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Abstract: Continuous monitoring is key to the safety of such critical infrastructure as
Tailings storage facilities. Due to the high risk of liquification of the dams, it is crucial
to move the water as far as possible from the dam crest. In order to control the distance
from the water to the dam, regular manual inspections need to be carried out. In this
article, we propose a method for automatic detection of the water-beach line based on
photographs from an unmanned aerial vehicle (UAV). An algorithm based on MobileNet
v2 convolutional neural network architecture was developed for the classification of images
collected by the UAV. Based on the results of this classification, the border between the
water and the beach is defined. Several approaches to the model training were tested.
Accuracy for the validation set reaches up to 97% for particular image fragments.

Keywords: UAV; image analysis; TSF monitoring; neural networks

1. Introduction

Tailings storage facilities (TSFs) are critical in the mining industry, as they safely
contain the byproducts of mineral processing, which often include toxic or environmentally
hazardous materials. Proper monitoring of TSFs is essential to prevent structural failures,
environmental contamination, and potential risks to surrounding communities, ensuring
the long-term sustainability and safety of mining operations [1]. In recent years, several
research papers introducing the internet of things (IoT), machine learning, and artificial
intelligence approaches to the problem of TSF monitoring have been published [2-7]. One
of the key issues in the management and supervision system of the tailings storage facility is
the process of beach formation. The technology for discharging flotation waste involves the
transport of coarse-grained material (primarily from specific mining regions) mixed with
water through pipelines located on the crest of the dam. As a result of this process, so-called
beaches are formed, with a slight slope towards the reservoir and varying widths. The
material discharged locally (at specific points) near the dam crest undergoes segregation.
Coarser material settles closer to the dams, while finer material is found nearer the decant
pond. The coarse material is used in the process of raising the dams. In practice, an
operational manual dictates the beach formation procedures to ensure the safety of the
tailings facility. The most important procedures include

e Maintaining a minimum beach width of 200 m adjacent to the dams with a slope
towards the reservoir;

e Ensuring a 0.5 m elevation difference between the dam crest and the beach surface, as
well as its uniform growth;
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e  Limiting the formation of one dam section to no longer than three weeks;
e  Controlling the sequence of beach formation for every other section of the TSE.

Currently, information about the beach and dam crest is obtained through site in-
spections conducted by personnel during periodic inspection drives. This procedure is
time-consuming and requires personnel to drive along the crest and walk around certain
parts of the beach. Some markers are also used to monitor whether the beach line exceeds
the allowable distance from the dam crest. Consequently, there is a growing demand for
quick and automated access to up-to-date, accurate, and continuous digital information on
the beach line, accompanied by analytical tools supporting the beach formation process,
equipped with predictive functions.

An analysis of the market and the literature did not reveal any ready-made or similar
solutions that could meet the current challenges faced by operators responsible for such a
large-scale facility. Although it is possible to find examples of shoreline detection based
on various types of data and methods. In [8,9], a broad review of methods for defining
and determining the shoreline was presented. The authors indicate various types of
shoreline definitions and indicators, as well as types of data that can be used for detection,
including historical photographs and maps, aerial photogrammetry and ground-based
GPS measurements, terrain models with LIDAR, radar imaging (SAR), and video systems.
For shoreline detection, it is possible to use multi-spectral data, as proposed by the authors
of [10], where they used the Direct Difference Water Index (DDWI) and data from the LIDAR
system. In turn, in [11], a method for shoreline detection using histogram equalization and
adaptive thresholding techniques based on data from the Indian Remote Sensing Satellite
was proposed. In [12], SAR data and neural network method were used to distinguish land
and sea. Another example is [13], where the authors used video data to detect the coastline
and compared four methods: Shore Line Intensity Maximum, Pixel Intensity Clustering,
Artificial Neural Network, and Color Channel Divergence. Images from drones have the
potential to obtain much more accurate results than, for instance, satellite data. In turn, the
use of neural network algorithms seems to be the right direction due to their confirmed
high effectiveness in the context of image analysis and classification. Automation of the
beach line detection procedure allows for the possibility of obtaining results faster, reduces
labor intensity by eliminating the need for manual image processing, and may allow for a
more accurate result resistant to human error.

