each voltage change were affected by sudden speed fluctuations, leading
to instability.

• Criterion 3: Cycle change. The data points recorded during the voltage drop between
the two recording cycles were identified as being distorted.

• Criterion 4: Unexpected speed jumps. Sudden and unexplained speed jumps were
observed in some of the datasets. Because these anomalies were not addressed in the
data description, they were removed.

• Criterion 5: End of recording. Some recordings extended beyond the stop of rotation
and speed drop, and these segments were excluded from analysis.
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Figure 4. Vibration amplitude from Vibration Sensor 1, corresponding input voltage, and measured
RPM values of the development dataset with no added unbalance (0D), including examples of
distorted data identified based on each established data cleaning criterion.

2.3.2. Data Segmentation

The raw data consisted of time-series recordings lasting several minutes. To prepare
the data for modeling, data segmentation was performed on the cleaned vibration signal
using a sliding window technique with no overlap. During this process, the entire recording
was divided into continuous 1 s data samples, with a window shift equal to the Segmen-
tation Step (Sstep). In this context, continuous means that if any portion of a 1 s sample
was removed due to data cleaning criteria, the sample was considered incomplete and
excluded from further processing. A 1 s window was selected to ensure sufficient temporal
resolution for capturing unbalance-related vibration features across varying speeds. This
duration provides enough data to capture several full shaft revolutions even at low speeds
(300 RPM), enabling effective frequency-domain analysis. This choice is also consistent
with prior vibration-based fault diagnosis studies, where 1 s segments are commonly used.

All the data samples generated using the same Sstep from the development recordings
(0–4D) were combined into a single dataset. Samples from the balanced case (0D) were
labeled as Class 0 (no unbalance), and samples from all unbalance levels (1–4D) were
labeled as Class 1 (all unbalance levels), forming the preprocessed dataset D (Figure 3).
The same process was applied to the evaluation recordings (0–4E), resulting in preprocessed
dataset E.

The Sstep determines the amount of data extracted. Different Sstep were used across
various scenarios, and details are provided in Section 2.5.

2.4. Part 2: Domain Data Preparation and Splitting

This section describes the data preparation process for the source and target domains
and the train–test data split (Figure 3).

2.4.1. Data Splitting

Train and test data for the source and target domains were prepared as follows. For the
source-to-source task, the entire preprocessed dataset D was used as the source domain
train data, and the entire preprocessed dataset E without labels served as the source domain
test data.
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For the source-to-target task, the training data remained the same as in the source-to-
source task using the source domain training data. The target domain data that mimicked
various aspects of the production line were prepared by embedding synthetic noise into lab
data samples. Since the target domain was used exclusively for testing, noise embedding
was performed only on the preprocessed dataset E without labels, forming the unlabeled
target domain test data (Figure 3). The process is described in the following subsection.

2.4.2. Noise Embedding

In a workshop environment, various ambient noises influence recorded data. The fol-
lowing are the most common types of disruptions in a production setting and the synthetic
noise types used to represent them.

• White Gaussian Noise (WGN): Represents broadband random noise that introduces
non-repetitive disturbances in the signal. This can arise from electronic interference,
environmental factors, or other unpredictable disruptions in the measurement sys-
tem [23].

• Electrical Noise (EN): A 50 Hz power line interference caused by electrical components
and circuits in the surroundings [5].

• Impulse Noise (IN): Sudden, short-duration spikes or impulses in the signal, typically
resulting from unexpected external impacts or mechanical shocks [24].

• Combined Noise (CN): A mixture of all the mentioned noise types, reflecting complex
interference in a production environment [5].

To ensure noise variability, the synthetic noise samples were randomly regenerated for
each data sample. This prevented the introduction of repetitive patterns into the simulated
disruptions. Within the different scenarios, the effects of each noise type and their combi-
nation were analyzed under both weak and strong noise variations with characteristics
selected through prescreening tests. Examples and exact characteristic parameters of the
added noise across various scenarios are provided in Section 2.5.

