% applied sciences

Article

Reliability Assessment of Ship Lubricating Oil Systems Through
Improved Dynamic Bayesian Networks and Multi-Source

Data Fusion

Han Xiao 2, Liang Qi 1>*

check for
updates

Academic Editor: Ephraim Suhir

Received: 18 March 2025
Revised: 23 April 2025
Accepted: 6 May 2025
Published: 9 May 2025

Citation: Xiao, H.;Qi, L.;Shi,J.;Li,S.;

Tang, R.; Zuo, D.; Da, B. Reliability
Assessment of Ship Lubricating Oil
Systems Through Improved Dynamic
Bayesian Networks and Multi-Source
Data Fusion. Appl. Sci. 2025, 15,5310.
https://doi.org/10.3390/
app15105310

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

,Jiayu Shi !, Shankai Li !, Runkang Tang (¥, Danfeng Zuo ! and Bin Da !

Jiangsu Shipbuilding and Ocean Engineering Design and Research Institute, Zhenjiang 212100, China;
221210301124@stu.just.edu.cn (H.X.); 231110302116@stu.just.edu.cn (J.S.); 221210301111@stu.just.edu.cn (S.L.);
231110302117@stu just.edu.cn (R.T.); 231210301227@stu.just.edu.cn (D.Z.);

221210301206@stu.just.edu.cn (B.D.)

School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China

*  Correspondence: alfred_02030210@just.edu.cn

Abstract: The operational efficiency and reliability of the ship’s lubrication oil system
directly impact the vessel’s safety. Traditional reliability analysis methods struggle to
effectively handle the system’s dynamic characteristics and multi-source data analysis. To
address these issues, this study proposes an innovative method that integrates feature
dimensionality reduction, a dynamic Bayesian network of gravity model to improve the
accuracy of system reliability analysis. First, the proportional hazards model is used to
evaluate the operational reliability of each component, providing a quantitative basis for as-
sessing the system’s health status through failure rate estimation. Then, a dynamic Bayesian
network model is employed for overall system reliability analysis, fully considering the im-
pact of multi-state devices and different maintenance strategies. The proposed DBN-based
reliability assessment method achieves significant improvements over the traditional Fault
Tree Analysis (FTA). The reliability of the main lubrication oil system (GUB) increases from
0.169 to 0.261, representing a 9.2% improvement; under scheduled maintenance conditions,
the system reliability stabilizes at approximately 0.9873 after 0.4 x 10° h, compared to only
0.24 without maintenance. The proposed method effectively evaluates the reliability of the
lubrication oil system, and the maintenance strategy using this method can greatly improve
the reliability, providing strong support for scientifically guiding maintenance decisions.

Keywords: ship lubricating oil system; reliability analysis; proportional hazards model;
dynamic Bayesian network

1. Introduction
1.1. Background and Rationale

As a critical subsystem of the ship’s main engine and auxiliary machinery, the lubri-
cation system directly impacts the smooth operation of the ship. According to statistics
from the European Maritime Safety Agency (EMSA), accidents caused by lubrication sys-
tem failures represent a significant portion of engine-related failures, severely affecting
operational efficiency and safety [1]. Due to the complex operating environment of ships,
the lubrication system is subjected to high temperatures, high pressures, and prolonged
exposure to marine corrosion, making it vulnerable to wear, degradation, and sudden
failures. The International Safety Management (ISM) Code, established by the International
Maritime Organization (IMO), requires ship operators to develop maintenance systems and
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implement maintenance plans aimed at reducing lubrication system failures and ensuring
stable operations [2]. Therefore, conducting a reliability analysis of the ship’s lubrication
oil system is essential.

1.2. Literature Review

Early research on ship system reliability analysis primarily relied on the binary state
concept, where the system was either in normal operation or in a failure state [3]. Common
methods, such as Fault Tree Analysis (FTA) and reliability block diagram (RBD), were
used to assess the reliability of ship systems, providing valuable insights for system design
and fault detection [4]. Since equipment often operates under various states, such as
degraded or failure states, the binary state model cannot accurately represent the evolution
of equipment reliability [5]. As a result, some scholars have adopted methods like Markov
models and Generalized Generating Functions (GGFs) to assess the reliability of multi-
state ship systems [6]. However, these methods have their limitations. For instance,
the Markov method faces the issue of state explosion when analyzing multi-state systems
with numerous components [7].

