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Abstract: High Dynamic Range (HDR) image reconstruction has gained prominence in a
wide range of fields; not only is it implemented in computer vision, but industries such
as entertainment and medicine also benefit considerably from this technology due to its
ability to capture and reproduce scenes with a greater variety of luminosities, extending
conventional levels of perception. This article presents a review of the state of the art of
HDR reconstruction methods based on deep learning, ranging from classical approaches
that are still expressive and relevant to more recent proposals involving the advent of
new architectures. The fundamental role of high-quality datasets and specific metrics in
evaluating the performance of HDR algorithms is also discussed, as well as emphasizing
the challenges inherent in capturing multiple exposures and dealing with artifacts. Fi-
nally, emerging trends and promising directions for overcoming current limitations and
expanding the potential of HDR reconstruction in real-world scenarios are highlighted.

Keywords: high dynamic range; transformers; generative adversarial networks; diffusion
models; image quality; performance metrics; reconstruction algorithms

1. Introduction
Recent advances in computer vision models, significantly driven by Generative Adver-

sarial Networks (GANs), Transformers, and Diffusion Models (DMs), have contributed to
the field of high dynamic range (HDR) image reconstruction, which is an essential technol-
ogy to improve the quality of digital content visualization [1–3]. The rapid evolution of the
architectures in this field prompted this research, which seeks to perform a new synthesis.

Regarding high visual quality images, the human visual system easily perceives
variations in brightness and contrast in a scene. Low Dynamic Range (LDR) cameras,
typically operating with 8-bit resolution, are unable to capture the wide spectrum of
luminosity present in various situations, resulting in loss of detail in high-contrast areas.
HDR images, on the other hand, often use floating-point representations of up to 32 bits,
allowing them to cover more extensive light values [4]. Thus, HDR images are considered a
more faithful representation of a scene, approximating the functioning of the human visual
system compared to traditional LDR images.

The advent of new generative models and attention mechanisms offers new capabilities
to bridge the gap between LDR and HDR with unprecedented quality and efficiency.
However, traditional models still remain relevant and will be addressed alongside the new
state-of-the-art models.
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More than enhancing the entertainment experience, the applications of HDR images
extend to several areas of recognized importance. In the medical field, for example, the
visual precision offered by HDR images is essential for more accurate diagnoses and
more effective treatments. In radiology, such images can reveal subtle details that would
go unnoticed in LDR images, allowing doctors to identify diseases in earlier stages [5].
Similarly, in education, HDR images can improve understanding and learning by providing
more realistic and detailed representations of concepts. This aspect proves especially
useful in fields like science and engineering, where the visualization of complex data
is essential [6]. Also, in the field of visual communication, HDR images are ideal for
advertising and graphic design, as they allow information to be conveyed more effectively
and attractively.

Despite these numerous benefits, capturing native HDR images, i.e., without the
need for software processing, requires specialized hardware, which makes high-quality
HDR poorly accessible, as such sensors tend to be expensive and require more complex
handling due to their size and weight [7]. As a result, the scientific community has in-
vestigated methods to reconstruct HDR images from a single or multiple LDR images. In
this perspective, reconstruction refers to the process of creating an HDR version using
the information contained in the reference with one or multiple LDR images [8]. These
strategies are called single-frame and multi-frame reconstruction, respectively. The first
consists of using only one LDR image to generate its HDR counterpart, while multi-frame
reconstruction uses more than one image to extract color and luminosity information over a
short time interval [9,10]. It is worth noting that the inherent challenges in these reconstruc-
tion approaches are being addressed with increasing sophistication by new deep learning
paradigms. For example, single-frame reconstruction is an ill-posed problem that requires
“hallucinating” lost information, which is a suitable task for generative models like GANs
and DMs [8,10,11]. Multi-frame reconstruction, although benefiting from more information,
faces critical obstacles such as motion-related artifacts (blur, ghosting, misalignment) due to
the movement of objects or the camera between exposures and photometric artifacts (noise,
saturation, texture loss) arising from sensor limitations and exposure differences [12–14].
These specific challenges directly motivate the development and comparison of the dif-
ferent deep learning strategies addressed in this research—from Convolutional Neural
Networks (CNNs), optical flow, or deformable convolutions for explicit alignment [15,16]
to Transformers using attention for implicit alignment and modeling long-range depen-
dencies [17,18] and DMs offering robust generative capabilities for artifact reduction [19].
Additionally, model-induced artifacts, such as checkerboarding patterns or edge halos, also
require careful architectural design and loss function selection [20,21].

Early deep learning approaches relied heavily on CNNs, using autoencoder structures [8],
feedback mechanisms [22], or multi-exposure generation pipelines [23] for single-frame
tasks. Multi-frame CNN methods often incorporated optical flow [15] or attention
blocks [13] to handle alignment. In parallel, GANs demonstrated solid results, offering
enhanced photorealism through adversarial training to simulate nuances of contrast and
light intensity [24–26]. More recently, Vision Transformers (ViTs) introduced powerful
self-attention mechanisms, allowing models to focus on relevant image regions and capture
global context, proving effective for implicit alignment and feature fusion in the HDR, and
offering an alternative to explicit alignment methods [2,17,27].

Following this same line of evolution, DMs emerged as the state of the art in generative
models [3], overcoming the limitations of other methods such as stability issues in GANs [25].
Their strength lies in the precise modeling of complex distributions and the iterative refinement
of the output, making them highly effective in generating coherent and high-quality images,
with potential for reducing artifacts in tasks like HDR reconstruction [19,28].
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In the field of HDR video generation, although it is one of the most promising applica-
tions, there is relatively less dedicated research due to, among other factors, the inherent
challenges of temporal inconsistencies and artifacts arising from the fusion of consecutive
frames with alternating exposures [29]. Even so, there are methods that achieve results
comparable to those of static image reconstruction, including approaches that employ
frame alignment via optical flow [30–32] and attention blocks [33,34].

For the proper development of these models, robust and high-quality datasets are a
resource of great importance, making them fundamental for advancing research in HDR
image reconstruction. Such datasets provide a solid basis for training and evaluating
algorithms, allowing new techniques to be consistently compared and improved [9]. Other
important characteristics that will be analyzed in this review include the type of capture
(real or synthetic), resolution, number of images, and specific applications, which bring
valuable contributions to the development of reconstruction methods for both single-frame
and multi-frame images, as well as covering different scenarios, including mobile devices
and videos.

Finally, evaluating the quality of HDR images requires the use of specific metrics that take
into account the unique characteristics of this type of image. Traditional LDR metrics are not
directly applicable to HDR due to differences in dynamic range and visual perception. For this
reason, specialized metrics have been created, such as HDR-VDP2 [35] and HDR-VDP3 [36],
which allow for a more rigorous analysis. Additionally, LDR metrics can be used to evaluate
an HDR image, provided that linearization methods, like PU21 [37] or tone mapping, are used,
adapting the image to these metrics. A crucial aspect, often underdiscussed and which this
review aims to address, is how well these metrics correlate with subjective human judgments
of image quality, as they are based on qualitative analyses with individuals.

In previous research, such as that of [29], a comprehensive review of HDR reconstruc-
tion was presented, with its scope limited to a taxonomy of classical techniques based on
CNNs and GANs. Furthermore, we also acknowledge the contribution of the paper by [38],
which offered an extensive review of HDR Image Quality Assessment (IQA), focusing on
subjective and objective quality assessment metrics. Building upon this research, this paper
advances this landscape by incorporating emerging architectures, particularly Transformers
and Diffusion Models, and by examining how they address key challenges such as explicit
versus implicit alignment and artifact reduction. We comparatively discuss recent methods,
such as PASTA, DCDR-UNet, DiffHDR, and IREANet, detailing the specific strategies each
employs to address issues of saturation, noise, and motion in dynamic scenes. Thus, our
review complements the existing literature by compiling and analyzing both specific HDR
metrics (e.g., HDR-VDP-3) and robust adaptations of LDR metrics (PU21-SSIM, PQ-FSIM,
among others), discussing their relevance for the validation of reconstruction algorithms.

In summary, this review seeks to provide a distinct analysis of the HDR reconstruction
field by synthesizing the rapid advances driven by emerging architectures (ViT, DMs)
and established ones (CNN, GAN) and their effectiveness in addressing specific HDR
challenges, such as alignment, artifacts, and dynamic range expansion. Additionally, the
review examines evaluation methodologies, including the perceptual relevance of metrics
and datasets. Finally, it highlights emerging trends such as the use of multi-modal inputs,
the pursuit of efficient architectures—including the potential of State Space Models (SSMs)
like Mamba—and the prospective integration with large vision models.

2. Main Concepts
2.1. Single-Frame Reconstruction

The technique of reconstructing HDR images from a single image, or single frame, aims
to recover information lost in areas of high and low exposure, using a low dynamic range
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image as input and generating a high dynamic range image as output. The scope of this
technique can vary [8,39,40], resulting in a 16-bit depth image [41,42] or tone mapping [23,43].

The challenges of this technique mainly involve the generation of artifacts, i.e., notice-
able visual errors [14]. To overcome these problems, a common strategy is to use image
restoration networks with blocks that create attention maps capable of identifying over-
exposed and underexposed regions and mitigating their influence on the result. In this
scenario, the most widespread approach is the use of architectures based on convolution
blocks [44,45], although there are recent proposals that apply other strategies [46], as well
as the use of specific sensors [47].

2.2. Multi-Frame Reconstruction

Reconstructing an HDR image from multiple frames involves capturing several images
of the same scene, which are then combined to produce an image with a wider dynamic
range than would be possible with a single frame. This approach allows additional lumi-
nance information to be collected from different exposures, which is essential for dealing
with scenes with high contrast between light and dark areas.

On the other hand, this technique faces major challenges, such as the alignment of
objects in relation to the reference image, noise in low-exposure images, and overexposure in
high-exposure images. In order to overcome these problems, some authors have proposed
specific networks for frame alignment tasks and image restoration networks that deal
with natural degradations. These networks can be based on CNNs [14,48], GANs [10,10],
Transformers [17,49,50], or diffusion architectures [3,28,51].

Multi-frame methods can also be classified into different subcategories. The following
subsections deal with some of the main ones: burst, bracketing, and multi-exposure.

2.2.1. Burst

Burst mode, or continuous mode, involves capturing a rapid sequence of successive
images. This technique is particularly useful in low-light conditions, when building high
dynamic range images, and when capturing fast-moving scenes.

In the context of HDR reconstruction using deep learning techniques, burst mode can
significantly improve image quality by reducing noise and increasing dynamic range. This
is achieved by capturing multiple frames with constant exposures and using advanced
alignment and noise reduction algorithms [52–54].

2.2.2. Bracketing

The bracketing technique can be evaluated in different ways when it comes to multi-
frame or single-frame techniques. The method proposed by Debevec and Malik [55] uses
a set of LDR images captured with multiple exposures to recover an HDR image. In the
case of single-frame images, ref. [23] proposes an indirect approach to this multi-frame
technique, in which, from a single LDR image, a set of LDR images with different exposures
is synthetically generated.