2.4.3. Spectrum Creation

Since the rotor unbalance exhibits a clear pattern in the frequency domain, time-
domain signal samples were transformed into spectra using a Fast Fourier Transform (FFT).
Rotational speed was included as an additional scalar feature, concatenated to the FFT
feature vector, providing context for learning speed-dependent vibration patterns.

2.5. Part 3: Scenario Parameters

Different scenarios were designed to systematically evaluate the model performance
under varying conditions. These scenarios assess the impact of variations in factors such as
noise type, severity, and data availability on both the ML and TL models. The complete set
of parameters that varied across these scenarios is presented in Table 2.

Table 2. Set of parameters varied across 24 investigated scenarios.

Segmentation Step
(Source and Target
Domain Datasets)

Types of Noise (Target
Domain Dataset)

Severity of Noise
(Target Domain Dataset)

24 scenarios
10 × 4096
4 × 4096
1 × 4096

Gaussian White Noise
Electrical Noise
Impulse Noise

Combined Noise

Weak
Strong
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2.5.1. Data Availability

Three data availability levels, controlled by Sstep size, were examined across
the scenarios.

• Sstep = 1 × 4096: The segmentation window moved forward every second (equal
to the sampling frequency), ensuring consecutive, non-overlapping samples and
utilizing 100% of the available data. This resulted in a development dataset containing
5409 samples for Class 0 (no added unbalance) and 21,612 samples for Class 1 (all
unbalance levels combined), while the evaluation dataset contained 1382 samples for
Class 0 and 5521 samples for Class 1.

• Sstep = 4 × 4096: The segmentation window was moved by 4 seconds, introducing a
3 s gap between consecutive samples and reducing data utilization to 25%.

• Sstep = 10 × 4096: The window moved forward by 10 s, creating a 9 s gap between
samples and utilizing only 10% of the available data.

The selection of data availability levels (10%, 25%, and 100%) was based on the
typical learning curve behavior of traditional ML models, where accuracy increases rapidly
between very low to moderate data availability but gradually plateaus as more data are
added. This choice captured the critical improvement phase, enabling a comparison of the
accuracy trends between the ML and TL models under varying data constraints. The exact
number of data samples generated by the different Sstep are summarized in Table 3.

Since the same speed was maintained for 20 s during the two recording cycles, the num-
ber of samples per speed level varied with Sstep. With Sstep = 1 × 4096, a maximum of
40 samples per speed level were generated, whereas with Sstep = 10 × 4096, only 4 samples
per speed were possible. The actual number of samples could be lower if some of them
were considered incomplete and excluded due to data cleaning criteria (Section 2.3.1).

Table 3. Segmentation step (Sstep) and amount of generated data samples per recorded dataset,
the total amount of data used per class for binary classification, and % of data utilized for each Sstep.

Sstep
× 4096

Amount of Data Samples Created per Dataset Total per Class (D/E) % of
Utilized

Data0D/0E 1D/1E 2D/2E 3D/3E 4D/4E Class 0 Class 1

10 479/123 562/123 584/123 579/123 593/123 479/123 2318/492 10%

4 1273/325 1467/325 1273/324 1459/325 1436/325 1273/325 5635/1299 25%

1 5409/1382 5400/1381 5409/1378 5403/1381 5400/1381 5409/1382 21,612/5521 100%

2.5.2. Severity and Types of Noise

Both strong and weak versions of each noise type were embedded in the raw sig-
nal samples in different scenarios. The specific settings used for noise generation were
as follows:

• Weak WGN: The Mean was set to 0, and the Standard Deviation was 0.005. Strong
WGN: The Mean was 0, and the Standard Deviation was 0.01.

• Weak EN: Amplitude was 0.005. Strong EN: Amplitude was 0.02.
• Weak IN: The number of impulses was randomly selected between 1 and 5, and the

Amplitude Range was between 0.05 and 0.1. Strong IN: The number of impulses
was randomly selected between 3 and 8 and the Amplitude Range was between 0.1
and 0.2.