To address these issues, Bayesian networks (BNs) have been applied to the reliability
analysis of lubrication systems. Ait Allal et al. [8] used Bayesian network modeling to
identify weak links and propose improvements, but their inference relied on preset data,
lacking real-time capabilities. Zhao et al. [9] combined Fault Tree Analysis (FTA) and BN
to analyze the ship lubrication system, identifying key components and recommending
backup monitoring, but their analysis was limited to the design phase. It could not achieve
real-time inference. With the increasing complexity of industrial equipment, static Bayesian
analysis methods struggle to meet the demands of real-time health monitoring. As an
extension of Bayesian networks, Dynamic Bayesian Networks (DBNs) can process time-
series data and capture dynamic changes in systems. DBNs not only inherit the advantages
of Bayesian networks in handling uncertainty but also reduce the number of conditional
probability table parameters compared to Markov models, addressing some of the state
explosion issues and making them suitable for complex reliability evaluation systems [10].
Additionally, the root nodes in DBNs can be divided into multi-state nodes, which effec-
tively describe the fault evolution of multi-state equipment and analyze the impact of
different maintenance strategies on system reliability. Currently, DBN-based reliability
analysis methods are widely applied in complex systems, such as train control systems and
underwater drilling trees, showing promising evaluation results [11]. Li et al. [12] proposed
a method for converting dynamic reliability block diagrams (DRBDs) into DBNs, demon-
strating their efficient analysis capabilities for large-scale critical systems. Gao et al. [13]
developed a DBN-based intelligent factory health assessment model, showing excellent
performance in equipment health-level prediction.

In recent years, multidimensional data analysis techniques have demonstrated signifi-
cant advantages in information fusion, fault pattern recognition, and condition assessment
within the field of complex system fault diagnosis. Jiang et al. [14] proposed a multi-
channel tensor fusion method, highlighting the strong coupling characteristics among
multi-channel sensors—such as temperature, pressure, and oil quality analysis—in marine
lubricating oil systems. Tensor-based modeling can more effectively capture high order
features of system operating states, providing a feasible basis for fault identification in
subsequent reliability evaluations by enabling the use of high dimensional classifiers such
as tensor machines. Xu et al. [15] developed an expert system for power transformer
fault diagnosis based on multidimensional data fusion and factor analysis. This system
achieves data fusion at the decision level and employs factor analysis to calculate fusion
weights, thereby improving diagnostic accuracy. The approach was validated on a 110 kV
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transformer. Orosnjak et al. [16] analyzed maintenance practice data from 115 enterprises
using hydraulic systems by employing machine learning models such as KNN, Ridge,
and SVR. Through model agnostic feature importance analysis, they identified variables
with significant impacts on system availability and sustainability and further established
a hypothesis testing mechanism to interpret the roles of these variables. This study em-
phasizes the importance of interpreting variable contributions within multidimensional
data, which is particularly critical for multi-source data modeling in marine lubricating
oil systems, due to the large number of variables and high data noise. Multidimensional
data analysis is central to robust fault diagnosis and reliability evaluation, laying a solid
foundation for advancing dynamic Bayesian network methodologies.