2.2.3. Multi-Exposure

The technique based on multi-exposure consists of integrating images with different
exposures to form a final full-exposure image [56]. Typically, LDR images are captured
with different exposure times so that each image retains detail in specific regions of the
scene. The reference image, usually the one with medium exposure, serves as the basis for
fusion, while the other images are used to recover missing information in overexposed or
underexposed regions [26].
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2.3. Tone Mapping

Conventional display devices are limited by the fact that they work with only 8 bits
per color channel, which restricts their ability to represent the full spectrum of brightness
and contrast of an HDR image [57]. In order for these images to be properly displayed
on screens with a reduced dynamic range, we resort to tone mapping, which compresses
brightness and contrast values using nonlinear transformations, adapting the HDR content
to the hardware limitations [58].

One of the simplest but lowest quality approaches is linear scaling [59], whose only ad-
vantage is processing speed. On the other hand, the application of a logarithmic curve [15]
stands out for its good relationship between final quality and computational complexity.
Other techniques go further, seeking to mimic human perception by adjusting factors such
as brightness and light halos [60–62]. Figure 1 illustrates the application of logarithmic tone
mapping, described in Equation (1), to an HDR image, showing how the method adjusts
its pixel values for viewing on an LDR device.

(a) HDR image. (b) Tonemapped image.

Figure 1. Result of applying logarithmic tone mapping to an HDR image.

Recently, Zhu et al. [4] proposed a zero-shot scheme to transfer a tone mapping model
trained on LDR to the HDR domain using very little data. Their approach decomposes
the image into tonal (brightness and intensity) and structural (details and contours) com-
ponents. By processing each part separately, the technique retains subtle details while
effectively adjusting brightness, resulting in a conversion that retains high dynamic range
characteristics.

ILDR =
log(1 + µ IHDR)

log(1 + µ)
(1)

where µ = 5000, ILDR is the resulting LDR image, and IHDR is the input HDR image.

2.4. Artifacts

HDR image reconstruction, both single-frame and multi-frame, is often affected by
various visual artifacts that compromise the quality of the final result. These problems
can be classified into three broad groups based on their origin: motion-related artifacts
(resulting from misalignments or scene changes during multi-frame capture), photomet-
ric artifacts (linked to sensor limitations and exposure differences), and model-induced
structural artifacts (generated by the reconstruction algorithm itself). Understanding and
mitigating these different types of artifacts are crucial for obtaining high-fidelity HDR
results. The following subsections detail the most common artifacts within these categories
and discuss strategies for their correction.

2.4.1. Motion-Related Artifacts: Blur, Ghosting, and Misalignment

Movements of objects (or the camera itself) during the acquisition of LDR images with
different exposures cause a series of artifacts in the reconstructed HDR. Blur occurs when
the displacement is slight, causing the object to appear partially “blurred” in all captures
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(Figure 2a); ghosting is characterized by more pronounced displacements, resulting in
multiple translucent replicas of the same object, as illustrated in Figure 2b. When the
spatial discrepancy between scene elements and the background is even greater, so-called
misalignment artifacts arise, manifesting as duplications or misaligned contours after
fusing the exposures [12,13,63].

Mitigating these phenomena is one of the main challenges of multi-frame HDR recon-
struction [9]. Recent strategies include implicit alignment via multi-scale attention modules,
fusion guided by long-range dependencies, and adaptive kernels capable of compensat-
ing for complex movements, showing promising results in reducing blur, ghosting, and
alignment errors [26,64,65].

(a) Blur artifact. (b) Ghosting artifact.

Figure 2. Examples of motion-related artifacts: (a) blur and (b) ghosting.

2.4.2. Photometric Artifacts: Noise, Saturation, and Texture Loss

Physical limitations of the sensor and exposure differences between LDR images
can introduce random noise, which is more evident in underexposed regions (Figure 3b),
and saturation or texture loss in overexposed/underexposed areas (Figure 3a), where the
original information is irrecoverable. Deep convolutional networks have been used both
for noise removal [66–69] and for plausible texture synthesis through dedicated spatial
modules and explicit noise injection at the input to handle varying levels [41,45,70,71].
Such strategies combine feature learning with attention to context to reconstruct fine details
and maintain tonal consistency throughout the HDR.

(a) Saturation artifact. (b) Noise artifact.

Figure 3. Examples of photometric artifacts: (a) saturation and (b) noise.

2.4.3. Model-Induced Structural Artifacts: Checkerboard and Edge

Some artifacts arise not from the input images but from the neural reconstruction
process itself. Improper application of upsampling layers (e.g., transposed convolution)



Appl. Sci. 2025, 15, 5339 7 of 42

can create checkerboard patterns or halos, as shown in Figure 4a, in regions of high
saturation [20,72], while interpolation errors at high-frequency levels produce edge artifacts
(Figure 4b), which are spurious contours around objects [21].

Effective solutions include masking critical features and architectures that avoid or
replace alias-generating layers, as well as decoupled predictive kernels guided by soft
masks capable of maintaining sharp edges and eliminating periodic patterns [73].

(a) Checkerboard artifacts. (b) Edge artifacts.

Figure 4. Examples of two common structural artifacts: (a) checkerboard patterns arising
from improper deconvolutional layers [74]; (b) simplified contours caused by high-frequency
interpolation failures.

3. Datasets and Evaluation Metrics
3.1. Datasets

The choice of dataset is an important part of the research and development of HDR
image reconstruction algorithms. The success of deep learning models and image process-
ing techniques depends largely on the availability and quality of the data used for training
and validation [75]. However, obtaining HDR images is a costly and complex process,
which requires captures with multiple exposures and the use of specialized equipment. In
addition, the varied lighting and movement conditions in dynamic scenes further increase
the difficulty of generating large volumes of data with consistent quality [26].

This section presents the main datasets used in HDR image reconstruction research
that can be found available for research use and accessible for download; they are classified
in a taxonomy that considers their characteristics and capture types. These datasets range
from image sequences captured with multiple exposures in real environments to synthetic
images generated by simulation or captured on mobile devices. Also discussed are data
augmentation methods applied to recent and relevant datasets in the field of HDR imaging
research, which seek to increase data variability and mitigate the limitation of small datasets.

Table 1 summarizes the datasets analyzed, with their specifications, main characteris-
tics, and recommended application areas.

Table 1. Summary of HDR image reconstruction datasets.

Reference Quantity Resolution Type Key Features Applications

Kalantari et al. [15] 89 sequences 1500 × 1000 Real Dynamic Scenes,
Multi-Exposure, Deghosting

HDR Reconstruction,
Machine Learning

Sen et al. [65] 8 sequences 1350 × 900 Real Extracted from HDR Videos,
Continuous Motion, Deghosting HDR Video Reconstruction

IISc VAL [48] 582 sequences 1000 × 1500 Real Variety of Scenarios, Moving
Objects, Deghosting Multi-Frame Fusion, Deghosting
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Table 1. Cont.

Reference Quantity Resolution Type Key Features Applications

IISc VAL 7-1 [76] 84 sequences 1000 × 1500 Real Dynamic Scenes, Reconstruction
Method Evaluation Deghosting, Multi-Frame Fusion

Funt et al. [77] 105 scenes 2142 × 1422 Real Multiple Exposures, Broad
Range of Scenarios, Deghosting

HDR Reconstruction,
Deghosting Studies

Tursun et al. [78] 16 sequences 1024 × 682 Real Indoor and Outdoor Scenes,
Motion Focus HDR Fusion, Deghosting

HDR-Eye [79] 46 images 1920 × 1080 Real
Multi-Frame Images of Natural
Scenes, Humans, Stained Glass,
Sculptures

Assessment of HDR Algorithms
in Complex Scenarios

Laval Indoor [80] 2100 images 2048 × 1024 Real
High-Resolution
Indoor Panoramas,
Multi-Exposure

HDR Reconstruction in
Indoor Environments

Laval Outdoor [80] 205 images 2048 × 1024 Real
High-Resolution
Outdoor Panoramas,
Multi-Exposure

HDR Reconstruction in Outdoor
Environments

Liu et al. [40] 502 sequences 512 × 512 Real/
Synthetic

Indoor and Outdoor Scenes,
Reconstruction from a Single
LDR Image

Single-Frame HDR
Reconstruction

Chen et al. [81] 1352 sequences 4K Synthetic
LDR to HDR Conversion in
Videos, Dynamic and
Static Scenarios

HDR Video Compression and
Quality Optimization

SI-HDR [82] 181 images 1920 × 1280 Synthetic
Simulation of Different
Exposures Using CRF, Multiple
Frames

Multi-Frame Fusion, Full
Dynamic Range Capture

NTIRE2021 [83] 1761 images 1900 × 1060
Real HDR/
Synthetic
LDR

Multi- and Single-Frame,
29 Scenes

HDR Reconstruction from LDR,
NTIRE 2021 Challenge

DeepHDRVideo [31] Real Videos 1080p Real Complex Scenes, HDR
Algorithm Evaluation in Videos HDR Video Reconstruction

GTA-HDR [84] 40,000 images 512 × 512 Synthetic
Scenes from GTA V Game,
Variety of Lighting and Dynamic
Environments

HDR Reconstruction Techniques
in Synthetic Environments

Zhang et al. [85] 880 scenes 2304 × 1728 Real Medical Images, Significant
Lighting Variations

Advanced Image Processing,
HDR Reconstruction

Google HDR+ [52] 3640 sequences Various Real Burst Mode Images, Multiple
Exposures, Less Noise Mobile HDR Processing

MobileHDR [86] 251 sequences 4K Real Captured by Smartphones, Wide
Range of Lighting Conditions Mobile HDR Reconstruction

UPIQ [87] 3779 LDR/380
HDR images Various Real

Absolute Photometric and
Colorimetric Units, Derived
from Known IQA Datasets

HDR and LDR Image Quality
Evaluation

3.1.1. Real Multi-Frame HDR Datasets

The dataset by Kalantari et al. [15] has 89 sequences of real LDR images captured
in dynamic scenes with their corresponding HDR bracketing images. The images, with
resolutions of 1500 × 1000 pixels, were collected in multiple exposures, which makes
this dataset ideal for evaluating HDR reconstruction algorithms, especially in scenarios
involving movement, such as deghosting. This set is widely used as one of the main
references in work involving machine learning applied to HDR.

Similarly, the dataset by Sen et al. [65] contains eight sequences of LDR images ex-
tracted from real HDR videos, with a resolution of 1350 × 900 pixels. This dataset stands out
for capturing continuous movement in multiple frames, which makes it especially useful
for developing algorithms aimed at reconstructing HDR in videos, as well as deghosting.
Despite its low number of samples, the complexity of the dynamic scenes makes it a popular
choice for HDR reconstruction benchmarks.
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Another important resource in multi-frames is the IISc VAL [48] dataset, which pro-
vides 582 sequences of real LDR images accompanied by their HDR deghosting versions,
with a resolution of 1000 × 1500 pixels. The wide variety of scenarios, both indoors and
outdoors, and the presence of moving objects make this dataset particularly suitable for
testing multi-frame fusion and deghosting algorithms.