• Weak and Strong Variants of CN: Combination of WGN, EN, and IN at their respective
weak or strong levels.
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The parameters for generating weak and strong noise variations were determined
through a preliminary prescreening process aimed at defining meaningful boundaries of
noise severity for model evaluation. For each noise type, a range of parameter values was
systematically tested to identify a lower threshold where noise began to degrade accuracy
and an upper threshold beyond which classification became unreliable. Additionally,
selected parameters were required to result in classification accuracies for both ML and TL
models within an interpretable range of approximately 50% to 95% across all Combined
Noise scenarios. This process also revealed which noise levels had negligible impact
and which exceeded model capacity, providing a practical basis for defining weak and
strong noise settings for analysis across scenarios. Examples of the generated noise signals,
vibration signals with embedded strong noise, and their spectra are shown in Figure 5.

Figure 5. Examples of simulated noise (a–d), signals with added strong noise (e–h), and their
corresponding spectra (i–l). The red lines represent the noise, and the blue lines represent the recorded
signal. The gray vertical dashed line in the spectra figures indicates the fundamental frequency.

2.6. Part 4: Features Preparation and Modeling

The prepared source and target domain datasets were used for binary classification,
where Class 0 represented balanced bearing cases and Class 1 included data from four
rotor unbalance levels. This resulted in an imbalanced dataset, with Class 1 containing four
times more samples than Class 0. Since maintaining a balanced dataset is crucial for reliable
model performance, data balancing was performed on Class 1 using an undersampling
technique [25].

It is important to distinguish between the terms “balanced” and “unbalanced” when
referring to bearing conditions and dataset structure, as “balanced and unbalanced bearing”
describes the mechanical state of the system, while “balanced and imbalanced dataset” refers
to the class distribution in model training.

Random shuffling was applied to the dataset before undersampling to minimize
potential bias. The undersampling process could skew the proportion of low- and high-
level unbalance samples in the training and test sets, potentially affecting the model
performance. Lower-level unbalance is generally more challenging to detect, and model
performance could decline if the training set contained fewer low-level unbalance samples,
whereas the test set had more.
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To ensure comparability across scenarios, random sampling was performed once
within the same Sstep, and the resulting datasets were used consistently for both the ML
and TL models across all scenarios for that Sstep. This approach prevents unnecessary
variability within scenarios and ensures fair performance comparisons between different
noise conditions.

For classification, a Support Vector Machine (SVM) algorithm was selected for both the
ML and TL models due to its strong performance in traditional ML and TL applications [26].
The SVM classifier relies on several key hyperparameters: the kernel function, the regular-
ization parameter C, and the kernel coefficient gamma. The kernel determines how input
data are mapped into a higher-dimensional space for non-linear classification; options
evaluated during a grid search included linear, polynomial, and radial basis function (RBF)
kernels. The regularization parameter C, tested with values [0.1, 1, 10], controls the trade-off
between margin maximization and training error minimization. The kernel coefficient
gamma, which influences the reach of individual training samples, was tested using “scale”
and “auto” settings. Higher values of C and gamma tend to create more complex decision
boundaries, which may increase training accuracy at the cost of generalization.

All three parameters were optimized using grid search with 5-fold cross-validation
on the development dataset (preprocessed Dataset D) for the source-to-source task with
100% data availability. The optimal configuration—RBF kernel with C = 10 and gamma set
to “auto”—was selected based on the best average validation accuracy. This configuration
achieved a balance between model complexity and generalization capability. To ensure
consistent and fair comparisons between ML and TL models, these hyperparameters were
kept fixed across all evaluated scenarios.

Additionally, the number of dimensions for the FFT-based feature vectors was deter-
mined through empirical evaluation. Various dimensionalities were tested, and 30 compo-
nents were selected as a trade-off between preserving informative variance and avoiding
overfitting. This dimensionality was applied consistently across all experiments.