Selecting feature parameters from the signals of the ship’s lubrication system is crucial
for conducting reliability analysis. Zhengjia He et al. [17] proposed a method for oper-
ational reliability assessment based on the operational state information of mechanical
equipment. They established a mapping relationship between equipment operational state
information and reliability, calculated operational reliability, and introduced a reliability
assessment method for equipment operation under small sample conditions, using normal-
ized wavelet information entropy and damage quantification for identification. Guangyao
Ouyang et al. [18] proposed a second-order model analysis method, performing finite ele-
ment analysis on a local model with boundary conditions derived from overall calculations,
and conducted a reliability analysis for high-speed, high-power diesel engines. Chunwei
Zhu et al. [19] established a relevant prediction model using a Markov chain based on gear
transmission data, and employed mathematical methods to predict the reliability of gear
transmissions. Congcong Zhao [20] utilized a local cutspace arrangement algorithm to
reduce the dimensionality of high-dimensional feature vectors extracted from vibration
signals. They then applied a chaotic particle swarm optimization algorithm to estimate
parameters for the proportional hazards model (PHM), completing a reliability analysis
for structural components of train drive systems. Lang Cao et al. [21] determined the
feature parameter set required for reliability analysis of gearbox performance degradation
through experimental verification. Duan et al. [22] extracted distance evaluation factor
values from the frequency band energy using wavelet packet analysis, and used these as re-
sponse covariates for the Weibull proportional hazards model in gear reliability assessment.
Sun et al. [23] applied distance evaluation methods for dimensionality reduction on bearing
fault data, achieving objective identification of fault feature parameters for bearing fault
recognition. Lu et al. [24] introduced a new fault feature extraction method for rotating
machinery based on adaptive multi-wavelet and distance evaluation indices, improving
fault diagnosis accuracy. Selecting feature parameters from the signals of the ship’s lubri-
cation system is crucial for conducting reliability analysis. Single feature parameters are
insufficient to reflect the overall degradation characteristics of the lubrication system, while
an excessive number of parameters can affect the efficiency of subsequent reliability analy-
sis. Existing dynamic Bayesian theory faces challenges in accurately reflecting the system’s
actual operating conditions when analyzing multi-sensor parameters of the lubrication
system [25].

1.3. Aims and Objectives

In the modern ship power system, the lubricating oil system is a key subsystem to
ensure the stable operation of the main engine and auxiliary equipment, and its reliability
is directly related to the operation safety and life of the ship equipment. However, due to
the ship lubrication system usually operating in strong interference, high load, and variable
operating conditions, its complex structure includes multiple types of key components and
a large amount of sensor data, which makes the traditional reliability assessment methods
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face many challenges in dealing with dynamic degradation, multi-source data fusion,
and complex dependence between states. The traditional static model cannot reflect the
dynamic evolution process of the system running state, and the simple threshold judgment
cannot effectively deal with the noise, uncertainty, and fuzzy boundary in the signal.
In addition, the existing methods strongly rely on expert experience for state recognition
and health assessment, and lack scalable and data-driven modeling mechanisms, which
are difficult to adapt to the increasing needs of the intelligent operation and maintenance
of ship equipment.

In order to solve the above problems, this paper aims to construct a reliability evalua-
tion method of marine lubricating oil systems based on an improved dynamic Bayesian
network and multi-source data fusion. From system modeling, signal processing, feature
extraction, state recognition, probabilistic modeling to system level reasoning, a whole
process method framework running through the data layer and decision layer is proposed.
The goal of this study is to achieve the accurate identification of the lubricating oil system
operating state, dynamic reliability prediction, and operation and maintenance strategy
optimization. The experimental results show that the proposed method not only has good
accuracy in instantaneous availability evaluation but also shows strong scalability and
practicability in multi-state complex systems, which provides reliable data support and
decision-making basis for the health management and fault prevention of ship critical
systems. Finally, this paper hopes to promote the traditional reliability analysis from static
modeling to dynamic, data-driven, and intelligent direction, and provide theoretical basis
and engineering practice value for the efficient and safe operation of ship equipment.

Focusing on the reliability evaluation problem of marine lubricating oil systems in a
complex operation environment, this study proposes a multi-level analysis method that
integrates multi-source signal processing, feature dimension reduction, and a dynamic
Bayesian Network (DBN) enhancement mechanism, and constructs a dynamic reliability
modeling framework from equipment level to system level. This paper aims to realize
the accurate identification, health assessment, and maintenance decision support of a
lubrication system.

In the second part, the Methodology, the simulation model of the lubricating oil sys-
tem is constructed by AMESim software 2021.1, the EEMD algorithm is used to denoise
the multi-source sensor signals, and the nonlinear time-varying features are extracted
by combining wavelet packet analysis, and the automatic identification of the operation
state is realized based on K-means clustering. In the aspect of system reliability modeling,
a Dynamic Bayesian Network (DBN) based on a fault tree structure was constructed to
quantify the probability transition relationship of equipment state evolution over time,
and distinguish the state transition rate under the situation with and without maintenance.
Furthermore, the proportional hazards model (PHM) is integrated to model the indepen-
dent life of each key component, and the optimal failure distribution (Weibull, exponential,
or normal) is selected according to the historical life data.