A review of the current state of knowledge demonstrated the broad range of poten-
tials for the application of unmanned aerial vehicles (UAVs) and data processing in the
mining industry. This technology is becoming increasingly common and mature in both
developed and developing countries. UAVs are used in open-pit, underground, and closed
mines [14-18]. They are particularly useful in small mines, where expensive surveying
equipment or professional expertise is often lacking [19]. It is worth noting that with the
advent of UAVs, various sensors have become more miniaturized and intelligent. UAVs
offer numerous advantages, including low cost, flexibility, and high precision. However, the
main limitations of UAVs are battery life, harsh working environments (especially in under-
ground mining), weather and lighting conditions, and local regulations and laws [20-23].

One of the applications of UAVs in the mining industry is topographic control. In [24],
the authors compared conventional technologies with photogrammetry in a small open-pit
mine in southern Brazil. The results showed that the level of detail achieved by UAV
photogrammetry methods is more accurate, denser in information, and faster compared
to traditional techniques, such as GPS point measurements or laser scanning. Given that
the active mining area is characterized by constant material movement, numerous surface
irregularities, and scattered material, the authors deemed the recorded height differences
acceptable within the range of variability. The assessment of stability and deformation
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behavior of high rock slopes was the subject of research in [25]. The study used a remote
sensing approach to characterize rock slopes at different scales and distances, critical for
detecting failure mechanisms. The research demonstrated that UAV datasets are effective
in performing structural and geomorphological characterization of large-scale areas. The
methodology for creating a 3D model of an open-pit mine based on UAV imagery was
described in [26]. The article explains how digital images and photogrammetry techniques
can be used to develop accurate 3D geometric models. It highlights the potential use of
information contained in the 3D model within a GIS environment, including process moni-
toring, obtaining geometric information about embankments, slopes, road infrastructure,
and planning logistical and operational processes. A similar application of low-cost digital
photogrammetry for monitoring and documenting terrain surfaces affected by mining ac-
tivities was described in [19]. The study assessed the accuracy of the digital elevation model
(DEM) obtained from UAV photogrammetry in a Slovak open-pit mine case study. The
DEM accuracy was deemed acceptable by national regulatory standards. In [27], a rapid
and low-cost method for monitoring, the geomorphological changes occurring over years
in open-pit mines were presented. The authors proposed using the structure-from-motion
photogrammetric technique to build high-resolution digital elevation models (DEMs). The
developed procedure allows for the quantitative estimation of area changes (volumetric
changes and extracted tonnage) and the assessment of terrace alterations and the surface
extent of the open-pit mine. The authors highlighted the method’s potential for evaluating
slope stability and identifying hazards such as landslides. Other examples of using drones
for DEM construction can be found in the works of Nguyen et al. [28-30].

