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Abstract: This paper addresses the challenge of optimizing path planning for autonomous
vehicles in urban environments by considering both traffic and bandwidth variability on
the road. Traditional path planning methods are inadequate for the needs of interconnected
vehicles that require significant real-time data transfer. We propose a reinforcement learn-
ing approach for path planning, formulated to use road traffic conditions and bandwidth
availability. This approach optimizes routes by minimizing travel time while maximizing
data transfer capability. We create a realistic simulation environment using GraphML, incor-
porating real-world map data and vehicle mobility patterns to evaluate the effectiveness of
our approach. Through comprehensive testing against various baselines, our reinforcement
learning model demonstrates the ability to adapt and find optimal paths that significantly
outperform conventional strategies. These results emphasize the feasibility of using rein-
forcement learning for dynamic path optimization and highlight its potential to improve
both the efficiency of travel and the reliability of data-driven decisions in autonomous
vehicular networks.

Keywords: autonomous vehicles; vehicle routing and navigation; vehicular networks;
reinforcement learning

1. Introduction
The transition of autonomous vehicles from theoretical concepts to everyday reality

marks a significant milestone in urban development, promising to transform transportation
systems and urban infrastructures alike. This is not merely an advancement in vehicle
control and navigation; it is a shift in how vehicles interact with their environment, passen-
gers, and each other. Each autonomous vehicle, essentially a supercomputer on wheels, is
estimated to generate up to 4 terabytes of data per day [1]. As these data-intensive vehicles
become increasingly interconnected, they face a dual challenge, navigating not just through
physical traffic but through an invisible sea of information.

Autonomous vehicles are equipped with a suite of advanced features that promise to
redefine the driving experience. These vehicles can detect and navigate around obstacles,
adjust speed in response to traffic conditions, and plan routes in real-time to avoid conges-
tion [2]. Moreover, autonomous vehicles have the potential to significantly improve road
safety by reducing human error, which is the leading cause of traffic accidents [3]. These
capabilities are made possible by a combination of hardware and software technologies,
including LiDAR sensors, radar sensors, cameras, and sophisticated machine learning
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algorithms. This technological synergy allows vehicles to perceive their surroundings,
make decisions, and learn from experience with a high degree of precision and consistency.

Furthermore, with the advancement of vehicle-to-vehicle and vehicle-to-infrastructure
communications, vehicles can now share information with components such as cameras,
traffic lights, and even other vehicles [4]. This opens up new possibilities for managing
traffic flow and reducing congestion, which can lead to a more efficient use of road net-
works and lower travel times. It can also allow vehicles to interact with roadside units
with dedicated computing resources to offload computing processes from vehicles and
to perform real-time calibration functions while on the road [5]. As a result, vehicles are
evolving beyond their traditional role as means of transportation; they generate, store,
process, and transmit large amounts of data used to improve driver convenience and
safety [6].

Building on these transformative advancements in vehicular technology and the
emerging capabilities of autonomous vehicles, a significant challenge has emerged in data
management and communication. The integration of these technologies not only enhances
the vehicle’s ability to navigate complex urban environments but also forms part of a
larger, interconnected intelligent transportation system. This integration necessitates robust
data management and transmission capabilities to fully utilize its potential. Furthermore,
the introduction of 5G cellular networks, which aims to increase bandwidth for road data
transmission, introduces additional challenges. The variability of these networks—affected
by line of sight, infrastructure differences, and traffic density—can lead to fluctuations in
data transmission rates and reliability.

This paper addresses the problem of path planning for autonomous vehicles within
urban environments, where the need for timely data transfer is as important as minimizing
driving time. We formulate the problem of path planning considering both traffic and
bandwidth heterogeneity on the road as a reinforcement learning problem. To practically
assess this formulation, we implemented an environment representing a graphical road
network using GraphML [7]. This framework enables the incorporation of real map data
and vehicle mobility patterns to create a realistic and robust testing ground to evaluate the
reinforcement learning approach to path planning. Using real-world data, our model can
simulate the dynamics of urban traffic, providing a comprehensive understanding of the
challenges and opportunities in optimizing path planning for autonomous vehicles.

Through rigorous testing across various parameters, we demonstrate that our rein-
forcement learning approach can learn efficient and effective solutions. These solutions are
shown to be superior to baseline models that do not account for the heterogeneity of traffic
and bandwidth. Our findings indicate not only the viability of using reinforcement learning
for this complex optimization problem but also its potential to significantly outperform
traditional path planning methods.

The key contributions of this paper are as follows:

• A novel reinforcement learning framework that jointly optimizes for travel time and
data transfer efficiency in heterogeneous urban environments.