Complementing the above, IISc VAL 7-1 [76] presents 84 sequences of real LDR images,
with their corresponding HDR images, also in 1000 × 1500 pixel resolution. This set focuses
on evaluating HDR reconstruction methods in dynamic scenes and could be of great help
in research into deghosting and multi-frame fusion in dynamic environments.

The Funt et al. [77] dataset contains 105 scenes captured with multiple exposures,
resulting in HDR images with a resolution of 2142 × 1422 pixels. The images were taken
with a Nikon D700 (Nikon Corporation, Tokyo, Japan) camera and cover a wide range of
scenarios, from artificially lit interiors to outdoor landscapes. This is a relevant dataset for
studies with high dynamic range images, as well as for testing deghosting algorithms and
HDR reconstruction from multiple exposures.

In addition, the dataset by Tursun et al. [78] contains 16 sequences of images captured
in indoor and outdoor scenes, with a resolution of 1024 × 682 pixels. Focusing on scenes
with movement, this dataset could be an ideal addition for testing deghosting in HDR
fusion algorithms.

The HDR-Eye dataset [79] consists of 46 real HDR images captured in various natural
scenes, including humans, stained glass windows, sculptures, among others, with a high
resolution of 1920 × 1080 pixels. This dataset provides images from multiple frames,
making it suitable for evaluating HDR reconstruction algorithms, especially in scenarios
involving complex lighting and detailed textures.

The Laval Indoor dataset [80] comprises 2100 high-resolution indoor panoramas cap-
tured with a Canon 5D Mark III (Canon Inc., Tokyo, Japan) camera, with a resolution of
2048 × 1024 pixels. The images were collected in multiple exposures to create HDR panora-
mas of indoor environments, making it a valuable resource for testing HDR reconstruction
methods in indoor scenarios.

Similarly, the Laval Outdoor dataset [80] includes 205 high-resolution outdoor panora-
mas also captured with a Canon 5D Mark III (Canon Inc., Tokyo, Japan) at a resolution of
2048 × 1024 pixels. This dataset offers multi-frame HDR images of outdoor scenes, provid-
ing a variety of lighting conditions and environments, which is beneficial for evaluating
HDR algorithms in outdoor scenarios.

3.1.2. Synthetic or Simulated HDR Datasets Based on CRF

In the field of HDR reconstruction from synthetic or simulated LDR images, the
dataset by Liu et al. [40] provides 502 image sequences, both real and synthetic, with their
corresponding HDR images. The images have a resolution of 512 × 512 pixels and cover a
variety of indoor and outdoor scenarios. This dataset is often used in research aimed at
solving the challenge of HDR reconstruction from a single LDR image, which is a key issue
in deep learning.

Another important set is that created by Chen et al. [81], which contains 1352 synthetic
image sequences in 4K resolution designed for research into converting LDR to HDR in
videos. This dataset was created to explore the performance of neural networks in both
dynamic and static scenarios and is a relevant choice of data in studies seeking to optimize
the compression and quality of HDR video.

The SI-HDR [82], on the other hand, offers 181 simulated HDR images with different
exposures, with a resolution of 1920 × 1280 pixels. This dataset simulates the responses of
different cameras using the camera response function (CRF), allowing HDR images to be
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generated from multiple frames. SI-HDR proves useful in studies that optimize the fusion
of multiple frames and investigate the capture of the full dynamic range of a scene.

Chen et al. [31] present a dataset focused on capturing and reconstructing HDR in
videos, called DeepHDRVideo. This dataset consists of real 1080p videos and was created
to evaluate HDR video reconstruction algorithms in complex scenarios, offering a robust
environment for testing performance and image quality in multiple lighting conditions.

The NTIRE2021 dataset [83] consists of 1761 images, including real HDR images and
synthetic LDR images, with a resolution of 1900 × 1060 pixels. It covers 29 scenes and
includes data from multiple frames and single frames. This dataset was created for the
NTIRE 2021 HDR challenge, aimed at advancing the state of the art in HDR reconstruc-
tion from LDR images, and is suitable for training and evaluating HDR reconstruction
algorithms using real and synthetic data.

An interesting resource in the context of synthetic data for HDR is GTA-HDR [84],
which is a dataset made up of 40,000 HDR images taken from scenes in the game GTA V
(Grand Theft Auto V). The images, with a resolution of 512 × 512 pixels, simulate a wide
variety of lighting conditions and dynamic environments, making them valuable for testing
HDR reconstruction techniques in synthetic and controlled environments.

The dataset by Zhang et al. [85] is another example of a multi-dimensional HDR
application, containing 880 scenes of cholangiocarcinoma images obtained by hyper-
spectral microscopy and high-resolution color images (2304 × 1728 pixels). Originally
designed for medical research, this dataset can also be useful in exploring advanced im-
age processing techniques, including HDR reconstruction in scenarios with significant
illumination variations.

3.1.3. Datasets of HDR Captured with Mobile Devices

In the field of processing HDR images captured by mobile devices, the Google HDR+
dataset [52] stands out for containing 3640 sequences of images captured in burst mode
with smartphones Nexus 6, 5X, and 6P (Google LLC., Mountain View, CA, USA) . The
images were obtained from multiple frames with different exposures, which allows for the
generation of a final HDR image with less noise and greater dynamic range. This dataset is
widely used in research aimed at improving the quality and computational efficiency of
HDR image processing on mobile devices.

MobileHDR [86] consists of 251 sequences of LDR images captured by smartphones at
4K resolution accompanied by their corresponding HDR bracketing images. The images were
captured in a wide range of lighting conditions, covering both day and night, making this
dataset particularly relevant for studies focused on HDR reconstruction on mobile devices.

3.1.4. Datasets Aimed at Image Quality Assessment

UPIQ [87] is a dataset containing 3779 LDR images and 380 HDR images derived from
four widely known IQA datasets: LIVE, TID2013, Narwaria, and Korshunov. The images
are represented in absolute photometric and colorimetric units, corresponding to the light
emitted by a screen. This dataset is widely used in research evaluating the quality of HDR
and LDR images and is a reference in the field of image quality.

3.1.5. Data Enhancement for HDR

Data augmentation in the high dynamic range images is an essential technique for
increasing the variability of training datasets, especially in image processing and computer
vision tasks. HDR images are a particularly costly type of data to obtain, as they require
multiple exposures captured in different lighting conditions, as well as specific equipment
to ensure high-quality capture. Therefore, data augmentation techniques can be of great
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importance in increasing the robustness and the performance of deep learning models,
compensating for the scarcity of available data.

The following topics present some recent techniques used to augment HDR datasets.

Neural Augmentation for Saturation Restoration

An approach to restoring saturated regions in low dynamic range images derived from
HDR scenes combines model-based methods with data-driven approaches. In this process,
synthetic LDR images with different exposures are generated and refined by a neural
network before being combined using exposure fusion algorithms. The aim is to improve
the recovery of details in shadow and highlight areas by using a neural network to correct
the exposures and then synthesize an enhanced HDR image. This technique, presented
in [88], has been shown to be effective in recovering saturated regions and increasing the
overall quality of the images; however, these synthetic images generated in the process
could be a useful resource in data augmentation for HDR.

Local-Area-Based Mixed Data Augmentation

In order to improve HDR video reconstruction, a technique called HDR-LMDA applies
localized exposure increases and RGB channel permutation to LDR images. By changing
exposures in specific regions and shuffling the color channels of small blocks of the image,
the model is forced to learn how to deal with the recovery of incorrect exposures and
localized color correction. This method, proposed in [89], has been shown to be effective in
increasing performance metrics such as the PSNR (Peak Signal-to-Noise Ratio), offering
significant improvements over traditional techniques.

Traditional Data Augmentation Techniques

In addition to these more recent approaches, traditional data augmentation techniques,
such as geometric transformations, modifications to the color space (brightness, contrast,
and saturation), and the use of generative adversarial networks (GANs), continue to be
widely used. These techniques are still an efficient way to avoid overfitting and help
improve model performance, especially in scenarios with limited or unbalanced data. Some
recent studies, including those of the datasets cited in this section [9,31], demonstrate how
these approaches can be combined to improve HDR image reconstruction and increase
model robustness.

3.2. HDR Image Quality Assessment

HDR images can represent a significantly wider range of luminance and contrast com-
pared to traditional LDR formats. This has driven much research in HDR processing, such
as acquisition/generation [43], compression [90,91], and quality assessment [92]. Image
quality assessment is crucial for the development and comparison of algorithms, and the
metrics used can be divided into Full-Reference (FR), which require the complete original
image; No-Reference (NR), which do not require any reference; and Partial-Reference (PR)
or Reduced-Reference (RR), which use a subset of information from the reference. Even
so, it is difficult to apply metrics originally designed for LDR to HDR images, as they
need to be revised or adapted [93]. The literature includes studies on metrics designed
for the HDR, including [94], which provides a comprehensive comparison of multiple
metrics; ref. [82], which subjectively evaluates the quality of reconstructions from a single
image; and ref. [93], which discusses the performance of full-reference (FR) metrics in HDR
scenarios. The following topics present relevant metrics in the HDR reconstruction scenario
separated into two basic categories: metrics exclusive to HDR and LDR metrics that can be
applied to HDR images.

Table 2 summarizes the metric information that has been described in this section.
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Table 2. Summary of characteristics metrics.

Metric Applicability Reference Type Evaluation Type Domain Computational Cost

FovVideoVDP [95] Both FR Global Spatial and Temporal High

HDR-VQM [96] HDR FR Global Spatial Medium

HDR-VDP2 [35] Both FR Global Spatial High

HDR-VDP3 [36] Both FR Global Spatial High

BRISQUE [97] LDR NR Local Spatial Low

NIQE [98] LDR NR Global Spatial Low

PIQUE [99] LDR NR Local Spatial Medium

NIMA [100] LDR NR Global Spatial Medium

LPIPS [101] LDR FR Global Spatial Medium

SSIM [102] LDR FR Global Spatial Low

MS-SSIM [103] LDR FR Global Spatial Low

FSSIM [104] LDR FR Global Spatial Low

VSI [105] LDR FR Global Spatial Medium

PSNR [29] LDR FR Global Spatial Low

MSE [29] LDR FR Global Spatial Low

ColorVideoVDP [106] Both FR Global Spatial and Temporal High

MUSIQ [107] LDR NR Global and Local Spatial Medium

3.2.1. HDR Metrics

This subsection explores metrics aimed exclusively at HDR images and videos. Al-
though they are still less common given the much greater volume of LDR images in the
field of computer vision, they are developed to deal with the greater range of luminance
and the particularities of visual perception in HDR content. It is important to highlight that
metrics based on complex human visual system (HVS) models, such as the VDP family and
HDR-VQM, do not rely on a single, simple mathematical formula. Instead, they implement
multi-stage computational models simulating visual perception pathways. Their outputs
are often visibility maps, which can then be pooled into a single quality score. For the
complete detailed mathematical formulations, refer to the original publications cited for
each metric.