In the traditional ML approach, Principal Component Analysis (PCA) was applied for
feature transformation from the FFT-transformed data samples, retaining a 30-dimensional
feature space. The Support Vector Classifier (SVC) model was then trained on the source
domain train data and evaluated in two steps:

• source-to-source task: The trained model was tested on the source domain test data.
• source-to-target task: The same trained model was tested on the target domain test

data across all scenarios.

For the TL approach, a distance-based domain adaptation technique called TCA was
applied for feature transformation from the FFT-transformed data samples, reducing them
into a 30-dimensional latent feature space [7]. The process is as follows:

• Source-to-source task: TCA was first applied to map the source training and source test
data into the same latent space. An SVC model was then trained on the transformed
source training data and evaluated using the transformed source test data.

• Source-to-target task: TCA was used to project the source training and target test data
into the shared latent space. The SVC model was trained on the transformed source
training data and tested on the transformed target test data for various scenarios.

Figure 6 presents the classification results for different scenarios. Additionally, for each
scenario, sensitivity and specificity values were calculated for both ML and TL models to
provide a more comprehensive performance analysis.
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Figure 6. Classification accuracy, sensitivity, and specificity values of ML and TL models for each
investigated scenario.

3. Results and Discussions
The results across various scenarios were evaluated by considering the effects of data

availability, noise type and severity, rotational speed variations, and unbalance levels. This
provides a comparative assessment of both models, offering insights into their strengths
and limitations under different conditions.

The overall results are presented in Figure 6, with detailed explanations and discus-
sions in the following subsections. The table includes classification accuracy, sensitivity,
and specificity values for both the ML and TL models across all investigated scenarios.
Accuracy levels are color-coded, with red indicating the lowest values and green the highest.
Sensitivity and specificity are also highlighted for a more straightforward interpretation,
with green denoting values above 0.95 and red ones below 0.6. Scenarios are grouped by
noise type, with bold font indicating strong noise cases and regular font indicating weak
noise cases. Scenario Zero, highlighted in gray, serves as the baseline (source-to-source
transfer), while the remaining scenarios correspond to source-to-target transfer tasks.

Key observations from the results indicate that the TL model consistently outperforms the
ML model, achieving a higher classification accuracy across most of the investigated scenarios.
The ML model performed particularly poorly in cases with CN and WGN, demonstrating
its susceptibility to noise disruptions, especially in the case of strong noise severity. The TL
model exhibited exceptionally high specificity, effectively identifying non-faulty cases.

3.1. General Results

The classification accuracies for all source-to-target transfer scenarios are shown in
Figure 7. For the baseline Scenario Zero, the ML accuracy is shown by the blue horizontal
dashed line, and the TL accuracy is shown by the red dashed line.

Overall, the TL model achieved significantly higher classification accuracy than the ML
model, with improvements exceeding 30% in some cases, such as in the strong CN scenario
with 100% data availability. The grey dashed vertical lines indicate the accuracy difference
between the ML and TL models within each scenario where TL performed better. There are
three exceptional cases in which the ML model performs better than the TL model, marked
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by red vertical lines. These correspond to the EN scenarios. In these cases, the ML model
performed better than the TL model, particularly under low data availability conditions.

Figure 7. Classification accuracies of ML and TL models for each investigated scenario, grouped by
noise type.

The better performance of the ML model compared to that of the TL model in the
presence of EN may be attributed to the distinct frequency-domain pattern of EN (Figure 5j).
Since the ML model processes features extracted directly from the frequency domain after
dimensionality reduction, this pattern might remain prominent in the input data, allowing
the model to leverage it for classification. In contrast, the TL model transforms frequency-
domain data into a common latent space to align the source and target distributions. This
transformation may obscure or weaken the distinct characteristics of EN, making it less
distinguishable and potentially reducing the classification performance. Nevertheless, since
EN are easy to detect and remove through signal processing, these cases are not critical
from a practical standpoint.