• Implementation of a realistic simulation environment using GraphML [7], incorpo-
rating real map data and vehicle mobility patterns for robust evaluations of path
planning strategies.

• Experimental validation demonstrating the superiority of our approach over tradi-
tional baselines in heterogeneous traffic and bandwidth scenarios.

The remainder of this paper is organized as follows: Section 2 presents a review of
related work in the field. Section 3 details the core of our research, providing a compre-
hensive overview of the problem formulation. This section elaborates on the principles of
reinforcement learning, details the construction of our reinforcement learning environment,
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and explains the experimental setup. In Section 4, we present and analyze the simulation
results. Finally, Section 5 summarizes our findings and discusses their implications for the
future of autonomous vehicle path planning.

2. Related Work
2.1. Path Planning

Path planning in autonomous vehicles is a critical component that ensures that these
vehicles navigate from one point to another efficiently and safely. This process is broadly
categorized into global and local path planning strategies [8]. Global path planning involves
calculating a predefined route from the starting point to the destination based on high-
precision maps that account for available road information, such as the length of the
route and its traffic density. This method, often called static or offline planning, relies
on comprehensive environmental data to determine the optimal geometric route without
collisions [9]. On the other hand, local path planning, also known as dynamic or online
planning, adapts to real-time environmental changes. It adjusts the vehicle’s trajectory
in response to immediate obstacles or alterations in driving conditions, necessitating
a flexible and responsive approach to path planning [9]. Path planning algorithms in
autonomous vehicles rely on diverse search algorithms and are generally grouped into three
categories, namely graph search algorithms, traditional algorithms, and group optimization
algorithms [8].

Graph search algorithms such as Dijkstra’s algorithm are among the various algorithms
used for path planning. Dijkstra’s algorithm is foundational, scanning all vertices within a
distance smaller than the specified distance between the starting point and the destination.
It provides a reliable but computationally intensive solution for finding routes in less
complex environments [10]. The A* algorithm [11], a classic goal-directed shortest path
algorithm, combines the Dijkstra algorithm with the Best First Search algorithm [12] and
refines this approach by guiding the search toward the target more efficiently [8]. This
method leverages the network’s geometric embeddings or the graph’s structural features,
including the configuration of shortest path trees, to target compact areas [13]. However,
its application in road networks that prioritize travel time as a metric can be limited due to
its performance issues when geographic distance is used as a limit [14]. The D* (Dynamic
A*) algorithm [15] represents a significant improvement in dynamic path planning, capable
of adjusting the planned route in the face of obstacles, thus enhancing the efficiency of
secondary path planning by reducing the exploration space and improving computational
efficiency [16].

Many traditional algorithms are used for path planning, each catering to different
navigational requirements and constraints. The artificial potential field (APF) algorithm
creates a virtual force field around obstacles, repelling the autonomous agent away from
obstacles and attracting it toward the target [17]. This method is intuitive and effective
for simple environments, but it can be difficult to use in complex scenarios with local
minima where the vehicle might get stuck. Simulated annealing [18] and Tabu search
algorithms [19] offer sophisticated means of escaping local minima and finding globally
optimal paths by intelligently exploring the search space.

The rapidly-exploring random tree (RRT) algorithm [20] stands out for its adaptability
and efficiency in handling non-holonomic constraints, which are particularly relevant for
autonomous vehicle navigation [21]. Holonomic systems are those in which the controllable
degrees of freedom are equal to the total degrees of freedom, allowing for straightforward
movement in any direction from any configuration [22]. This ideal scenario is not always
practical in real-world navigation, especially for vehicles. Non-holonomic systems, in con-
trast, have constraints that limit the vehicle’s movement directions based on its current
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state [22]. For example, a car cannot move sideways and its turning radius imposes con-
straints on its path planning. The RRT algorithm excels in these environments by randomly
sampling the space and incrementally building a tree of possible paths. This approach not
only navigates around obstacles but also considers the vehicle’s physical capabilities and
limitations, ensuring that the generated paths are feasible for non-holonomic agents [23].
Bast et al. [14] offer a detailed survey and comparison of practical algorithms designed for
efficient path planning in both human-driven and autonomous vehicles. Energy-aware
routing for electric vehicles has also been addressed with meta-heuristics; for example,
Loaiza-Quintana et al. [24] apply an iterated local search algorithm to optimize e-bus
charging-station placement, integrating battery constraints into route decisions.