FovVideoVDP

The Visible Difference Predictor for Wide Field-of-View Video is a video difference
metric modeling spatial, temporal, and peripheral HVS aspects. Its computation involves
complex stages derived from psychophysical studies: space–time contrast sensitivity func-
tions (CSFs) adapted for foveal and peripheral vision, cortical magnification simulation,
and contrast masking models. It processes video frames considering display parameters
(luminance, size, resolution) and viewing distance. The output predicts the probability of
visible differences over time and space. The full model details are in [95].

VDP

The original Visual Difference Predictor [108] estimates visual differences between
two images using an HVS model. It typically involves amplitude nonlinearity (converting
luminance to a perceptual domain), contrast sensitivity function (CSF) filtering (simulating
optical blur and neural sensitivity to different frequencies), decomposition into frequency
and orientation channels (cortical simulation), contrast masking calculations (predicting
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how features mask each other), the calculation of detection probabilities for differences in
each channel, and finally pooling probabilities into a final visibility map. The detailed steps
and parameters are found in [109] and subsequent adaptations such as [110].

ColorVideoVDP

As an extension of FovVideoVDP, ColorVideoVDP evaluates distortions by jointly
modeling luminance and color perception within the complex HVS framework used in
FovVideoVDP. It incorporates models for color opponency and color contrast sensitivity. It
predicts the visibility of spatio-temporal color and luminance distortions. Refer to [106] for
the model architecture.

HDR-VQM

The Quality Measure for High Dynamic Range Videos evaluates HDR quality by
simulating stages of human visual perception. Its processing workflow typically includes
signal preprocessing (e.g., applying perceptual quantizers), spatial decomposition (often
using steerable pyramids or wavelets), contrast calculation within the resulting sub-bands,
distortion estimation based on differences between features of the reference and test signals
in these bands, temporal analysis (modeling eye fixations or temporal aggregation of
distortions), and finally, aggregation (pooling) of distortions across bands and time into a
single quality score. The complete algorithm details, including the specific decomposition
and weighting methods, can be found in [96].

HDR-VDP

The first adaptation of VDP specifically for HDR [111] modifies the core VDP com-
ponents to handle the wide luminance range. Key aspects include using an HDR-specific
CSF that accounts for local light adaptation levels and employing masking models suitable
for high contrast ranges. It outputs a probability map of visible differences. The model is
described in [110].

HDR-VDP2

A widely used successor, HDR-VDP2, refines the HDR-VDP model using improved
calibration against psychophysical data. It simulates key aspects of the human visual
system (HVS), including local adaptation, contrast sensitivity, and masking effects across
different visual channels. This allows it to predict the visibility of differences between a
reference and a test image or to estimate an overall quality score. The calculation involves
pooling distortion signals computed internally within the HVS model and potentially
mapping this result to align with subjective scales like Mean Opinion Scores (MOSs), often
using functions calibrated against subjective datasets. While the underlying HVS model is
complex, its calibration aims to provide results that correlate well with human perception.
The full model details can be found in [35].

HDR-VDP3

The latest iteration, HDR-VDP3, builds upon HDR-VDP2, incorporating more ad-
vanced HVS models, including color difference perception, improved temporal modeling
(for video), and better handling of different display characteristics. It aims to provide
more accurate predictions of visible differences for both images and videos across various
viewing conditions. The detailed architecture and validation are in [36].
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3.2.2. Application of LDR Metrics to HDR Images

Although LDR quality metrics are widely used, their direct application to HDR images
is not straightforward due to the nonlinearity between color values and visual perception.
To address this, the HDR content must be adapted, either via tone mapping or using
methods like PU21. PU21, for example, adjusts pixel values to a scale closer to human
sensitivity using linearizing perception to facilitate the application of LDR metrics [37].
This makes it an alternative to using tone mapping operators as a preprocessing step when
evaluating HDR images with metrics originally developed for LDR.

BRISQUE

The Blind/Referenceless Image Spatial Quality Evaluator is a no-reference metric. Its
calculation involves extracting features based on Natural Scene Statistics (NSSs) and using
a pretrained regression model (Support Vector Regression—SVR) to predict a quality score
from these features. Due to its reliance on a trained machine learning model, it does not
have a closed-form mathematical formula that fully characterizes it [97]. Lower values
indicate better perceptual quality.

NIQE

The Natural Image Quality Evaluator also operates without a reference, relying on
NSSs. It calculates the distance between a multi-variate statistical model fitted to the NSSs
features of the test image and a precomputed model from “pristine” images. The metric
represents this statistical distance and is not described by a simple algebraic formula [98].
The lower the NIQE value, the better the image quality.

PIQUE

The Perception-based Image Quality Evaluator is another no-reference metric. Its
evaluation is based on detecting perceptible distortions (such as noise or blocking) in
image blocks using heuristics and thresholds, followed by aggregating the distortion scores
from the identified blocks. The calculation is algorithmic and rule-based, lacking a single
equation that summarizes it [99]. Lower PIQUE values indicate better visual quality.

NIMA

The Neural Image Assessment metric uses a CNN to predict the statistical distribution
(e.g., histogram) of quality scores that humans would assign to the image. The final score is
usually the weighted average of this predicted distribution. As it uses a neural network,
this metric cannot be represented by a single mathematical formula [100]. Its training on
real data at the pixel level aligns this assessment with human perception. The predicted
average score (usually from 1 to 10) indicates quality; higher values are better.

LPIPS

The Learned Perceptual Image Patch Similarity, a full-reference metric, measures per-
ceptual similarity by calculating the distance between feature maps extracted by multiple
layers of pretrained deep neural networks (like VGG or AlexNet) applied to both the refer-
ence and distorted images. The process involves extracting these features via the network
and aggregating the distances between them, not being reducible to a simple mathematical
formula [101]. Lower LPIPS values indicate greater visual similarity (better quality).

MUSIQ

The Multi-scale Image Quality Transformer evaluates image quality without reference
using a Transformer-based architecture. The calculation involves dividing the image into
patches at multiple scales, processing these patches through Transformer blocks with multi-
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scale attention to capture local and global information, and then aggregating the resulting
representations to predict a final quality score. Like other deep learning-based metrics, its
complexity prevents a simplified mathematical representation of the calculation [107]. The
higher the prediction value, the better the visual quality of the image.

SSIM (Structural Similarity Index)

The Structural Similarity Index (SSIM) [94] calculates the structural similarity between
two images—considering luminance, contrast, and structure—providing a measure of
how faithful the distorted image is compared to the reference [102]. The mathematical
representation of the SSIM is given in Equation (2).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2)

where µx and µy are the local means of images x and y; σ2
x and σ2

y are the variances; σxy is
the covariance; and C1 = (K1L)2 and C2 = (K2L)2 are constants to stabilize the division,
with L being the maximum pixel intensity value (e.g., 255 for 8 bits). Values closer to 1
indicate better similarity.

MS-SSIM (Multi-Scale SSIM)

As an extension of the SSIM, the Multi-Scale SSIM (MS-SSIM) [94] evaluates local
and global image characteristics at multiple scales, although it places less emphasis on
brightness [103]. Its mathematical formulation is found in Equation (3).

MS-SSIM(x, y) = [lM(x, y)]αM
M

∏
j=1

[cj(x, y)]β j [sj(x, y)]γj (3)

where lM is the luminance similarity at scale M; cj and sj are the contrast and structure
comparisons at scale j; and αM, β j, and γj are weights assigned to each component. Values
closer to 1 indicate greater structural similarity.

FSIM (Feature Similarity Index)

The Feature Similarity Index (FSIM) [104] considers phase congruency and gradient
magnitude to assess image similarity, emphasizing edges and textures rather than pixel
values. It can be determined by Equation (4).

FSIM =
∑x∈Ω SL(x) · PCm(x)

∑x∈Ω PCm(x)
(4)

where SL(x) is the local similarity based on the phase and gradient.
PCm(x) = max(PC1(x), PC2(x)) is the phase congruency map used as a weight; Ω

represents the set of all pixels. Values closer to 1 indicate greater perceptual similarity.

VSI (Visual Saliency-Induced Index)

The Visual Saliency-Induced Index (VSI) [105] incorporates saliency maps to assign
greater weight to visually relevant regions, simulating how humans perceive visual quality.
Equation (5) shows its mathematical representation:

VSI = ∑x∈Ω S(x) · VSm(x)
∑x∈Ω VSm(x)

(5)
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where S(x) represents the combination of saliency, gradient, and chromaticity similarity;
VSm(x) = max(VS1(x), VS2(x)) highlights salient regions. Values closer to 1 indicate
images of higher perceived quality.

MSE (Mean Squared Error)

The Mean Squared Error (MSE) [29] calculates the average of the squared differences
in intensity between the pixels of the original and distorted images, quantifying the overall
error through Equation (6).

MSE =
1

mn

m

∑
i=1

n

∑
j=1

[x(i, j)− y(i, j)]2 (6)

where x(i, j) and y(i, j) are the pixel values of the original and distorted images; m × n is
the image size. Lower MSE values indicate less error and, therefore, better quality.

PSNR (Peak Signal-to-Noise Ratio)

The Peak Signal-to-Noise Ratio (PSNR) [29] measures the quality of reconstructed or
lossy compressed images using the difference between the original and distorted images. It
is determined by Equation (7):

PSNR = 10 · log10

(
L2

MSE

)
(7)

where L is the maximum possible pixel value (e.g., 255). Higher PSNR values (in dB)
indicate better quality.

4. Deep Learning Methods for HDR Reconstruction
4.1. CNN for HDR Reconstruction

Convolutional neural networks are widely known for their success in machine learning
tasks. They consist of multiple convolutional layers that multiply kernels and image input
regions, thus extracting relevant features and ensuring network accuracy through a loss
function optimized to guide results [112]. The works by [8,15] heralded the advent of CNNs
for HDR image reconstruction in approaches that use a single image as input (single-frame)
and multiple images as input (multi-frame), respectively.

To perform this task using CNNs, three predominant approaches have emerged in the
area: single-frame, multi-frame, and a new hybrid approach combining single-frame and
multi-frame. We will discuss and analyze the main HDR reconstruction algorithms based
on the CNN below, tracing the evolution of the field to date.

4.1.1. Single LDR to HDR Reconstruction with CNN

Single-frame HDR image reconstruction methods generate their HDR output using
only a single exposure as input. From this perspective, Eilersten et al. [8] proposed the HDR-
CNN architecture, which utilizes skip connections introduced by the Unet network [44],
resulting in a hybrid network with an LDR image encoder and an HDR image decoder. This
classic architecture is shown in Figure 5a. Conversely, HDRUnet [41] proposed merging
the encoding and decoding stages, enabling 8- and 16-bit image processing simultane-
ously. This model was designed to reduce noise and quantization error, comprising three
subnetworks related to a base network, a conditional network, and a weight network,
alongside the Tanh L1 loss function. In a different vein, the HDRTV [113] model introduced
a structure organized into three stages: Adaptive Global Color Mapping (AGCM), Local
Enhancement (LE), and Highlight Generation (HG). Building on these results, the DCDR-
UNet [45] architecture, with its novel Deformable Convolution Residual Block (DCRB)



Appl. Sci. 2025, 15, 5339 17 of 42

implementation and use of a VGG and Tanh L1 combined loss function, achieved promising
performance in generating high-quality HDR images.
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Figure 5. Single-frame architectures.