The weakest ML performance was observed in scenarios with strong WGN and CN,
as highlighted by the light blue circles in Figure 7. The TL model significantly enhances
the classification accuracy in these cases. Notably, the ML and TL models exhibit nearly
identical performances for the WGN and CN. This finding was unexpected, as CN, which
combines multiple noise types, was supposed to have a more substantial negative impact.

IN has a minimal effect on both ML and TL models compared to the baseline perfor-
mance, particularly in its weak form when data availability is high. When 100% of the
data are available, the TL model handles even strong IN effectively, whereas the ML model
experiences a significant drop in accuracy.

Data availability plays a crucial role in TL model performance across all noise types,
with increased data significantly improving the accuracy. Examples of this trend are
highlighted by green arrows in Figure 7 CN. In contrast, the ML model remains largely
unaffected by data availability, maintaining stable accuracy across different data volumes,
as shown by the yellow horizontal lines in the same subfigure. This indicates that, in most
scenarios, the TL model can achieve an accuracy comparable to that of the ML model
with significantly less data. This advantage highlights the ability of the TL model to
leverage domain adaptation for improved generalization, making it a viable approach in
data-limited industrial applications.
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Furthermore, the results suggest that the accuracy improvement of the ML model
plateaued at a data availability level below 10%, indicating that additional data beyond
this threshold did not contribute to further performance gains. Conversely, the TL accuracy
continued to improve at 100% data availability, implying that TL models may achieve even
higher accuracy with greater data availability.

The impact of noise severity on the model performance is evident across most noise
types, where stronger noise generally leads to lower accuracy. However, EN is an exception,
as model performance remains unaffected by the increase in noise levels.

For both the ML and TL models, Scenario Zero usually achieved the highest accu-
racy. However, the TL model surpasses the baseline of the ML model in several cases,
demonstrating its effectiveness in transferring a model trained on lab-recorded data to an
emulated workshop environment.

3.2. Classification Accuracy Improvement per Noise Type

The accuracy differences between the TL and ML models for strong variants of all types
of noises across different data availabilities are illustrated in Figure 8a, representing the
range of TL accuracy minus ML accuracy. This difference is positive when TL outperforms
ML, and negative when ML performs better.

The results indicate that TL consistently outperformed ML in most scenarios, except for
EN under low data availability. The most substantial TL improvements were observed in
scenarios with larger datasets affected by WGN and CN and reached above 30%. This suggests
that TL benefits the most from greater data availability and complex noise environments. This
highlights the ability of the TL to generalize under noisy conditions where ML struggles.

(a) (b)

Figure 8. Model performance results. (a) Classification accuracy differences between TL and ML
models (TL accuracy minus ML accuracy) for each investigated scenario, grouped by noise type.
(b) Sensitivity vs. specificity of ML and TL models per for each investigated data availability level.

3.3. Sensitivity vs. Specificity

The results in Figure 6 indicate that the TL model consistently achieved high specificity
across all scenarios, which means that it is more effective at correctly identifying true nega-
tive cases (absence of unbalance). In contrast, the ML model exhibits stronger sensitivity
and is better at detecting true positive cases, particularly under specific noise conditions.

To further investigate this trade-off, Figure 8b compares the sensitivity and specificity
of the ML and TL models across different scenarios. The color scheme represents data
availability, with ML values shown as cross markers enclosed in blue ovals and TL values
shown as circle markers in red ovals. Figure 8b illustrates that the ML model consistently
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achieved high sensitivity, but its specificity varied widely across scenarios without a clear
pattern. In contrast, the TL model maintains high specificity, with sensitivity improving
as data availability increases, as indicated by the upward trend of TL markers in blue
compared to green, with orange in between. Notably, only a few ML cases achieved high
specificity at the cost of a lower sensitivity.