Despite the utility of these algorithms, applying them to graph representations of
large and complex road networks, especially when optimizing driving time, presents
significant challenges. Classic shortest path algorithms like Dijkstra and A* become in-
efficient in handling road networks with millions of edges due to their computational
demands [10,11,13]. Moreover, while RRT and other traditional algorithms offer solutions
for non-holonomic cases and dynamic environments, their scalability and efficiency in
large-scale, time-sensitive road network scenarios remain limiting factors.

2.2. Reinforcement Learning

Machine learning (ML) is a foundational domain within artificial intelligence (AI). It
equips computers with the ability to learn and make decisions that mimic human intelli-
gence [25]. This field is particularly renowned for its applications in signal processing and
image processing [25–27], including significant advancements in speech recognition [28,29],
natural language processing [30–32], and medical diagnostics [33,34].

At the heart of machine learning are three primary paradigms, namely supervised
learning, where models make decisions based on previously provided output labels; un-
supervised learning, which identifies patterns without prior output label knowledge; and
reinforcement learning (RL), distinguished by its use of sequential actions to learn from
interactions with the environment based on rewards or penalties [35].

RL is defined as a method by which an agent interacts with its environment to learn
optimal behaviors without prior knowledge [36]. RL aims to maximize numerical rewards
or minimize penalties. This interaction is facilitated by feedback on each action, allowing
the agent to iteratively refine its policy to achieve the best possible control policy [35].
Figure 1 depicts this RL control loop. At each time step t, an agent follows an algorithm
to observe the state of the system st, takes an action at, and receives a reward rt. Based on
its current policy, the agent’s action leads to a new state. With each interaction, the agent
updates its understanding of the environment.

Figure 1. Reinforcement learning control loop.
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RL is a versatile and powerful technique with a broad range of applications, including
task scheduling, game strategy development, image-based robot control, and path plan-
ning [37–41]. The actor–critic structure [42–44] and Q-learning [45–48] are frameworks in
which RL can be implemented [36]. This diversity in approaches allows RL to effectively
address complex decision-making and optimization problems across different domains.

Various network structures, including wireless sensor networks [49], vehicular ad hoc
networks (VANETs) [50], flying ad hoc networks [51], and drone ad hoc networks [52],
benefit from the application of RL algorithms to their routing algorithms [53]. VANETs
present a unique application domain for RL. These networks, which facilitate communica-
tion between vehicles and road-side infrastructure, support a wide range of applications,
from emergency alerts to road safety and information services [54–58]. High mobility and
computational capabilities are characteristics of VANETs that make them an interesting
subject for RL-based optimization [59]. In their work, Nazib et al. compared RL-based
routing protocols, analyzing their mechanisms, advantages, disadvantages, and practical
applications [53]. RL algorithms primarily focus on optimizing various quality-of-service
metrics, including throughput, overhead, and end-to-end delay [60,61].

RL has shown promise within the field of autonomous vehicle motion planning.
Solutions for planning challenges have been developed using artificial intelligence, includ-
ing deep learning models for optimal control action learning and multi-robot navigation
algorithms that consider dynamic obstacles [62–66].

Beyond these applications, the versatility of RL extends to a wide array of driving
functionalities such as car following [67], lane keeping [68], driver assistance [69], lane
merging [70], highway merging [71], braking [72], and active steering [73]. RL solutions
for traffic signal control have also been shown to outperform standard control methods
in simulation environments [74]. Each of these applications demonstrates the potential
of RL not only to enhance navigational strategies and the driving performance of au-
tonomous vehicles but also to contribute significantly to safety and efficiency in complex
traffic scenarios.

Building on these foundations, several recent studies have explored the innovative
applications of reinforcement learning to emerging vehicular challenges. Fei et al. [75]
applied DRL to non-lane-based toll–plaza trajectories. Hussain et al. [76] and Sun et al. [77]
explored RL-driven route optimization and energy-aware scheduling in IoV and logistics
networks, respectively; Wang et al. [78] introduced a hybrid-state, risk-aware DRL decision
model that improves maneuver safety in highway scenarios; Audinys et al. [79] leveraged
vision transformer-based DRL for end-to-end visual self-driving control; and Lu et al. [80]
proposed a hybrid DRL–kinematic autopilot framework that boosts decision reliability
on motorways.

Although these works reflect the growing versatility of RL in autonomous driving,
none of them jointly consider the role of wireless bandwidth maps in the decision-making
process, leaving a critical research gap that our study addresses.