In [31], the use of Unmanned Aerial Systems (UAS) to bridge the gap between spectral
data from satellites or aircraft and ground data is described. UAS can rapidly obtain high-
resolution hyperspectral images, but complex geometric and radiometric corrections are
required, which are particularly important in geological applications such as raw material
detection. The authors presented a new toolbox for processing drone-borne hyperspectral
data, including automatic co-registration, mosaicking, georeferencing, and topographic and
illumination correction. For the first time, the usefulness of such data for geological studies
was demonstrated. The authors of [32] discuss the application of UAVs and machine
learning algorithms for topographic modeling and the classification of a detailed geological
model, using a case study of a phosphate mine in Brazil. An automated classification
model between lithological groups was developed. The authors of [33] present the first
application of UAVs in geological research on carbonates in inaccessible and hazardous
outcrops. The authors proposed a method used to document the spatial distribution
and dimensions of diagenetic dolomite geobodies in a Carboniferous limestone host rock.
They emphasized the need for further work on drone remote control, increasing payload
capacity, and improving software flexibility. An example of using drones for lithological and
structural geological mapping in mining areas was described in [34]. The authors clearly
highlight the significant improvements in geological operations through UAV applications,
which enhance reliability, safety, and efficiency. The acquired imagery was processed
using spectroscopic algorithms and machine learning to generate meaningful 2.5D surface
maps. Ground-based techniques and UAVs were used to obtain photogrammetry and
hyperspectral VNIR, SWIR, and LWIR images. The developed method allowed for much
more efficient ground surveys and the creation of an optimal sampling strategy for further
structural, geochemical, and petrological studies. Although drones are commonly used
in photogrammetry, their use in geological studies faces challenges related to geometric
and radiometric correction. The authors in [35] demonstrated that precise corrections
are essential for geological mapping and presented a tool for processing drone-borne
hyperspectral data, including geometric and topographic corrections. This was the first time
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the effectiveness of such data in lithological mapping and mineral exploration was proven.
As mentioned in [36,37], point clouds collected by drones can be used to gather, process,
analyze, and interpret geological and geotechnical data. These can be applied to rock
outcrop analysis and discontinuum modeling. Point clouds obtained from rock outcrops
provide insights into fracture orientation, roughness, persistence, and spacing. Furthermore,
rock mass quality indicators (e.g., Rock Quality Designation—RQD, or Geological Strength
Index—GSI) can be determined. The authors of [38] presented the use of drones for
the geotechnical characterization of rock masses in underground mines, where access to
unsupported workings is hazardous for personnel. Photogrammetric and thermal imaging
(FLIR) techniques were used for structural rock analysis and the identification of loose
fragments that may pose a hazard. The research was conducted at the Barrick Golden
Sunlight Mine, where UAV flights generated 3D models and collected geological data. The
results confirm that using available technologies can be an effective geotechnical tool in
underground environments.

UAVs have wide applications in search, planning, and rescue operations, which can
also be successfully utilized in mining [39,40]. In [41], the authors present a solution for
detecting coal fires, monitoring their progress, and identifying potential environmental
hazards and risks to local communities. The case study focuses on the Jharia coalfield in
India, where fires have been present since mining began in the mid-19th century, both
on the surface and underground. In their research, the authors used NOAA/AVHRR
and MODIS satellite data (Moderate Resolution Imaging Spectroradiometer) and three
models for fire detection in satellite image pixels, namely the thresholding model, the
contextual model, and the fuel mask model. A similar use of UAVs for detecting under-
ground coal fires is discussed in [42]. In this case, UAVs were equipped with gas sensors
and a method was developed to evaluate the rank of a burning coal seam based on gas
coefficients. The obtained characteristics allow for calculating the combustion temperature,
burn rate, and theoretical oxygen demand. This, in turn, helps estimate the rate of fire
progression, the energy content of the burning coal, and better planning of firefighting and
evacuation operations.

Another popular area of application for image processing and drones is the assessment
of rock fragmentation after blasting. Ensuring an appropriate degree of rock fragmentation
post-blasting directly influences the efficiency of subsequent mining and processing op-
erations. The authors of [43] conducted laboratory-scale studies aimed at evaluating the
benefits of using UAVs in this area. The results were compared to conventional methods
involving manual data recording by personnel. The use of UAVs allows for significantly
improved temporal and spatial resolution of data due to enhanced camera quality, better
camera perspective relative to the muck pile, and the automation of data acquisition and
processing. In their subsequent work [44], the authors explained several factors affecting
the quality and informativeness of the collected data. In another article [45], the authors
presented a method for identifying factors contributing to stability problems and extraction
challenges in headings with complex geometry in a gold underground mine utilizing
sublevel stoping. Since access to the heading was impossible, the use of UAVs provided an
opportunity for scanning. The studies demonstrated that UAVs can be employed to make
critical decisions regarding operational continuity in any excavation and to calculate pillars
and support elements.