3.4. Correct Predictions per Unbalance Level

Expanding on the sensitivity and specificity analysis, Figure 9 provides a detailed
comparison of the classification accuracy across different unbalance levels for both the ML
and TL models. The y-axis represents the percentage of correctly classified samples per
unbalance level under various data availability conditions. These values were calculated
by dividing the number of correctly predicted samples for each unbalance level within
the same data availability condition by the total number of samples in the group. Each
unbalance level is represented by three points on the y-axis, corresponding to the high
(100%), low (25%), and lowest (10%) data availability.

Figure 9. Comparison of the percentage of correct predictions of ML and TL models per unbalance
level for various values of data availability.

The ML model maintained over 60% accuracy across all unbalance levels and exceeded
90% for levels 2, 3, and 4. In contrast, the TL model exhibits greater variability, with accuracy
dropping to approximately 10% for unbalance Level 3 under low data availability but
improved significantly with more data, achieving up to a 60% increase. While the ML
model reaches relatively stable accuracy levels across different data conditions, its overall
accuracy is lower due to the high misclassification rate for balanced cases. This occurred
because the dataset was balanced; the number of samples for Level 0 equaled the combined
samples of all other levels, amplifying the impact of misclassified balanced cases on the
overall ML accuracy.

These findings align with the sensitivity vs. specificity analysis and highlight the
need for further fine-tuning the TL model to enhance performance in borderline unbalance
conditions, especially under data constraints. One possible improvement is to treat each un-
balance level separately through multi-class classification or domain adaptation techniques
tailored to specific unbalance levels. This would allow the model to learn more precise
decision boundaries and better capture small differences between unbalance levels, espe-
cially for early-stage faults like Level 1. In addition, future work could explore stratified
sampling techniques to ensure balanced representation of all unbalance levels during train-
ing, and metric learning approaches (e.g., triplet loss or contrastive learning) to improve
feature separability. Despite some limitations, the TL model consistently achieved a higher
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classification accuracy than the ML model, reinforcing its suitability for condition-based
maintenance applications.

3.5. Correct Predictions per Recording Sample

Understanding how classification performance varies across different operational
speeds and unbalance levels is crucial for assessing the model’s effectiveness. Figure 10
illustrates the percentage of correct predictions per data sample across different speed levels
for the scenarios with the highest data availability. These values were calculated separately
for each unbalance level, providing a detailed comparison of model performances.

Figure 10. Level-wise comparison of the percentage of correct predictions per data sample for ML
and TL models across different unbalance levels in scenarios with 100% data availability. The red line
represents the rotational speed corresponding to each data sample.
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For the ML model, correct identification of the balanced class improved as speed
increased, aligning with expectations. The Signal-to-Noise Ratio (SNR) decreases at higher
speeds, making unbalance patterns more distinct and easier to detect. Additionally, unbal-
ance effects become more pronounced at higher speeds due to increased centrifugal forces,
further improving the pattern visibility and model learning. However, level 1 follows the
opposite trend, with the accuracy decreasing as speed increases. This effect requires further
investigation. Level 2 performs particularly poorly within the 1200–1400 RPM range but
significantly improves beyond this threshold, suggesting a possible resonance effect. Levels
3 and 4 achieved near-perfect accuracy, maintaining close to 100% correct predictions across
all speed levels.

For the TL model, balanced cases were consistently well classified across all speeds.
Level 1 shows a positive correlation with speed, with accuracy increasing at higher speeds,
whereas Level 2 remains relatively stable across different speed levels. Level 3 demonstrates
a marked improvement beyond 1400 RPM, whereas Level 4 maintains high accuracy across
all speeds with no significant impact from speed variations.

These findings highlight the strong influence of speed on the classification accuracy
of the ML model, where higher speeds improve the detection of both balanced cases
and severely unbalance levels. In contrast, the TL model demonstrated greater stability
across speeds, with classification accuracy more dependent on unbalance levels than
speed variations.