Under a different methodological approach for generating brackets to form the HDR,
the DrTMO [23] architecture establishes a neural network that leverages multiple exposures
for training, enabling synthetic exposure generation, as illustrated in Figure 5b. This
work served as a foundation for developing subsequent models [9,114–116]. In a similar
vein, Phuoc-Hieu Le et al. [9] applied an architecture following the traditional pipeline of
generating HDR images. The structure comprises three CNNs: one for encoding and two
for decoding (up and down exposure). The goal is to create multiple exposure values (EVs)
from a single LDR image. Along these lines, Chen et al. [115] implemented continuous
exposure learning, in which the network can produce EVs with continuous values, leading
to results with more detail compared to using fixed EVs.

4.1.2. Multi LDR to HDR Reconstruction with CNN

Multi-frame HDR image reconstruction combines multiple images captured with
different exposures to produce a final HDR image. By leveraging a variety of exposures,
the model can retain more details in bright and dark regions, which helps achieve results
closer to real-world scenarios. More recent methods have explored a blend of techniques
such as deformable convolutions [13,16] and CNNs [117,118] to address problems like
alignment, saturation, and ghosting artifacts. Kalantari et al. [15] propose using the optical
flow algorithm [119] to align LDR images and then fuse them with a CNN for HDR image
reconstruction. However, optical flow-based approaches can fail under occlusion or abrupt
motion, leading to alternative approaches such as Wu et al. [120], which transformed the
problem into an LDR-to-HDR conversion without optical flow using an encoder–decoder
architecture for reconstruction.

Following this concept, ref. [13] introduced the AHDRNet architecture, which is
composed of two neural networks for alignment and fusion. The first network is dedicated
to extracting features from the input images by means of convolutional encoders, applying
attention maps to nonreference images to identify useful features, thereby reducing ghost-
ing artifacts. The configuration can be seen in Figure 6a. Then, the second fusion network
uses these attention-guided features to estimate the HDR image using dilated residual
dense blocks (DRDBs) and a global residual learning strategy (GRL). Hence, it enhances
the use of extracted features, producing HDR images with consistent and realistic detail.
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Figure 6. Multi-frame architectures.

On the other hand, IREANet [121], shown in Figure 6b, stands out for introducing the
Flow-guided Feature Alignment Module (FFAM) and the Enhanced Feature Aggregation
Module (EFAM). These components enable more effective alignment and reconstruction of
multi-exposure LDR images, mitigating motion artifacts and improving final image quality.
Moreover, using the BayerAug (Bayer preserving augmentation) strategy for preserving
multi-exposure RAW data broadens the model’s generalization, positioning IREANet as
one of the leading solutions for HDR reconstruction.

Lastly, RepUNet [122] made progress by emphasizing efficiency and robustness using
structural reparameterization to create a lightweight and fast model for HDR reconstruction,
as shown in Figure 7. Additionally, APNT-Fusion [117] proposes an HDR restoration model
via progressive neural fusion guided by attention, preventing ghosting artifacts from
motion and efficiently transferring texture in saturated regions.
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4.1.3. Single and Multi LDR to HDR Reconstruction with CNN

Li et al. [123] proposed an innovative approach for HDR image reconstruction that
integrates the two main existing techniques: single-frame and multi-frame. The architecture
is predominantly based on the single-frame technique but uses the multi-frame technique
in an auxiliary manner, enabling the capture of more detail in overexposed areas and
suppressing ghosting artifacts. The model is divided into four modules, among which
SHDR-ESI stands out for integrating single-frame with multi-frame to improve final image
quality. SHDR-ESI also plays a key role in providing intermediate data to the SHDR-A-
MHDR module, which primarily reduces ghosting and enhances overexposed regions.
Additionally, the system utilizes DEM, consisting of an SRM (Self-Representation Module)
and an MRM (Mutual-Representation Module), to highlight essential information and
effectively merge complementary features. The merging of reference and nonreference
features is performed using FIFM, ensuring accurate and detailed HDR reconstruction.

Table 3 presents the metrics-based performance of the aforementioned models.

Table 3. Summary of metrics for each CNN approach.

Model PSNR-L (dB) PSNR-µ (dB) SSIM SSIM-µ HDR-VDP2 LPIPS

Single-frame

HDRUNet [41] 41.61 34.02 — — — —
ArtHDR-Net [124] 35 — 0.93 — 69 —
DCDR-UNet [45] 52.47 54.71 0.9985 — 68.68 0.0026

Multi-frame

APNT-Fusion [117] — 43.96 — 0.9957 — —
IREANet [121] 39.78 — 0.9556 — — 0.102
RepUNet [122] 44.8081 — — — — —

Single-frame and Multi-frame

SAMHDR [123] 52.49 46.98 0.9991 0.9961 69.76 —

4.2. GAN for HDR Reconstruction

This architecture was developed in 2014, but between 2018 and 2021, GANs [25]
experienced their most significant surge in interest within the scientific community. In that
sense, according to [125], Yann LeCun stated that GANs were the “most interesting idea in
the last ten years of machine learning”.

GANs have proven to be a valuable tool for generating high-quality data across various
fields, including image generation and reconstruction [126,127], video synthesis [128], data
augmentation [129], style transfer [130], natural language processing [131], the medical
domain [132], remote sensing [133], autonomous vehicles [134], pattern classification with
imbalanced data [135], and anomaly detection in time series [24,46].

GANs operate by setting up competition between a generator model, which aims
to produce samples that mimic the distribution of the original data, and a discriminator
model that seeks to determine whether the sample under analysis is real or fake. This
competition drives improvements in both models [25]. Figure 8 illustrates how GANs
function, highlighting the interaction between generator and discriminator models.

The main advantage of this architecture lies in the fact that the generator uses a distri-
bution to directly sample from data without needing premodeling, i.e., without making
explicit assumptions or approximations about the data distribution before generating new
samples, thus theoretically matching the entire distribution of original data [136]. Moreover,
compared to other generative architectures, GANs require fewer restrictions to be used
with different data types, making them more flexible [125], and their training does not rely
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on Markov chains [136]. Hence, GANs yield high-quality results for all data types, often
producing images with high sharpness, clarity, and more efficient training compared to
other architectures [136].

Generator Generated Sample
Noise

Discriminator "Real", "Generated"

Training Feedback
(Discriminator)

Training Feedback
(Generator)

Input

Generated Sample

Real Sample

Figure 8. GAN architecture.

In the context of HDR image reconstruction, GAN-based models can generate a
distribution of original data on light intensity and local contrast [25,137]. In this sense,
numerous studies have been conducted using GANs to aid in recovering regions where
image content is missing due to underexposure and overexposure, as well as to address the
limitations of existing methods in handling large object movements in a scene.

HDR image reconstruction with GANs can be subdivided into two specific approaches:
single-frame and multi-frame.

4.2.1. Single LDR to HDR Reconstruction with GAN

Reconstruction of HDR images from a single LDR input has been tackled by various
methodologies, and in this scenario, GANs stand out for their ability to produce high-
quality results. Hence, in the approach developed by HDR-cGAN [138], reconstruction is
treated as an image-to-image translation problem using a conditional GAN (cGAN) [139],
where the LDR image is concatenated with both the generator output and the ground
truth (GT) HDR image in the discriminator, ensuring that the HDR output is guided by the
LDR input. The generator first passes the LDR input through a Linearization module that
converts the nonlinear LDR image into linear irradiance. Next, the Overexposed Region
Correction (OERC) module estimates pixel values in saturated regions from the overexpo-
sure mask based on the method proposed in [140]. After that, the OERC output is fed into
a Refinement module, which is responsible for correcting any remaining irregularities. The
discriminator follows the PatchGAN [141] framework, evaluating the authenticity of the
generated HDR image at local patches instead of assessing the entire image, which allows
for finer corrections in specific regions.

Another notable approach is GlowGAN [10], which consists of three models: a gen-
erator, a discriminator, and a camera model. The generator and discriminator are based
on StyleGAN-XL [142], and the camera model is the main difference among other archi-
tectures, multiplying the generated HDR image by an exposure value to fix the dynamic
range and forming an LDR image similarly to how a camera functions. The camera model
acts as an intermediary between generator and discriminator, allowing training on datasets
containing only LDR images.
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These models differ mainly in their objectives. Both HDR-cGAN and GlowGAN can
generate HDR images with few artifacts. However, GlowGAN stands out for its ability to
train without the need for paired datasets, i.e., without the original HDR images.

4.2.2. Multi LDR to HDR Reconstruction with GAN

A significant amount of research has been carried out aiming to reconstruct HDR
images from multiple images of the same reference with different exposures. In this context,
GAN-based methods show remarkable results. Among these, the approach proposed for
HDR-GAN [26] stands out, consisting of a multi-scale LDR encoder that processes each
input with different exposures to extract features at various scales, enabling the network to
learn LDR image features for subsequent HDR construction. Then, two processes happen
simultaneously: one for merging aligned reference features and another for deep HDR
supervision. In the first process, features extracted at multiple scales are fused and aligned
with a residual structure in the feature domain. In the second, the process is reinforced by
upsampling lower features and concatenating them with higher ones, improving alignment
and the final HDR image quality. Lastly, a PatchGAN-based [141] discriminator evaluates
the generated image.

In the same perspective, the UPHDR-GAN [143] approach involves a generator that
transforms the input image domain into the desired domain. The discriminator follows
the PatchGAN [141] approach to distinguish between two images. Thus, a discriminator
loss value is computed, and to obtain this value for the generator, a Min-patch module is
applied, adding a pooling layer to the discriminator output.

Likewise, MEF-GAN [144] uses a generator based on three blocks: a self-attention
block applying the mechanism described in [145], a local detail block to retain details that
might be lost in the first block, and a merge block that combines these results to produce the
final HDR image. The generated HDR image is then evaluated by a discriminator, yielding
a scalar value between 0 and 1 that determines how close the generator output is to the
original HDR image.

All the architectures above produce HDR images with good performance in both
qualitative and quantitative results. Except for MEF-GAN, the other approaches handle
the movement present in the utilized datasets, solving to some extent the misalignment of
objects among different exposures. UPHDR-GAN stands out for training without needing
paired datasets, while HDR-GAN [26] yields the best image metrics. Lastly, MEF-GAN is
notable for its multi-exposure fusion approach that preserves crucial details and context.

The models employing the methods described in the topics above and their metrics
are presented in the following sections and in Table 4.

Table 4. Summary of metrics for GAN approaches.