UAVs have also found practical applications during procedures related to mine closure
and subsequent reclamation efforts. For instance, in [46], a UAV solution was described for
monitoring water quality in pit lakes during closure, a requirement frequently mandated
by regulatory authorities for mining companies. Traditionally, water samples are manually
collected by personnel from boats; however, many sites are inaccessible due to prior
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damage or pose significant health and safety risks. The authors proposed a solution
wherein optimal locations and depths for sampling are determined based on conductivity-
temperature-depth (CTD) measurements, along with the minimum number of samples
and the physical condition of the pit lake. The proposed UAV solution is equipped with a
2 L water sampling device capable of reaching depths of up to 120 m. Another example of
UAV imagery application for supporting reclamation documentation involves the creation
of detailed land cover maps, as described in [47]. A limestone quarry was chosen as a case
study, where a visual inspection was conducted to assess the development of vegetation,
soil cover, and geomorphological features of the area. According to the authors, the
inspection of a 10-hectare area took 2 h, while the total time required for data processing
was 2 working days. This timeframe is significantly shorter than that of standard methods.
Moreover, UAV images provide a much greater level of detail. In [48], drones were utilized
to monitor areas affected by acid mine drainage (AMD), exemplified by the reclamation
of the Sokolov waste dump in the Czech Republic, where significant amounts of AMD
minerals are observed. Mining waste was analyzed for pH, X-ray fluorescence (XRF), and
reflectance spectroscopy. The studies demonstrated that UAVs offer a fast, non-invasive,
and cost-effective method for monitoring post-mining landscapes.

In this article, we focus on an application of unmanned aerial vehicles for the purposes
of better TSF monitoring. The article describes the data acquisition process and introduces
a neural network-based method for the analysis of obtained images.

2. Materials and Methods
Data Collection and Preparation

The data for this paper was collected using an operating TSF in Poland using a D]I
Matrix 300 RTK unmanned aerial vehicle. DJI Zenmuse P1 fullframe 45 MP digital camera
combined with a 35 mm lens was used for data acquisition (see Figure 1).

Figure 1. DJI Matrix 300 RTK unmanned aerial vehicle.

The process of converting drone images into a metrically accurate orthophoto map
involves several key steps. First, aerotriangulation is performed, which involves detecting
thousands of common points between the images and calculating the geometric relation-
ships between them. This is followed by generating a dense point cloud, which forms
the basis for creating a digital terrain model (DTM). The orthomosaic is then produced by
projecting the original images onto the terrain model, ensuring that the final map is geo-
metrically correct. Common software used for this workflow includes Agisoft Metashape
2.1.4. and Bentley ContextCapture 2023.
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During a single drone flight, data were collected to automatically delineate the beach
line. The DJI P1 camera captured images covering a terrain width of 170 m. The flight
lasted 20 min at an altitude of 120 m, with each image having a ground sample distance
(GSD) of 1.5 cm. A total of 528 images were taken, amounting to 4.5 GB of data. The
resulting orthophoto map had a pixel resolution of 10 cm. Weather conditions were
challenging, with prolonged rainfall prior to the flight and heavy cloud cover at low
altitude, reducing visibility.

Examples of the final images composed of the raw ones are presented in Figure 2.
For the purposes of this article, seven such fragments were used. The process of data
preparation and beach line detection included several steps, presented in Figure 3. First,
the line was detected manually by an expert. Then, the image was cropped into square
fragments with a 100 x 100 resolution. The fragments were manually separated into two
classes: the beach and the water. Figure 4 shows example image fragments with assigned
labels. The final learning sample included 2769 examples of the beach and 2772 fragments
with the water. The data were split into training and validation samples in a 70/30 ratio.
Based on these data, a binary image classifier was trained, which allows us to assign either
a “beach” or a “water” label to each fragment of the image, based on which the beach line
can be defined as.

o e
S

Figure 2. Examples of images collected for automatic beach line recognition.
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Figure 3. Data preparation process (dividing the image into square fragments and assigning them

beach and water labels) and general decision scheme for automatic beach line detection using a
neural network through classification.

train validation test

Figure 4. Examples of image fragments classified as water and beach, divided into training, validation,
and test samples.