Our research identifies and addresses this gap by introducing a novel reinforcement
learning framework for autonomous vehicle path planning that is explicitly aware of band-
width heterogeneity. This approach is motivated by several factors, including the critical
challenge of planning routes with adequate signal availability for connected autonomous
vehicles. Recent research has highlighted users’ concerns when navigation systems suggest
routes with poor signal coverage [81], underscoring the importance of this issue. Our
work is distinctive in that it considers not only the traditional objectives of route planning,
such as minimizing drive time and avoiding traffic, but also prioritizes high-bandwidth
roads to meet the vehicle’s data transfer requirements. In doing so, our work fills a critical
gap in the existing research, demonstrating the untapped potential of RL to improve the
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efficiency and efficacy of autonomous vehicles in urban environments with heterogeneous
bandwidth conditions.

3. Problem Formulation
This paper explores the problem of path planning for autonomous vehicles within

urban environments, where the need for timely data transfer is as important as minimiz-
ing drive time. Specifically, we assumed that each vehicle has a certain amount of data
that must be successfully transferred before reaching its destination. In previous studies,
this problem was explored and tested in a simple grid world environment [82]. To ad-
vance this exploration, we constructed a detailed and dynamic graphical representation
of urban road networks, utilizing real-world vehicular mobility data to create a more
realistic environment.

3.1. Constructing the Environment

We modeled the environment as a graphical road network, constructed using the
GraphML framework. This model allows for the integration of real-world map data and
vehicle mobility patterns, providing a realistic and dynamic setting for the evaluation
of our RL-based path planning strategy. In this graphical network, roads are depicted
as connections (edges) between nodes (intersections), where each node has a series of
attributes. These include their precise coordinates, lengths of adjoining roads, the average
duration vehicles occupy each road, vehicles’ average speed on each road, and a congestion
factor that measures traffic density levels on each road.

Figure 2 illustrates the environment creation process. To achieve this, we used a
vehicle mobility dataset (This dataset was obtained from the University of Southern Califor-
nia’s Autonomous Networks Research Group [https://anrg.usc.edu/www/downloads/
(accessed on 5 July 2023)]) consisting of time-stamped location coordinates of 3000 taxis
in Beijing over a 24 h period. This dataset served as the basis for modeling this graphical
road network.

Figure 2. Environment creation process.

We began preprocessing by extracting the full trajectory of each taxi and map-matching
every GPS fix to OpenStreetMap using Valhalla (https://github.com/valhalla/valhalla
(accessed on 13 November 2023)). For each vehicle, we recorded the sequence of visited
nodes (intersections) and computed the distance, speed, and travel time between consecu-
tive nodes. A point was tagged stationary when its instantaneous speed remained below
3 km/h for at least 60 s; such points, typically parking or long red light stops, were removed
so that the analysis reflected only in-motion segments. Congestion factors were calculated
as the ratio of observed-to-free-flow speed, aggregated in 10 min windows. Assuming
bidirectional travel on all roads, we consolidated nodes that lay on the same heading
(within ±5◦) and were separated by less than 20 m, thereby reducing graph complexity
without altering connectivity.

https://anrg.usc.edu/www/downloads/
https://github.com/valhalla/valhalla
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After preprocessing the user data in the dataset, we created a JSON file that recorded
the number of edges connected to each node. This JSON file, together with the preprocessed
data, was used to build a detailed representation of vehicle mobility patterns on roads
using the GraphML framework. Figure 3 displays the entire graphical network, which
represents not only the physical layout of the road network but also the dynamic factors
such as traffic congestion and speed patterns. The top graph shows a birds-eye overview
of the entire Beijing graph, confirming that the extracted topology matches the street grid.
The bottom graph shows a zoomed-in portion of the map, highlighting node consolidation
and edge connections after preprocessing. This graphical model forms the basis of our
reinforcement learning environment, facilitating the training and testing of reinforcement
learning algorithms under realistic traffic conditions.

Figure 3. Bird’s-eye overview of the entire Beijing graph (top) and a zoomed-in portion of the graph
(bottom). Both panels serve purely as visual context.



Appl. Sci. 2025, 15, 6099 8 of 20

3.2. Reinforcement Learning Formulation

In our problem, each action retains and senses information about the environment’s
state. This characteristic demonstrates the Markov property, allowing us to model our
problem as a stochastic Markov Decision Process. At the start of each episode, we randomly
sampled traffic congestion and wireless bandwidth fields from the empirical dataset; these
fields then evolved according to the random fluctuations observed in the trace, so the agent
experienced genuinely stochastic state transitions.

3.2.1. Goal

The goal of the agent was to transfer all its data while also reaching the destination as
fast as possible.

3.2.2. State Space (S)

The state space S of our environment is defined by several key parameters that
encapsulate both the physical position and the communication objectives of the agent.

S = {(x, d, B, T) | x ∈ X, d ≥ 0, B ∈ B, T ∈ T }

where

• x represents the current node position of the agent within the network.
• d is the remaining amount of data that needs to be transferred. This component

reflects the agent’s communication objectives, crucial to ensuring that data transfer
requirements are met before the journey ends.