In the third chapter, the experimental verification part takes a certain type of diesel
engine lubricating oil system as the object, and verifies the accuracy and effectiveness of
the proposed method in state discrimination, feature sensitivity assessment, and system
availability prediction through sensor-measured data and simulation results. It effectively
verifies the engineering applicability of the proposed method under multi-state equipment
and complex maintenance strategies. Sensitivity analysis further identifies high-impact
components such as electric pumps and turbopumps to provide a quantitative basis for
priority maintenance. The high consistency with the traditional reliability block diagram
and Monte Carlo simulation results also confirms the effectiveness of the proposed method.
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Chapter 4, the Conclusion section, summarizes the innovative results of this research in
high-dimensional feature dimensionality reduction, dynamic state recognition, multi-state
probabilistic modeling, and system usability evaluation. The research shows that periodic
maintenance can significantly improve system reliability, which verifies the advantages of
the DBN model in multi-state system modeling. At the same time, it is pointed out that
the current model still needs to be optimized in the face of more complex environmental
disturbances, sensor failures or missing data. In the future, the combination of digital twin,
the intelligent optimization algorithm, and multimodal fusion technology will be explored
to further realize the whole life cycle intelligent health management of ship key systems.

2. Methodology
2.1. Lubrication System Simulation and Component Introduction

By calculating the distance evaluation factors of various feature parameters, the stan-
dard deviation and absolute mean value of the fluctuation signal were selected as the
time-domain feature parameters to be used as response covariates in the Weibull propor-
tional hazards model [26]. The lubrication oil system plays a crucial role in diesel engines,
effectively reducing friction and wear while extending the machine’s service life. It is partic-
ularly suitable for large machinery, such as marine engines [27]. In this study, the Chinese
Zibo Power Co., Ltd.’s 6210ZLC/S-2 diesel engine lubrication oil system was selected as
the target system for reliability assessment, as shown in Figure 1. A simulation analysis was
conducted using the operating time and maintenance strategy of the diesel engine system.
The lubrication oil system operates under normal conditions for approximately 29% of the
year and undergoes scheduled maintenance once per year. The diesel engine lubrication oil
system consists of several critical components, including: the Power Unit Branch (PUB),
Generation Unit Branch (GUB), and Protection Device (PD). These components represent
critical subsystems that jointly determine the performance and reliability of the lubrication
oil system.

The lubricating oil power system plays a crucial role in power machinery and equip-
ment by providing essential lubrication, cooling, and safety protection. Its structure primar-
ily consists of three main components: the power unit branch, the generator unit branch,
and the safety devices. These components work in coordination to ensure the system’s
stability, reliability, and long-term operational efficiency.

The power unit branch is the core of the lubricating oil power system, primarily
responsible for delivering efficient and stable lubrication and cooling for power devices such
as steam turbines. By reducing mechanical wear caused by friction and high temperatures
during operation, it enhances the overall efficiency of the equipment. Within this branch,
the turbine lubricating oil pump serves as a key component, responsible for delivering
lubricating oil to various lubrication points while maintaining internal oil pressure balance.
This ensures that moving parts operate under an adequate oil film, allowing for smooth
and reliable functioning. Additionally, the power unit’s lubricating oil cooler facilitates
heat exchange and temperature regulation, efficiently reducing oil temperature to prevent
performance degradation or equipment damage due to excessive heat. Furthermore, this
branch strictly controls oil flow and pressure, ensuring consistent lubrication and cooling
effects under varying operating conditions.

The generator unit branch primarily serves the power generation system and consists
of key components such as the electric lubricating oil pump and the generator lubricating
oil cooler. The electric lubricating oil pump acts as an independent lubrication power source
for the generator set, ensuring a stable supply of lubricating oil to critical high-precision
rotating components, such as the generator rotor and bearings. This reduces frictional
losses and enhances both operational efficiency and equipment lifespan. During generator
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operation, the continuous variation in electrical load and mechanical friction leads to an
increase in oil temperature, which may compromise lubrication performance and system
reliability. To address this, the generator lubricating oil cooler utilizes an efficient heat
exchange structure to lower the oil temperature and maintain internal thermal stability.
This ensures that lubrication conditions remain optimal throughout operation.