Convolutional Neural Network (CNN) architecture was selected to perform this task.
CNN:s are a class of deep learning models primarily designed for processing grid-like data,
such as images. A typical CNN consists of multiple layers, including convolutional layers,
pooling layers, and fully connected layers, which work together to extract and classify
features from input data. The core of a CNN is the convolutional layer, where small filters or
kernels slide over the input image, performing element-wise multiplication to detect local
patterns, such as edges or textures. This is followed by pooling layers, often max pooling,
which reduce the spatial dimensions of the data while retaining important information,
thus improving computational efficiency and reducing the risk of overfitting. Finally, fully
connected layers are used for classification tasks, where the learned features are mapped
to output labels. CNNs have been highly successful in various tasks, including image
classification, object detection, and segmentation, due to their ability to automatically learn
hierarchical features from raw data [49,50].

For the purpose of this article, a MobileNetV2 pre-trained convolutional model was
selected. Compared to heavier models like ResNet or Inception, MobileNetV2 offers a
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much smaller model size and faster inference times without a substantial trade-off in
performance. For simple image classification tasks, where the dataset may not require the
complexity of deeper networks, MobileNetV2 provides a good compromise by being both
accurate and computationally efficient. This makes it an excellent choice for applications
requiring real-time processing or deployment on devices with limited memory and power
constraints [51]. The model training algorithm was implemented in Python 3 using the
TensorFlow library. The model training architecture is presented in Table 1. The Adam
technique was used as the optimizer with a learning rate of 0.0001 and the loss function
was cross-entropy.

Table 1. Model architecture.

Layer Type Output Shape Number of Parameters
Input layer (100, 100, 3) 0
Sequential (100, 100, 3) 0
True Divide (100, 100, 3) 0
Subtract (100, 100, 3) 0
Functional—MobileNetV2 (4, 4,1280) 2,257,984
Global Average Pooling 2D (1280) 0
Dropout (1280) 0
Dense (1) 1281
3. Results

In order to perform the binary classification of the collected images, an additional
decision dense layer consisting of two neurons was added. For the purposes of this article,
two approaches were tested. In the first approach, the 10 last layers of the base model
were unfrozen for model finetuning. In the second approach, the whole base model was
frozen first, with only the decision layer available for training. After the initial training
for 100 epochs, the 10 last layers of the base model were unfrozen for retraining. For both
approaches, an early stopping callback with patience of 15 epochs was implemented, with
validation loss as a target for improvement.

The results for the first approach are shown in Figure 5. In this case, evidence of
significant model overtraining is observed. The training accuracy reaches a very high value
close to 100% in the early epochs of the training. At the same time, the validation accuracy
shows much poorer values, reaching only 80%. In this case, the early stoppage callback has
been activated after the 26 epochs, as no validation loss improvements were observed after
epoch 10.

The results of model training for the second approach are shown in Figure 6. In the
initial phase of training, no signs of model overtraining are observed. In this case, both
training and validation accuracy increase gradually throughout the whole training and
the early stoppage callback has not been activated. The values of training and validation
accuracies are much closer, with both exceeding a promising 95%. After revealing the last
ten layers of the base model, an additional 1-2% accuracy is gained for both the training
and the validation samples. Due to better accuracy, the model trained within the second
approach was selected for further validation on a test image.
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Figure 5. Training and validation loss and accuracy for the case of the base model with the 10 last

layers being unfrozen.
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Figure 6. Training and validation loss and accuracy for the case of frozen based model training,

followed by finetuning of the last 10 layers of the base model.