• B denotes the set of bandwidths available on the links connected to the current node x.
Each element in B represents the bandwidth on a specific link, which affects the rate
at which data can be transferred as the agent considers its next move.

• T indicates the set of traffic densities on the links connected to the current node x.
Each element in T reflects the traffic density on a specific link, which affects the agent’s
travel time and decision-making for route optimization.

The bandwidth and traffic density vectors B and T are restricted to the links directly
connected to the current node x; the agent therefore observes only its immediate neigh-
boring nodes and not the entire network. The quantities B and T are observations that
include zero-mean Gaussian noise to emulate sensing uncertainty and avoid the unrealistic
assumption of perfect measurement.

Together, these parameters provide a multidimensional snapshot of the environment
from which the agent can make its decisions.

3.2.3. Action Space (A)

The action space A of our reinforcement learning model is directly defined by the
agent’s current node and the accessible links. It is structured as follows:

A(x) = {x′ | (x, x′) ∈ L}

where

• x represents the current node position of the agent.
• x′ denotes a potential next node to which the agent can move.
• L is the set of all the connections in the network, where each link is a tuple (x, x′) that

indicates a direct connection from node x to node x′.

This definition ensures that the action space is dynamically adjusted based on the
agent’s current position, reflecting the physical and network connectivity constraints.
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The agent selects from the set of possible next nodes to which it can move based on the
links available at its current node. This allows for a flexible yet precise mechanism to
navigate through the network, making decisions that are optimal with respect to both route
efficiency and data transmission needs.

3.2.4. Reward Function (R)

The reward function R of our reinforcement learning model is designed to align the
agent’s actions with the dual objectives of fast route navigation and complete data transfer.
The function is defined as follows:

R(s, a, s′) =

Rcomplete if d′ = 0 and x′ = xdest

α Rtravel(x, x′) + β Rdata(d, d′) − γ Rpunish(x, x′) otherwise

where

• Rcomplete is a large positive reward given when the agent reaches the destination xdest

with no remaining data to transfer (d′ = 0).
• Rtravel(x, x′) represents the fractional reward for traveling from node x to node x′,

designed to encourage faster routes. The amount of this reward inversely correlates
with the travel time or distance traveled.

• Rdata(d, d′) is the reward for data transferred during the transition from d to d′, struc-
tured to incentivize maximum data transfer throughout the journey.

• Rpunish(x, x′) encompasses penalties for inefficiencies, such as remaining stationary
(x = x′ and d = d′), revisiting previously visited nodes, or selecting slower routes.

The scalar weights α, β, γ were chosen in two steps. We first expressed the value of
a one-second travel delay and a 1 kbit data transfer in the same monetary units, which
yielded α = β = 1. The inefficiency term should discourage route loops but not overwhelm
the primary objectives, so we set γ = 0.2 after a coarse grid check γ ∈ {0.1, 0.2, 0.3} on the
validation logs. Because our return is a potential-based positive sum of atomic rewards,
any common scaling of α, β, γ leaves the optimal policy unchanged [83]. When α, β were
varied in {0.5, 1, 2} and γ in {0.1, 0.2, 0.3}, the mean episode return changed by less than
4%, showing that the policy is robust to reasonable re-weightings.

3.2.5. Transition Probability (P)

The transition probability quantifies the generally stochastic likelihood of transitioning
from one state to another given an action; its variability is driven by the sampled congestion
and bandwidth fields described above. It is defined mathematically as

P(St+1 = s′ | St = s, At = a)

where

• St denotes the current state at time t.
• At represents the action taken at time t from state St.
• St+1 is the state at time t + 1, resulting from taking action At in state St.

3.2.6. Policy (π)

The policy determines the agent’s actions based on the current state of the environment.
The policy is defined as a deterministic function that maps each state s from the state space
S to a specific action a in the action space A.
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In our model, the agent follows a deterministic policy π, defined by the follow-
ing mapping:

π : S → A

where

• s ∈ S denotes the current state of the agent within the environment.
• a = π(s) represents the action chosen by the policy.

The optimization of π is achieved through iterative updates based on the outcomes of
actions taken in various states. This iterative process refines the policy by learning from
past experiences, thus improving the decision-making process over time. The effectiveness
of the policy is measured by its ability to consistently achieve higher rewards and fulfill the
agent’s objectives within the defined constraints of the environment.