The safety module is a critical safeguard in the lubricating oil power system, com-
prising components such as the oil return valve, elevated oil tank, and safety pressure
relief valve. These elements ensure the stable operation of the entire system while pre-
venting equipment failures or safety incidents caused by abnormal pressure, oil supply
interruptions, or excessive oil temperature. The oil return valve regulates oil flow pathways,
promptly recovering excess oil during operation and ensuring oil circulation to prevent
internal pressure imbalances or abnormal flow fluctuations. The elevated oil tank serves
as an emergency oil supply in case of sudden shutdowns or pump failures, maintaining
temporary lubrication to protect power equipment from damage due to inadequate lubri-
cation. Additionally, the elevated oil tank stabilizes oil pressure and balances system oil
supply, further enhancing operational safety and reliability. The safety pressure relief valve
automatically activates when system oil pressure exceeds safe limits, releasing excess oil
to reduce internal pressure and prevent potential equipment damage or accidents caused
by overpressure.

The structural design of this lubricating oil power system fully considers key aspects
such as the power unit, generator unit, and safety mechanisms. Through the seamless inte-
gration of these components, the system achieves precise control over oil flow, temperature
regulation, and pressure adjustment. This ensures stable and efficient operation across
various working conditions. The system not only enhances the reliability of power and
generator units but also extends the service life of the equipment. Moreover, it provides es-
sential safety protection in emergency situations, further strengthening the overall stability
and security of the system.

Figure 1. 6210ZLC/S-2 diesel engine.
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2.2. Simplification of Experimental Interference Factors

A lubricating oil system is composed of many components; its internal structure is
complex, the flow path is variable, and the system operation state is closely related to
environmental conditions. In order to improve the efficiency of modeling and the feasibility
of simulation calculation under the premise of maintaining reasonable accuracy of the
model, this paper makes some necessary simplifying assumptions on the system, aiming to
highlight the dominant influencing factors and avoid modeling redundancy and the waste
of simulation resources.

In this study, we ignored the influence of external environmental temperature and
ship operating conditions on the internal flow characteristics of the lubrication system.
This process is based on the following considerations: In most actual operation conditions
of marine ships, the lubricating o0il system is equipped with temperature adjustment and
pressure adjustment devices. There is a certain non-steady-state process in the early stage
of the system, but after entering the steady state, the temperature of the lubricating oil is
usually controlled in a relatively constant range (such as 60 °C-80 °C), so that the influence
of the viscosity change on the flow field tends to be stable. Therefore, considering the
fluid physical property disturbance caused by environmental factors is less sensitive to
the model results, and ignoring its influence, will not significantly weaken the simulation
accuracy but can significantly improve the simplicity of modeling. Inertia loss caused by
lubricating oil flow in the pipeline is also not considered in detail in the model. This is
because the influence of the inertia term is mainly reflected in the high-speed start and
emergency stop stage, the lubrication oil system mostly runs in the steady flow mode,
and the pressure fluctuation range is small. The contribution of the inertia term to the total
pressure drop is very small, which is far lower than the proportion of the along resistance
and the local resistance term, so it can be ignored in the steady-state analysis.

In addition, the loss caused by evaporation or small leakage at the interface during the
flow of the lubricant is omitted. Although this kind of loss is common in the actual system,
its volume flow rate is in the order of magnitude inferior to the overall circulating flow rate
of the system (usually less than 1% of the total flow rate), and it has little impact on the
system pressure, flow rate, and oil supply stability. Therefore, it is reasonable to ignore
these edge loss terms to ensure modeling efficiency and avoid introducing unnecessary
noise factors.

Regarding the structural complexity of pipelines, only the local flow resistance caused
by pipe segments with bending angles greater than 30° is modeled in this paper, and mi-
crobends smaller than this threshold are treated as equivalent straight pipe segments. This
is based on the engineering empirical law of fluid dynamics that the local drag coefficient
of a small-angle elbow is very low, and its contribution to the system pressure drop can
be almost ignored. The neglect treatment can simplify the node definition of the pipeline
network and the calculation process of the impedance matrix, thereby greatly improving
the simulation efficiency.