Method PSNR-l PSNR-µ PSNR-PU SSIM-l SSIM-µ SSIM-PU MSSIM HDR-VDP2 HDR-VDP3

Single-Frame

GlowGAN [10] — — 31.8 — — — — — 7.44
HDR-cGAN [138] 17.57 — — 0.78 — — — 51.94 —

Multi-Frame

HDR-GAN [26] 41.76 43.64 43.2004 0.9869 0.9891 0.9913 — 65.45 —
UPHDR-GAN [143] 43.005 — 42.115 0.988 — 0.986 — 63.542 —
MEF-GAN [144] 68.42 — — — — — 0.982 — —

4.3. Transformers for HDR Reconstruction

Models based on attention mechanisms have radically transformed how neural net-
works process and prioritize information in deep learning tasks. This revolutionary
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approach was introduced with the proposal of a neural network exclusively based on
self-attention mechanisms, known as Transformers [18], marking a milestone in natural lan-
guage processing (NLP). Such architectures stand out for their ability to focus on different
regions of the input, allowing the model to learn and capture complex relationships more
effectively and applying a more reliable attention mechanism, but at a higher computational
cost, given that self-attention must be iteratively calculated for each input token, implying
quadratic complexity.

The Transformer architecture is mainly composed of two fundamental blocks: the
encoder and the decoder. The encoder takes the input sequence and transforms it into an
encoded representation, while the decoder uses that representation to generate the output
sequence. This architecture has proved highly accurate in managing complex linguistic
structures, leading to its rapid adoption and expansion into various domains. The initial
success of transformers in NLP led researchers to explore their potential in other fields.
In particular, they have been adapted to computer vision, showing promising results in
a range of tasks. A notable and pioneering example is the Vision Transformer (ViT) [146],
which adapts the Transformer encoder architecture for image classification. In the ViT, an
image is split into patches treated as tokens, akin to words in a sentence. This approach
enables the ViT to grasp intricate patterns and relationships within the image, achieving
superior performance in various benchmarks.

Today, Transformer-based models have become key tools in many computer vision
applications. Their effectiveness has been demonstrated in tasks such as low-light im-
age enhancement [147,148], content generation [149,150], super-resolution [49,151], and
more [152–155]. This versatility underscores the power of Transformers in addressing a
broad range of computational challenges.

In the specific context of HDR image reconstruction, Transformers have shown signifi-
cant potential for improving the quality and details of images. The most recent models have
leveraged the attention mechanisms inherent to transformers to efficiently handle the vari-
ous levels of luminance and complex scenes typically found in HDR content. Such progress
not only boosts accuracy in HDR reconstruction but also fosters greater generalization
across different scene types.

Figure 9 presents the most common approaches to HDR reconstruction, which can
be broadly classified into three major methods. The first relies on aligning images with
different exposures before the Transformer mechanism, the second focuses on spatial or
temporal attention mechanisms for feature extraction, and the third employs methods based
on feature concatenation, relying on Transformer mechanisms for the final reconstruction.
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Figure 9. Transformer-based architectures.

4.3.1. Alignment-Based Methods

Some state-of-the-art methods focus on feature extraction with an emphasis on align-
ing the input frames, using the medium-exposure frame as a reference image for object
positions in the scene. Alignment may be performed using convolutional blocks, atten-
tion mechanisms, or even entire Transformer architectures, leading to a clearly separable
two-step approach (alignment, then feature fusion), as shown in Figure 9a.

The HFT architecture [156] uses a Shallow Feature Alignment (SFA) block for frame
alignment. This block concatenates the medium-exposure frame with either the over- or
underexposed frame and applies two successive convolutions to produce a single aligned
frame. To refine features, the approach employs a Fusion Transformer architecture, extracting
multi-scale features and merging them to reconstruct the optimal HDR image with final
convolution blocks. The results were validated on the Kalantari [15] and Prabhakar et al. [48]
(IISc VAL and IISc VAL 7-1 datasets) works, as well as on images captured by a cell phone to
verify the generalization quality of the model. Ablation studies highlight the relevance of the
SFA model, Fusion Transformers, and channel-level attention block.

Kim et al. [157] propose a different alignment approach by performing a quadruple
Bayesian filter preprocessing of the input LDR images, converting them into a single single-
channel image that captures information from all LDR frames in the dataset. Subsequently,
the image is split into patches with four-channel depth, from which channel-level attention
maps are extracted and fused with the patches via elementwise multiplication. These
images with attention are aligned using a multi-scale Transformer architecture and then
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refined with convolutions to reconstruct an HDR image. For validation, a synthetic dataset
was introduced, along with generalization tests using the Suda et al. [158] dataset.

Another architecture using alignment-based methodology is HyHDRNet [159], align-
ing frames through ghost attention, carrying out alignment at the patch level by identifying
misaligned elements, and performing the corresponding correction. After consecutively
repeating these corrections, all frames are concatenated, including the initial reference
frame. The extraction of features from the aligned images and their refinement is handled
by the SwinIR [160] Transformer architecture. A final convolution plus the sum of the initial
features reconstructs the HDR image from three LDR images. The results were validated
with the Kalantari and Hu et al. [63] datasets and generalized using Tursun et al. [14] and
Sen et al. [65]. Ablation studies highlight the efficiency of its alignment blocks.

4.3.2. Attention-Based Methods

Another approach researchers have adopted is focusing on other aspects of the frames
by applying temporal or spatial attention. Unlike alignment blocks, these methods do not
seek to align every object in the scene with the reference frame; instead, they emphasize
certain regions based on objects from the reference scene. This is achieved by computing
attention maps and multiplying that map by the frames where one wants to apply such
attention, as illustrated in Figure 9b.

Examples include CA-ViT [17], which applies special attention to the features extracted
from the input images using a single convolutional layer for each. After obtaining feature
frames with spatial attention, these features are refined with a Transformer architecture
called Context Aware Transformer (CA-ViT). The final HDR image is reconstructed with
one final convolution. The model was trained on the Kalantari [15] dataset, and its general-
ization was verified with images from the Sen and Tursun et al. [14] datasets, with ablation
studies underlining the importance of the CA-ViT block.

Similarly, the HDT-HDR [161] architecture employs spatial attention mechanisms in fea-
tures extracted from the input images by a convolutional layer. While it also concatenates the
features with the applied attention, it further concatenates the attention maps as additional
features, refining them with a transformer architecture named HDT. The final image is recon-
structed with a convolutional layer. As with previous models, it was trained on the Kalantari
dataset and validated on images from Sen and Tursun et al. [14] for generalization tests.

PASTA [50] also adopts convolution to extract the input image features, applying
temporal attention across frames to identify the relevant features for each one. To further
refine these features, the model employs a progressive representation and aggregation
network, scaling features down by factors of two up to four times using self-attention with
Transformers to focus on specific regions and then upsampling back to the original scale
and adding the features at the matching scale. A final convolution merges these features
to yield a three-channel HDR image. The authors also propose an alternative architecture
designed to reduce parameter counts at some cost in quantitative metrics. Their models
were trained on the Kalantari dataset and the Tel et al. [27] dataset. Their results highlight
the model’s efficiency, measuring memory usage and inference time for test images.

4.3.3. Convolution-Based Methods

Some methods seek to refine features exclusively with the Vision Transformer archi-
tecture, i.e., they do not employ alignment blocks or spatial or temporal attention blocks
for input features. In contrast, the methods described below simply extract image features
and concatenate them to carry out all relevant processing in the Vision Transformer blocks,
requiring the architecture to handle in some way the importance of the central frame
relative to over- and underexposed frames, as shown in Figure 9c.
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One example is the architecture proposed by Tel et al. [27], which extracts features
from each input frame through convolutional blocks. These features serve as input to
the Transformer blocks, being concatenated beforehand. The architecture performs the
self-attention typical of Vision Transformers but also the cross-attention between the central
frame and the other exposure frames to handle issues like blur, noise, and misalignment.
In the final stage, refined features are added to the central frame features, and a final
convolution reconstructs the HDR image.

Chi et al. [162] introduced a multi-scale architecture, reducing by a factor of two until
reaching eightfold reduction and then upsampling back to the original scale. A convolution
block extracts features from the initial frames at each scale, refining them with a vision
transformer specialized in multi-exposure feature fusion, including additional convolutions
after each transformer block.

Yan et al. [118], using a slightly different approach, propose a self-supervised network
for HDR reconstruction called SSHDR. Similar to others, the model extracts features from
each input frame using a convolutional layer. The features are then refined through a
SwinTransformers [163] architecture with a multi-scale structure. A final convolution
merges features into an HDR image. Furthermore, the self-supervised approach enables
training with LDR images, both with or without HDR references.

Table 5 summarizes all the cited architectures, highlighting the strengths and limita-
tions grouped under the three main methods. Table 6 shows the results of common HDR
metrics for Transformer-based architectures evaluated on the Kalantari et al. [30] dataset.

Table 5. Transformer-based architectures, with their strengths and limitations.

Category Architecture Strengths Limitations

Alignment-based HFT-HDR [156], KIM et al. [157],
HyHDRNet [159]

• Frame alignment
• Multi-scale refinement
• Patch-level alignment

• Supervised learning
• High computational cost

Attention-based CA-ViT [17], HDT-HDR [161], PASTA
[50]

• Spatial or
temporal-level attention

• Emphasis on global context
• Enhanced missing-

information reconstruction

• Complex processing
• High memory usage

Convolution-based SCTNet [27], SV-HDR [162], SSHDR
[118]

• Multiscale feature fusion
• Possibility of self-

supervised approach
• Better reconstruction

• Requires correctly exposed
images

• High inference time

Table 6. Summary of metrics for HDR reconstruction models based on Transformers using the
Kalantari dataset.

Architecture PSNR-µ SSIM-µ HDR-VDP2

CA-ViT [17] 44.32 0.9916 66.03

SCTNet [27] 44.49 0.9924 66.65

KIM et al. [157] 1 40.10 0.9619 75.57

HDT-HDR [161] 44.36 66.08 —

HFT-HDR [156] 44.45 0.988 —

PASTA [50] 44.53 0.9918 65.92

HyHDRNet [159] 44.64 0.9915 66.05

SV-HDR [162] 1 37.30 0.9826 —

SSHDR [118] 41.97 0.9895 67.77
1 Models that did not use Kalantari dataset.
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4.4. Diffusion Models for HDR Reconstruction

Diffusion Models [28] constitute a class of probabilistic models employing a parame-
terized Markov chain to produce data samples matching the training set distribution after
a finite time. DMs define a diffusion process in which Gaussian noise is gradually added to
data until the original signal is destroyed. The model then learns to reverse that diffusion
process, enabling the generation of samples resembling the training data.

Formally, the initial stage, called the forward diffusion process, takes a data sample
x0 and maps it through a series of intermediate latent variables x1, x2, . . . , xT [164]. In this
process, Gaussian noise ϵ is added step by step in each stage t following a variance schedule
{βt ∈ (0, 1)}T

t=1. The forward diffusion process is given by Equation (8).

q(xt | xt−1) = N (xt;
√

1 − βt · xt−1, βt · I) (8)

This process results in a sequence of latent variables that become increasingly noisy
until the original information is nearly completely lost in XT .

The second stage, called the reverse diffusion process, involves learning a model that
reverses this diffusion. The goal is to model the conditional probability of retrieving XT−1

from XT by using Gaussian conditional distributions. Each transition in the reverse process
is parameterized by a neural network estimating the mean µθ(xt, t) and variance βt [165].
The reverse diffusion process is defined by Equation (9).