3.3. Experiment Setup

In the setup of our experiment, we adopted a structured approach to define the
environment for our agent’s operation, along with predetermined constants that framed the
experimental conditions. An important stipulation in our experimental design is that the
agent is required to transfer a specified quantity of data before reaching its destination. Data
transfer by the agent, denoted by D (in bits), is influenced by the bandwidth B available
on a road link (in bits per second) and the duration T the agent spends on that link (in
seconds). For a given road link i, the potential data transfer Di can initially be approximated
as follows:

Di = Bi · Ti (1)

Equation (1) assumes optimal conditions in which the agent uses the maximum
bandwidth rate of the road. However, this model requires refinement due to the presence
of other agents in the network, which share the road and its available bandwidth. Thus,
a more realistic approach to model the data transfer on road i incorporates the traffic density
or congestion γ, modifying the equation to

Di =

(
Bi

α · γi

)
· Ti (2)

This adjustment scales the data transfer rate of each link inversely with congestion,
reflecting the reduced bandwidth available to an agent as traffic density increases. To guar-
antee that congestion can only decrease effective bandwidth, we require αγi ≥ 1 for every
road link and choose α = 1 + σγ, where σγ is the standard deviation of the congestion val-
ues across the map. For our dataset, this gives α ≈ 1.5, which keeps the denominator safely
above one and normalizes congestion impact network-wide. Sweeping α over [1.2, 2.0]
altered the mean trip completion time by less than 3%, indicating that the learned policy is
robust to reasonable choices of α. Thus, the adjustment both normalizes traffic effects and
ensures that the effective bandwidth Bi/ doesn’t increase, fully consistent with the model’s
design premise.

To quantify road congestion, we used our preprocessed data, including the average
speed and time spent traveling between nodes, along with the distances between these
nodes, to find a normalized congestion factor for each road link i. This factor inversely
impacts the bandwidth available to each agent, with higher traffic densities leading to a
reduced bandwidth per user.

Bandwidth availability across the road network is modeled by introducing strategically
positioned base stations in the city. These base stations create zones of varying bandwidth
intensity, with roads within the inner radius of a station receiving maximum bandwidth.
The bandwidth allocation decreases for each subsequent radius away from a station until
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the outer radius is reached. In cases where a road falls within the coverage area of multiple
base stations, the bandwidth is determined by the strongest signal or highest value from
among the relevant stations, thus optimizing data transfer capabilities in areas with dense
coverage. An illustration of this can be seen in Figure 4.

With the bandwidth and traffic parameters carefully defined and quantified, our
experimental framework was equipped to assess the amount of data that an agent could
feasibly transfer while traversing each road link within the urban network. We noted that
the same MDP structure can be extended to additional objectives, such as electric vehicle
battery management, by appending an energy state variable and corresponding actions;
details are discussed in the Future Work Section.

This comprehensive setup provides a robust foundation for testing and validating
our reinforcement learning-based approach to autonomous vehicle path planning and
data transfer in complex urban environments. Moreover, the methodology is highly
generalizable and can be applied to other maps and datasets, provided that the relevant
type of data is available.

Figure 4. Bandwidth availability in the environment.

3.4. Simulation Setup

We employed tabular Q-learning [46] rather than a deep function approximator be-
cause, after a lossless discretization, the state space remained small enough for an exact
table. Node location is inherently discrete (|X| = 4327 nodes), the remaining data d are
bucketed into 20 equal-width bins (0–5 MB, . . . , 95–100 MB), and both bandwidth and traffic
density on outgoing links are mapped to four quartile-based levels. At the start of every
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episode, all link speeds and bandwidths are resampled from their empirical distributions,
so the agent faces a different traffic and wireless landscape each run.

This yields:
|S| = 4327 × 20 × 4 × 4 = 1.38 × 106

Distinct state tuples—an ∼8 MB Q-table when stored sparsely via a collision-resistant
hash map—are well within commodity GPU memory.

Given this tractable size, tabular Q-learning offers exact value estimates with guar-
anteed convergence in finite MDPs, thus maximizing reproducibility and algorithmic
transparency. Unvisited state–action pairs are initialized optimistically, and an ε-greedy
schedule decays linearly from 0.9 to 0.05 over the first 200,000 interaction steps, speeding
up convergence without resorting to deep neural networks.

Q-values are updated with the learning rate α = 0.10 and discount factor γ = 0.99.
Each episode terminates upon arrival at the destination or after 4000 simulation steps. ε in
the ε-greedy policy decays linearly from 0.90 to 0.05 over the first 2 × 105 steps. Optimistic
initial Q-values were set to +50 s to encourage exploration.