4. Conclusions
This study evaluated the ability of TL models to address the generalization challenges

of traditional ML models when transferring AI models trained on lab-recorded data to
an emulated workshop environment with varying operational conditions. The case study
focuses on detecting rotor unbalance across different speed variations and provides insights
into the strengths and limitations of traditional ML and TL models. The classification accu-
racy, sensitivity, and specificity were analyzed across multiple scenarios, considering the
effects of data availability, noise type and severity, rotational speed variations, and different
unbalance levels.

The results demonstrate that the TL model outperforms the ML model, particularly
in source-to-target tasks with high data availability, achieving up to a 30% accuracy im-
provement in complex noise environments such as WGN and CN. While ML effectively
detects unbalanced conditions, it often misclassifies balanced cases. TL maintains strong
unbalance detection but struggles with mild unbalance levels, particularly under limited
data conditions. The ML accuracy remains stable across different data availability levels,
whereas TL showed continued improvement with more data.

This study also highlights the influence of noise type, severity, and speed variations.
The WGN and CN presented the greatest challenges for both models, but TL exhibits greater
robustness. ML benefits from higher speeds achieving better classification results for high
RPM samples, while TL remains stable across different speed conditions, with accuracy
primarily dependent on unbalance levels rather than speed.

The ML accuracy improvement curve plateaus below 10% data availability, with no
further gains beyond this threshold. In contrast, TL accuracy continued to improve at 100%
data availability, suggesting the potential for even higher performance with more data.

These findings emphasize the ability of the TL to generalize to noisy environments
and adapt to complex conditions, reinforcing its potential for real industrial applications.
It is important to highlight that classification accuracy alone is an insufficient metric
for assessing real-world effectiveness. As demonstrated in this study, a comprehensive
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evaluation of model performance is crucial for enhancing the reliability and improving the
diagnostic capabilities of TL models.

In terms of practical application, the proposed method is computationally efficient
and suitable for real-time analysis using 1-second data segments, making it feasible for
industrial settings where continuous monitoring may be constrained by operational limita-
tions or sensor accessibility. However, the current model was trained on a single bearing
geometry and fault type, which limits its generalizability to other use cases. To develop a
broadly applicable system, future work should incorporate data from diverse bearing types
and failure modes. While this study did not aim to build a general-purpose diagnostic tool,
it provides a structured analysis of how key parameters influence TL performance.

The presented results were based on a case study of rotor unbalance identification
through bearing vibration signals. However, the insights gained from this study can be
used beyond this specific application. The findings on TL’s effectiveness and limitations in
handling domain shift may offer valuable guidance for investigating other bearing failure
modes, such as inner and outer race defects or rolling element damage. Additionally,
these insights can contribute to more detailed studies on fault detection in other rotating
machinery applications, including gearbox failures, motor faults, and similar industrial
maintenance tasks where data scarcity and domain adaptation remain significant challenges.
The proposed methodology can be applied to assess the impact of other influencing factors,
such as outliers in the data and variations in the sensor placement, which affect the recorded
data characteristics.

Future work should focus on improving the sensitivity of TL models, particularly
for detecting mild unbalance levels. Exploring multi-class classification, where unbalance
levels are treated as distinct categories rather than a single class, can provide a more
detailed classification framework and improve detection accuracy. Examining the influence
of sensor placement on model performance can provide valuable insights, particularly
given practical constraints in industrial settings where optimal sensor positioning is not
always feasible. Additionally, investigating tailored domain adaptation techniques and
refined preprocessing strategies may further optimize the TL performance. Leveraging
more advanced TL methodologies could further enhance model generalization and improve
their applicability in real-world industrial settings.
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine Learning
TL Transfer Learning
AI Artificial Intelligence
TCA Transfer Component Analysis
PCA Principal Component Analysis
MMD Maximum Mean Discrepancy
SVM Support Vector Machine
SVC Support Vector Classifier
WGN White Gaussian Noise
IN Impulse Noise
EN Electrical Noise
CN Combined Noise
Sstep Segmentation Step
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