The results of applying the model to a test image are shown in Figures 7 and 8. Figure 7

shows nine sample fragments classified as either water or beach. Figure 8 shows the entire

test image, where the fragments, identified as beach, are marked with yellow color, while

the fragments corresponding to water are marked with blue. The accuracy value for the

test image is 96%. The model deals with the identification of water almost perfectly, while

for the beach, some false water detections are observed. These individual errors may be

caused by, for example, a change in environmental illumination or texture alignment. The
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majority of them occur as single fragments, thus morphological transformation may be

useful to eliminate such artifacts.

beach water water

water water water

beach water

Figure 7. Examples of fragments of the test sample with the classification result.

Figure 8. Application of the developed algorithm to a test image.

Table 2 shows the confusion matrix of the classification result of fragments from the
training sample. The result omits fragments located at the edge of the image.

Table 2. Confusion matrix obtained for the test sample.

beach

beach 348
water 39
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4. Discussion

The results obtained from the two approaches to training the MobileNetV2 model
highlight important insights into the effectiveness of transfer learning and model fine-
tuning in simple image classification tasks, such as beach line detection. The first approach,
which involved unfreezing the last 10 layers of the base model from the start, demonstrated
significant overfitting. Although the training accuracy rapidly approached 100%, the vali-
dation accuracy plateaued at 80%, suggesting that the model was unable to generalize well
to unseen data. This phenomenon is common when the model becomes too tailored to the
training dataset, leading to poor performance on new examples. These findings are consis-
tent with previous research, which has shown that excessive fine-tuning without proper
regularization can result in overfitting, particularly when the dataset is relatively small.

The second approach, where the base model was initially frozen and only the final
decision layer was trained, provided better generalization. Both training and validation
accuracies were much more aligned, exceeding 95%, and no overfitting was observed
during the initial training phase. After fine-tuning the last 10 layers, the model achieved a
slight improvement of 1-2% in accuracy. These results suggest that freezing the base model
initially and gradually introducing more complex layers for fine-tuning allow the model
to learn the domain-specific features more effectively while retaining the general features
learned from the pre-training on larger datasets. This strategy is particularly useful when
working with limited or unbalanced data, which is typical in environmental monitoring
tasks (e.g., beach line detection) where obtaining labeled data can be challenging.

Despite this, the model performed well, indicating the robustness of MobileNetV2 in
handling real-world environmental variabilities. However, it is worth noting that further
improvements could be made by incorporating techniques such as data augmentation,
which could help mitigate the effects of image noise and improve model performance in
less ideal conditions [52].

Future research could explore the use of more advanced models, such as EfficientNet,
which combines both lightweight architecture and state-of-the-art accuracy, or hybrid ap-
proaches that integrate domain-specific knowledge into the learning process. Additionally,
further validation of the model on larger and more diverse datasets, especially in poor
weather conditions, would be beneficial to assess its scalability and robustness in different
environmental contexts.

5. Conclusions

In this article, an artificial neural network was applied to the images of a tailings
storage facility, collected by an unmanned aerial vehicle. The study demonstrates that
MobileNetV2 is an effective and computationally efficient model for image classification
tasks, such as automatic beach line detection. The findings suggest that a two-phase training
approach, where the base model is initially frozen, provides better generalization, and
reduces the risk of overfitting compared to models that are fine-tuned from the start. Despite
the challenging data collection conditions, the model achieved high accuracy, underscoring
its robustness. Future work should focus on extending the model’s applicability to larger
datasets collected in various weather conditions and exploring more advanced architectures
to further enhance performance.

The use of UAVs for monitoring the tailings storage facility eliminates time-consuming
field inspections. In turn, such a developed model classifying beach and water areas,
and thus enabling the determination of the beach line, allows for the automation of this
procedure and the exclusion of the need for manual image processing. This means that
the result can be obtained faster and UAV flights can be performed at any frequency.
Consequently, it is possible to monitor and provide alerts about undesirable situations
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more frequently and accurately. Additionally, repeating the measurement allows for
tracking changes in the beach line over time by comparing the detection results.
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