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), βt · I) (9)

By iteratively applying these transitions, the model can reconstruct the original sample
x0 from noisy xT . Throughout this process, the model learns to generate new samples
consistent with the training data distribution [166].

DMs demonstrate substantial potential for HDR image reconstruction, especially
for their ability to learn from noisy data and generate coherent samples. By handling
uncertainties and variations in data, DMs stand out in scenarios where multiple LDR
images are combined to produce a single HDR image. The iterative structure of DMs allows
for continuous adjustment during reconstruction, refining pixel estimates and reducing
unwanted artifacts (ghost or luminous artifacts). However, this same iterative feature,
when used for large models to estimate entire images, becomes inefficient and impairs
real-time usage.

This method can be implemented as single-frame, multi-frame, or image enhancement.

4.4.1. Diffusion Models for Single-Frame

Bemana et al. [167] proposed an approach to generate HDR images from a single LDR
input image. This approach creates a sequence of LDR images, referred to as brackets,
which, when merged, produce an HDR image. Initially, pretrained DMs are used to produce
multiple exposures from a single LDR image. Next, an exposure consistency term couples
the different generated exposures, ensuring that the LDR images remain consistent with
one another. Additionally, the approach enables conditioning the HDR content generated
in saturated regions using text conditioning and image/histogram guidance combinations,
offering more control over image quality and the final tonal distribution of the HDR image.

Similarly, Dalal et al. [11] propose a Denoising Diffusion Probabilistic Model (DDPM)
architecture using classifier-free guidance. The proposed architecture uses an autoen-
coder to produce a latent representation of the LDR input image for conditioning the
HDR reconstruction. Furthermore, the authors introduce a hybrid loss function, weight-
ing reconstruction, and perceptual and exposure losses to improve convergence of the
proposed architecture.
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On another note, Goswami et al. [168] proposed the Diffusion Inverse Tone Mapping
(DITMO) approach, similarly aiming to generate HDR images from a single LDR. The
proposed method uses a saturation mask to identify saturated areas and a semantic mask
to classify objects in the image into different classes. With that information, the method
applies a diffusion-based inpainting process that hallucinates details in saturated regions,
employing a set of prompts associated with the classes identified by semantic segmentation.
Finally, multiple versions of the image are generated at different exposures and merged to
form the final HDR image.

4.4.2. Diffusion Models for Multi-Frame

The DiffHDR [19] architecture addresses generating HDR images from multiple LDR
exposures, focusing on mitigating ghost artifacts resulting from scenes with large motion
and saturation. HDR deghosting is treated as a conditional generative modeling task by
adopting Diffusion Models, including a Feature Condition Generator (FCG) and a Domain
Feature Align module, as shown in Figure 10. Furthermore, to mitigate the semantic
confusion caused by saturation in LDR images, the authors introduced a Sliding-window
Noise Estimator to smoothly sample noise in a patch-based approach. This method allows
the model to focus on local contextual information, avoiding artifact introduction from
ignoring correlation among adjacent patches.
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Figure 10. Simplified DiffHDR approach architecture.

Hu et al. [169] proposed the Low-Frequency Aware Diffusion Model (LF-Diff) ap-
proach to recover HDR images without ghosting artifacts from multiple LDR images at
different exposures with significant motion. The LF-Diff architecture consists of an align-
ment module, a model extracting low-frequency information, and a refinement module
combining this information with the output of a denoising UNet, which is a key component
in DMs. The main distinction of LF-Diff lies in its usage of low-frequency information to
guide HDR reconstruction.

4.4.3. Diffusion Models for Image Enhancement

Image enhancement is the process of improving image quality without losing informa-
tion, involving modifications of one or more image attributes such as contrast, brightness,
or noise. The LS-Sagiri architecture proposed by Li et al. [170] employs a two-module
approach to enhance LDR images. In the first module, a Transformer-based model [18],
Latent-SwinIR, that adjusts brightness and contrast, harmonizing color distribution. In
the second module, the generative refinement module, a ControlNet-inspired [171] ap-
proach with an extra parallel encoder is used. This parallel encoder works alongside the
Denoising UNet from RePaint [172], applying binary masks to highlight overexposed and
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underexposed regions and merging the latent input features with the refined feature map.
Additionally, the generative refinement module can function as a plug-and-play module,
allowing improved LDR enhancement for existing models.

On the other hand, Wang et al. [173] proposed integrating a diffusion model with
a physics-based exposure model for low-light image enhancement to predict a normally
exposed image from an underexposed one. The authors noticed that starting the restoration
directly from the underexposed noisy image rather than from purely Gaussian noise
reduced network complexity and the number of inference steps required. Furthermore, this
approach allowed for restoring images from any intermediate step of the diffusion process,
reducing the need for repeated denoising. The article also introduced an adaptive residual
layer enabling the proposed model to dynamically adjust its denoising strategies based on
local image features, taking into account the signal-to-noise ratio.

Table 7 summarizes all the different approaches and metrics presented in this section.

Table 7. Summary of performance for Diffusion Models.

Metric LF-Diff DiffHDR LS-Sagiri Zero-Shot Exp. Diff. Cond. Diff. DITMO

PSNR-l 44.76 44.11 — — — 16.97 —

SSIM-l 0.9919 0.9911 — — — — —

PSNR-µ 42.59 41.73 — — — 81 —

SSIM-µ 0.9906 0.9885 — — — — —

HDR VDP-2 66.54 65.52 — — — — —

HDR VDP-2.2 — — — — — 52.29 —

BRISQUE — — 19.72 — — — —

NIQE — — 20.31 2.34 — — —

TMQI — — — 0.8915 — — —

MANIQA — — 0.57 — — — —

CLIP-IQA — — 0.67 — — — —

NoR-VDP++ — — — — — — 54.337

PU21-Pique — — — — — — 8.789

4.5. HDR Video Reconstruction

Some existing methods for direct HDR video capture rely on dedicated hardware
solutions for that task, such as line-by-line exposure/ISO or internal/external beam
splitters [174]. A more practical alternative for reconstructing HDR video is, just as with
HDR image reconstruction, to use consecutive frames from an LDR video with alternating
exposures to generate the frames for the HDR video. Classical approaches to accomplish
this were initiated by Kang et al. [175], who introduced an algorithm to align neighboring
frames with alternating exposures to a reference frame with an intermediate exposure.
However, the motion among frames present in videos often leads to ghosting artifacts in
this method. Therefore, Mangiat and Gibson [176] improved this approach by introducing
block-based motion estimation and refining the result using color similarity and filtering.
Kalantari et al. [177] introduced an optimization approach based on patches that synthe-
sizes images at multiple exposures to reconstruct an HDR frame. These approaches usually
require considerable processing time for the optimization and still show ghost artifacts
from alignment inaccuracies.

With the progress in deep learning, various CNN-based HDR video reconstruction
models have been introduced, representing a significant leap in the quality of resulting
videos and mainly employing optical flow or attention blocks. Table 8 shows a quantitative
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comparison of state-of-the-art HDR video reconstruction methods, including three optical
flow-based models [30–32] and two attention-based models [33,34].

Table 8. Performance of HDR video reconstruction methods on the DeepHDRVideo dataset.

Methods
2-Exposure 3-Exposure

PSNRT SSIMT HDR-VDP-2 Time (ms) PSNRT SSIMT HDR-VDP-2 Time (ms)

Kalantari19 [30] 39.91 0.9329 71.11 200 38.78 0.9331 65.73 220

Chen [31] 42.48 0.9620 74.80 522 39.44 0.9569 67.76 540

LAN-HDR [33] 41.59 0.9472 71.34 415 40.48 0.9504 68.61 525

HDRFlow [32] 43.25 0.9520 77.29 35 40.56 0.9535 72.42 50

HDR-V-Diff [34] 42.07 0.9604 70.88 – 40.82 0.9581 68.16 –

Bold: best performance; Underlined: second best.

4.5.1. Optical Flow-Based Approaches

Currently, state-of-the-art methods for HDR video reconstruction mostly comprise
models relying on optical flow alignment. Kalantari et al. [30] introduced the first end-
to-end model of this kind, consisting of a flow network to align the LDR frames and a
weight network to merge them. Chen et al. [31] advanced alignment by incorporating
deformable convolutions after optical flow alignment. To further reduce flow estimation
errors in these methods, Xu et al. [32] proposed an approach with a more robust optical
flow estimation, surpassing other SoTA methods in public benchmarks [31] while also
being the first to reconstruct HDR video in real time. Figure 11 illustrates this model
architecture, featuring an optical flow network with large multi-size convolution kernels,
an HDR-domain alignment loss to supervise the flow network, and a sophisticated training
scheme combining real video datasets (Vimeo-90K) and synthetic ones (Sintel).
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Figure 11. HDRFlow architecture.

4.5.2. Attention-Based Approaches

Seeking to tackle limitations from flow estimation errors, which cause ghosting in
frames with complex motion or extreme saturation, some attention-based HDR video
reconstruction methods have emerged, including SoTA approaches such as the network by
Chung et al. [33] named LAN-HDR. This network aligns frames by computing a luminance-
based attention score to register the motion between adjacent LDR frames and the reference
frame. Guan et al. [34] recently proposed an HDR video reconstruction model using
diffusion, which is illustrated in Figure 12. The architecture is composed of a latent HDR
diffusion model that learns the prior distribution of individual HDR frames, a module for
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temporally consistent alignment that learns multi-scale feature alignment among frames,
and a reconstruction module that, with the help of a Zero-init Cross-Attention (ZiCA) block,
effectively integrates the learned information.
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Figure 12. HDR-V-Diff architecture.

Table 9 summarizes the main advantages and disadvantages of HDR video reconstruc-
tion methods discussed in the previous subsections.

Table 9. HDR video reconstruction models, with their strengths and limitations.

Category Model Strengths Limitations

Optical Flow-Based
HFT-HDR [31],
KIM et al. [157],
HDRFlow [32]

• Low inference time
• Highly effective in static or less

dynamic scenes
• Patch-level alignment

• Susceptible to distortions due to
inaccurate tracking under large
movements

• High computational cost

Attention-Based LAN-HDR [33],
HDR-V-Diff [34]

• Spatial and temporal attention
• Considers global image context
• Improved reconstruction in

missing-content areas

• Higher resource usage
• High memory consumption

5. Discussions and Future Perspectives
It is evident from the analysis of the current landscape that HDR reconstruction,

whether from a single frame (single-frame) or multiple frames (multi-frame), has advanced
significantly through innovations in areas such as network architectures (CNNs, GANs,
Transformers, and Diffusion Models), improved evaluation metrics, and the creation of
more robust datasets. This section discusses the main insights, current challenges, emerging
strategies, and future perspectives guiding the field.