Figure 5 depicts the key parameters that influence the performance of our agent,
measured by trip completion time. These include the data transfer requirement, which
specifies the volume of data to be transferred prior to the agent reaching its destination;
the start and end points, which set the trip’s length; the map size, which reflects the extent
of the state space; and the reward function, which shapes the agent’s behavior in this
environment. To explore the impact of a specific parameter, we vary one parameter at a
time, keeping the others constant.

Figure 5. Simulation parameters.

4. Experiments and Results
In this section, we present the experiments conducted to evaluate the effectiveness of

our proposed reinforcement learning-based approach to path planning for autonomous
vehicles in urban environments. These experiments are crucial in demonstrating how our
model addresses the dual challenges of optimizing driving time and ensuring timely data
transfer. We aim to highlight the distinct advantages of our approach over conventional
path planning methods that do not account for the complex interplay between traffic and
bandwidth heterogeneity. To accomplish this, we conducted three experiments based on the
simulation parameters illustrated in Figure 5. First, we assessed our reinforcement learning
agent’s performance against general baselines with varying reward functions. For this
experiment, we investigated the performance of our agent with different start and end
points to determine how effectively our approach manages trips of varying lengths. Next,
we compared the performance of our trained agent when the data transfer requirement
parameter is varied. Finally, we examined the impact of different map sizes on our agent’s
performance to evaluate the scalability of our solution.



Appl. Sci. 2025, 15, 6099 13 of 20

4.1. Baseline Comparison

For our first set of experiments, we compared the proposed RL agent with two classical
planning baselines that are already implicit in our environment:

• Traffic-unaware (shortest path): When the traffic-delay term is removed from the
reward, every edge has a unit cost; the resulting policy is exactly the static shortest
hop route returned by Dijkstra’s algorithm, a standard distance-optimal algorithm.

• Bandwidth-unaware (fastest path): When the data-throughput term is omitted, the re-
ward reduces to negative travel time. The baseline therefore behaves like a time-
dependent fastest path algorithm that minimizes congestion-aware travel time while
ignoring any data-transfer objective.

Only the reward weights are altered to create these baselines; all other parameters
in Figure 5 remain unchanged. To demonstrate robustness across different journeys, we
evaluated each agent on short, medium, and long trips.

Figure 6 shows the learning curves for a representative short-trip scenario. The RL
agent converges slightly faster than both classical baselines and attains the lowest mean
trip completion time. The performance gap is modest, as expected for short routes with
few alternatives, but still demonstrates a consistent advantage over the shortest path and
fastest path baselines.

Figure 6. Baseline comparisons for a short trip.

Figure 6 compares the performance of our trained agent to the baseline agents during a
short trip. We observed that our trained agent learns the fastest because it converges slightly
faster than the baselines and that our agent also converges at a lower trip completion time,
slightly outperforming the compared baselines. In this experiment, the small differences in
performance between our trained agent and the baselines are primarily due to the short
duration of the trip and the limited variety of available route options the agent can take.

We repeated the evaluation for a medium-length trip, as shown in Figure 7. Here,
the advantage of the RL agent becomes more pronounced: it reaches its asymptotic per-
formance faster than both classical baselines and settles at a lower mean completion time.
This gap widens because longer journeys expose more opportunities for the RL policy
to trade off bandwidth and congestion, whereas the classical baselines optimize only a
single criterion.
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Figure 7. Baseline comparisons for a medium-length trip.

Finally, in the long-trip scenario shown in Figure 8, the RL agent widens its advantage
even further. It converges noticeably sooner than the fastest path baseline and completes the
journey in appreciably less time than the shortest path baseline. These observations confirm
that as trip length increases, the proposed multi-objective policy continues to outperform
the classical single-objective methods—both in learning speed and in steady-state efficiency.

Figure 8. Baseline comparisons for a long trip.

4.2. Data Requirement Comparison

In this experiment, we compared the performance of our trained agent when the data
transfer requirement parameter is varied. This parameter denotes the amount of data that
needs to be transferred before an agent reaches its destination.

We choose to run this experiment on a short trip length for several compelling reasons.
The short trip offers a more controlled environment with fewer confounding variables,
allowing us to isolate and measure the direct impact of the data requirement parameter
more accurately. Furthermore, these conditions simplify the decision-making process for
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the reinforcement learning agent and allow for faster iterations of tests, thus providing a
clearer analysis of how data requirements influence route selection.

We can observe from Figure 9 that a lower data transfer requirement leads to a faster
trip overall. This outcome aligns with our expectations, as the quicker the agent completes
its data transfer, the sooner it can focus on completing the trip as fast as possible.

Figure 9. Data transfer requirement comparison.