5.1. State of the Art

The state of the art in HDR reconstruction has progressed considerably, featuring
methods ranging from classic approaches based on autoencoders and optical flow to more
complex techniques combining attention mechanisms and GANs. Below is a review of the
CNN-based models:

• CNN-Based Models: CNN-based approaches have long dominated the field and
remain highly relevant. Works like HDRCNN [8] and variants such as HDRUnet,
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HDRTV, and DCDR-UNet highlight the use of convolutional architectures, often
complemented by skip connections and deformable modules, to recover lost details in
overexposed and underexposed areas [41,45].

The HDRCNN architecture uses a loss function that separates illuminance and re-
flectance components, allowing for the adjustment of the relative importance of illuminance
through a weighting parameter. Subsequent models, regardless of the employed architec-
ture, frequently adopt variations of the L1 loss function, or even L1 itself, due to its proven
effectiveness and consistent performance in image reconstruction tasks. The models we
have examined are reviewed below:

• GAN-Based Models: The application of GANs, as seen in HDR-cGAN [138] and
GlowGAN [10], shows potential for producing photorealistic images thanks to the
adversarial generator’s ability to simulate nuances of exposure and contrast.
Typically, GAN models for HDR reconstruction analyzed in this review use a combina-
tion of loss functions. The classic adversarial loss (based on the minimax formulation or
variations like LSGAN or WGAN) encourages the generator to produce visually plausible
results that deceive the discriminator. However, to ensure fidelity to the input image con-
tent (LDR) and the reference (HDR ground truth, when available), this adversarial loss is
often combined with pixelwise reconstruction losses (like L1, which is preferred over
L2 to avoid excessive smoothing) and/or perceptual losses (like LPIPS), which measure
similarity in the feature spaces of pretrained networks, better capturing the structural
and textural similarity perceived by the human eye [26,138]. The relative weighting
between these losses is a crucial hyperparameter for balancing realism and fidelity.

• Transformer-Based Models: Initially prominent in NLP, Transformers have been
adapted for HDR image reconstruction in computer vision. Models like CA-ViT [17]
and HDT-HDR [161] employ self-attention mechanisms to enhance alignment and fuse
multiple exposures, achieving more accurate and detailed reconstructions. Typically,
the loss functions used in Transformer-based models for HDR image reconstruction
combine the classic loss function in the logarithmic domain with perceptual loss,
resulting in the form L1 + αLp [17,27,157,159,162], aiming to optimize both objective fi-
delity and the perceived visual quality of the reconstruction. However, although there
are proposals that employ loss functions based on Sobel filters aiming to maintain
structural details, the results obtained so far have not proven promising [156].

• Diffusion Models (DMs): Recently, new diffusion-based architectures have emerged
to address stability and training issues found in other generative methods. By itera-
tively adjusting pixel estimates, these models allow for the progressive refinement of
reconstructed images. In general, Diffusion Models applied to HDR reconstruction
use a loss function based on the L2 loss. The standard diffusion loss, different from
the traditional approach that uses information from the input image and the neural
network output, compares the noise added to the input data with the noise predicted
by the network [3,25].

In HDR video, approaches based on optical flow and attention blocks have effectively
reduced ghosting artifacts and maintained temporal consistency [30,33,34].

5.2. Current Challenges and Limitations

Despite notable advances, multiple challenges remain:

• Data Availability and Quality: The scarcity of extensive and varied datasets, especially
those capturing dynamic scenes with complex motion and diverse lighting, hinders the
training of robust models capable of generalizing to out-of-distribution (OOD) data [65,78].
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• Computational Complexity and Real-Time HDR: Advanced architectures, particu-
larly Transformer- and DM-based models, demand significant computational power
and memory, potentially hindering their use in real-time scenarios or on resource-
constrained devices like smartphones, drones, and AR/VR [10]. Achieving real-time
or near real-time performance is a critical requirement for many practical applications,
demanding efficient model designs and evaluation strategies that consider not only
quality metrics but also inference speed, computational cost (e.g., FLOPS), and mem-
ory consumption. In this regard, some works have advanced toward low-cost efficient
reconstruction like [32,178].

• Artifact Handling: Artifacts, including blur, ghosting, halos, noise, and misalignment,
remain formidable obstacles. Although alignment and fusion techniques have im-
proved, extreme movements and saturation can still produce visual imperfections in
HDR images [12,63].

• Real-World Generalization: Models trained on synthetic or rigidly controlled datasets
may fail to generalize to real-world scenarios where lighting and motion conditions
are highly variable [84].

• Metric Adaptation and Correlation: Metrics originally designed for LDR must be
revised or redesigned for HDR images, complicating the interpretation of results
and the standardization of evaluations. Furthermore, ensuring that objective metrics
accurately correlate with subjective human perception of HDR quality remains an
ongoing challenge.

5.3. Ongoing Solutions and Advancements

Several emerging strategies show promise in mitigating current challenges:

• Hybrid Architectures: Combining CNNs, Transformers, and DMs leverages the
strengths of each. Hybrid models like PASTA [50] integrate temporal and spatial
attention mechanisms, enhancing alignment and multi-exposure fusion while reduc-
ing artifacts and improving visual quality.

• Data Augmentation Techniques: Methods like neural data augmentation [88] and
HDR-LMDA [89] expand the diversity of datasets, increasing model robustness against
variations in exposure and lighting. They simulate different capture scenarios, im-
proving generalization capabilities.

• Self-Supervised and Unsupervised Models: Methods that reduce reliance on large
annotated datasets are gaining attention. Self-supervised models can learn represen-
tations from unlabeled data, simplifying training in data-scarce environments [50].
Approaches based on Large Language Models (LLMs), such as LLM-HDR, explore
self-supervised learning for unpaired LDR-to-HDR translation [179].

• Computational Optimization: Efforts to develop lighter and more efficient models,
such as RepUNet [122], aim to reduce computational costs without substantially
compromising HDR image quality. Techniques like pruning, quantization, and knowl-
edge distillation also yield more compact models suitable for real-time applications.
Hardware-based solutions, such as those using FPGAs and optimized lookup tables,
also represent viable paths to achieve real-time HDR video processing [178].

• Integration of Multi-modal Data: Incorporating depth, polarization, event cameras,
or other modalities can enhance HDR reconstruction by providing deeper scene
perception and facilitating exposure alignment and fusion.

• Better Loss Functions: New hybrid loss functions considering perceptual and struc-
tural aspects of HDR images are being introduced to guide model training more
effectively. Combining adversarial, perceptual, and reconstruction losses helps re-
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duce artifacts [41]. Losses guided by semantic information or human knowledge
(e.g., LLM-based loss) are also being explored [179].

5.4. Applications and Interdisciplinary Connections

Advances in HDR reconstruction have implications beyond image processing:

• Medicine: Images with higher exposure fidelity can reveal critical details for earlier
and more accurate diagnoses, aiding medical imaging.

• VR/AR: HDR reconstruction algorithms can enhance immersion and realism in virtual
environments, benefiting applications in entertainment, training, and simulation.

• Entertainment and Media: Televisions, monitors, and cameras using HDR technology pro-
vide richer visual experiences, increasing the impact of cinematic and advertising content.

• Autonomous Vehicles: Handling extreme lighting variations is crucial for vehicle
vision systems, improving environmental interpretation under adverse conditions.

5.5. Trends and Future Ideas

Future directions in HDR reconstruction promise exciting avenues:

• Multi-modal Models: Integrating information from different sensor modalities, such as
depth (from LiDAR/Stereo), polarization, or event cameras, can result in more robust
and accurate HDR reconstructions. Models leveraging multiple input modalities
could capture extra scene nuances, boosting HDR image quality, especially in complex
dynamic scenarios.

• Self-Supervised and Unsupervised Learning: Techniques that do not require mas-
sive annotated datasets are attracting greater interest. Self-supervised methods can
enable HDR reconstruction from unlabeled data, facilitating training in data-scarce
settings [50]. Unsupervised approaches, including those using cycle consistency or
domain adaptation, are particularly valuable for unpaired LDR–HDR datasets [179].

• Computational Optimization and Energy Efficiency: Developing lighter and more
efficient models that maintain high HDR reconstruction quality while reducing re-
source usage is a growing research area. Pruning, quantization, and knowledge
distillation will play a key role in creating models suitable for mobile and real-time
applications [122]. The exploration of new and efficient architectures, such as SSMs,
notably Mamba, which offer linear scaling and effective modeling of long-range de-
pendencies, could provide significant efficiency gains for high-resolution images and
video compared to traditional Transformers.

• Large Language/Vision Models (LLMs/LVMs): Integrating the perception and seman-
tic understanding capabilities of LLMs and LVMs presents an innovative direction.
These models can provide high-level guidance for reconstruction (e.g., identifying
objects/regions, suggesting enhancement styles), enable zero-shot or few-shot adapta-
tion to new scenarios, or serve as powerful priors or feature extractors within HDR
pipelines, especially for human-knowledge-guided unpaired data reconstruction [179].

• Standardization and Evaluation Protocols: Establishing consistent standards for HDR
data collection, labeling, and evaluation—both in terms of metrics (including their
correlation with human perception and real-time suitability) and benchmark datasets
covering diverse real-world scenarios—would facilitate fair comparisons and promote
collaboration within the scientific community [94].

• Advanced Transformers and Attention Mechanisms: The ongoing adaptation and
refinement of Transformers in vision tasks are poised to further enhance HDR re-
construction. More sophisticated attention mechanisms, considering relationships
between multiple exposures and overall scene structure, may lead to more detailed
reconstructions with fewer artifacts [17].
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• Enhanced Diffusion Models: DMs are growing as a viable alternative for generating
high-quality HDR images. Future studies will likely focus on reducing their computa-
tional complexity, making them more accessible for real-time use and deployment on
resource-constrained devices [28,34].

• Adaptive and Controllable Reconstruction: Future models may offer more user con-
trol, allowing for adjustments to tone mapping style, artifact tolerance, or region-
specific enhancement interactively, which could be possibly guided by semantic scene
understanding.

• Vision Mamba: This is an approach that maintains the high performance characteristic
of Transformers but with lower computational cost. Originally presented as Mamba,
the technique was extended to computer vision tasks, resulting in the variant called
Vision Mamba. This approach has demonstrated superior performance compared
to Transformers in various tasks, such as detection, segmentation [180], and image
restoration [181]. Future work may investigate the impact of Vision Mamba on the task
of HDR image reconstruction, especially in the feature enhancement stage, positioning
it as a promising candidate to replace Transformer-based architectures, which are
more complex and costly.

6. Conclusions
This review provided an overview of HDR image reconstruction methods, span-

ning classical CNN approaches to more recent GAN, Transformer, and diffusion-based
techniques. Beyond offering a taxonomy organizing these methods, we addressed their
applications, limitations, and how emerging advancements in data, metrics, architectures,
and strategies can expand the potential of each research line, bringing remarkable progress
toward making HDR more accessible and computationally economical. In summary, HDR
reconstruction continues to evolve rapidly, and future perspectives suggest convergent ap-
proaches, both fully supervised and auto/unsupervised, to achieve superior performance
in real-world scenarios. It is expected that combining ideas like some of those discussed
here, coupled with efforts for more efficient and standardized solutions, will accelerate
the maturity of these technologies and open new horizons for HDR applications across
increasingly diverse domains.
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