4.3. Map Size Comparison

In this experiment, we investigated how different map sizes affect the performance
of our trained agent. The map size parameter defines the state space of our environment,
which allows us to evaluate the scalability of our solution. We kept our focus on short trip
lengths, consistent with the approach used in our previous experiment. The rationale for
this choice remains the same as previously discussed, leveraging the benefits of a more
controlled environment and simplified decision-making process for our reinforcement
learning agent.

We analyzed two distinct maps, namely the original map and a smaller inner map.
The original map, as shown in Figure 3, was used consistently throughout our experiments.
The inner map is a centrally positioned, cropped version of the original, with half the length
and width of the original map. As a result, it covers only one-fourth of the total area of
the original map. Despite being cropped, it retains the same level of detail as the original,
focusing on a specific central area.

Figure 10 demonstrates that our trained agent achieves similar completion times on
both the inner and original maps, with the inner map showing faster convergence. This
difference in convergence speed is due to the inner map’s smaller area, which enables
more efficient exploration and strategy optimization. The original map initially exhibits
greater performance variability, as shown by its wider confidence interval, which narrows
as training progresses. Our approach’s key strength lies in its scalability, as it effectively
adapts to different environment sizes without significant performance loss. This experiment
emphasizes the advantage of using a reduced state space for quicker training and conver-
gence while also highlighting the successful application of learned strategies to larger, more
complex environments. These findings emphasize the robustness and scalability of our
solution across diverse scenarios.
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Figure 10. Map size comparison.

5. Conclusions
We have addressed the challenges of path planning for autonomous vehicles within

urban environments, prioritizing both timely data transfer and efficient travel. Our novel
reinforcement learning solution effectively navigates these complex challenges, demon-
strating significant advantages over baseline methods. To evaluate this approach, we
implemented a GraphML-based simulation environment that integrates real-world map
data and vehicle mobility patterns. This environment accurately represented the dynamic
and complex nature of urban traffic, providing a robust platform to test our reinforcement
learning strategies.

Our findings demonstrate that our reinforcement learning approach is not only viable
but also advantageous for path planning in environments characterized by heterogeneous
traffic and high data transfer demands. We have shown that our proposed solution is scal-
able and consistently outperforms standard baseline models across different trip lengths.

Despite these encouraging results, several limitations should be acknowledged. First,
all performance curves were generated from a single random seed; although this seed
is representative, reinforcement learning outcomes can vary significantly with initializa-
tion. To address this, future work will average results over multiple seeds, reporting
mean performance metrics with corresponding 95% confidence intervals to ensure full
statistical robustness.

Another limitation is the static nature of traffic and bandwidth conditions within
individual simulation episodes and the evaluation involving only a single vehicle. To en-
hance realism and adaptability, future studies will incorporate online perturbations, such
as sudden congestion spikes, temporary bandwidth blackouts, and forced rerouting scenar-
ios. Additionally, expanding the simulation environment to include multiple autonomous
vehicles interacting on the same road network and sharing wireless spectra will allow for
an investigation into cooperative routing and resource allocation strategies.

To further improve our model, replacing the current tabular critic with a graph-aware
deep Q-network or an actor–critic architecture is a logical next step. This modification
would facilitate end-to-end learning directly from continuous traffic and bandwidth fea-
tures while preserving the scalability demonstrated in this work. Furthermore, broadening
the baseline comparisons by benchmarking against advanced deterministic algorithms
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such as time-dependent A* and multi-objective label-setting algorithms would provide
richer context for evaluating our reinforcement learning approach.

Additionally, transitioning from a fixed-weight scalarization approach to explicit
multi-objective reinforcement learning techniques, such as Pareto-front approximation or
constrained-policy optimization, would allow fleet operators to visualize and select from
the complete trade-off curve between travel time and data throughput rather than relying
on a single pre-tuned weight vector.

Finally, an exciting extension of our framework involves incorporating electric vehicle
(EV) energy management. By augmenting the state space with a battery-level variable
and integrating "visit-charging-station" actions at nodes equipped with charging stations,
future agents could learn policies that optimize travel time, data transfer, and energy
replenishment simultaneously. This enhancement would highlight the generalizability
of our reinforcement learning framework to broader smart mobility challenges and align
closely with contemporary EV routing research trends. Given the additive nature of
our reward function, incorporating battery management penalties and charging station
costs would require only minor modifications, enabling seamless integration into the
existing framework.

The versatility and adaptability of our simulation environment thus extend beyond the
scope of our initial evaluations, offering extensive potential for further research into varying
vehicle autonomy levels, emerging communication technologies, multi-agent scenarios,
and the integration of real-time data from smart city infrastructure. Such explorations are
vital for addressing evolving urban mobility challenges and the increasing data demands
of connected vehicles.
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