Although in practical application lubricating oil may be mixed with trace moisture or
solid particle impurities due to aging equipment, lax sealing, a harsh external environment,
and other reasons, the influence of such factors has not been considered in the simulation
modeling of this study. The entry of moisture and mechanical impurities is usually random,
and its concentration, particle size distribution, and entry time are difficult to accurately
quantify. In addition, the presence of such non-ideal substances will significantly affect
oil viscosity, density, and lubrication performance, and even induce local blockage, which
requires complex calculations, such as the multiphase flow model, particle transport model,
and imperfect-wall interaction model, and is beyond the modeling goal of “system-level
flow modeling and reliability analysis” as the core of this study. The main effect is the
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Main Oil Tank

long-term reliability evolution, rather than the transient flow effect: impurities and mois-
ture affect the chemical stability, corrosion, and equipment wear degree of the lubricity
more, and their effect gradually appears on a longer time scale. The AMESim software
framework adopted in this paper is mainly a single-phase fluid module, and the current
simulation scope has difficulty covering the water—oil particle multiphase synergistic effect.
Although the model system can be extended to support multiphase flow simulation in
theory, this operation will greatly increase the cost of parameter calibration and model
verification, and reduce the stability of modeling.

In this study, the AMESim software was used to construct a simulation model of the
lubricating oil system, which includes the flow process of the lubricating oil. Figure 2 below
illustrates the flow path of the lubricating oil, detailing its movement through the system
and the interactions between key components.

Turbine Oil Pump MamFI:tIIIa;netlc —» Main Oil Cooler —{ Main Oil Pipeline |—5 Main Load

Electric Oil Pump —»

Spare Magnetic
Filter

—» Spare Oil Cooler |— Spare Oil Pipeline — Spare Load

Figure 2. AMESim simulation of ship lubricating oil system.

The mathematical models of some key components are as follows:

Lubricating oil pump (Three-Screw Pump):

Flow rate is Q1 = (ATnyp)/60

where: Q;—theoretical flow rate of the screw pump, m?/s; A—flow cross-sectional
area of the screw pump, m? T—lead of the driving screw thread, m; n,—rotational speed
of the driving screw, r/min.

Lubricating oil cooler:

The logarithmic mean temperature difference (LMTD) is:

t/ _t// _t// _t/
A = ) = O 1) )

/ /

n (tfh - tfc)
t// _ t//
fh fc

where: t} C—cooling water inlet temperature, °C; t}’ C—cooling water outlet temperature, °C;

t}h—lubricating oil inlet temperature, °C; t}'h—lubricating oil outlet temperature, °C.

Valve:

The flow characteristic of the linear valve is Q = (%I + %) - Qmax-

where: [—valve opening degree; Q—flow rate at valve opening I, kg/s; Qmax—maximum
flow rate when the valve is fully open, kg/s; R—valve turndown ratio, a constant. The flow
characteristics of the percentage valve are: Q = RU-1) Qmax- The flow characteristics of the
quick-opening valve are: Q = 7”“5271)1

[1+(\/§71)I]2 Qmax-

Qmax- The flow characteristics of the parabolic

valve are: Q =

Comparison of simulation results: Under the same boundary conditions and operating
conditions, the calculation results of the Simulink model are compared with the simulation
results of the AMESIim model to verify the accuracy of the model. A comparison of some
simulation results is shown in Table 1. The data source is obtained from the literature [28].
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The lubricating oil is Chinese CH-4 15W-40 diesel engine oil of Kun Lun brand. The diesel
engine uses a 6210ZLC/S-2 diesel engine.

Table 1. Comparison of AMESim and Simulink simulation results.

Output Parameter AMESim Result Simulink Result Relative Error
Total Lubricating Oil Supply/(L/min) 48.52 48.49 0.062%
Main Oil Line Temperature/(°C) 56.09 57.69 2.77%
Gearbox Oil Supply/(L/min) 25.42 24.59 3.27%
Oil Pump Pressure/(MPa) 0.54 0.55 1.85%
Cooling Water Outlet Temperature/(°C) 69.59 70.05 0.657%

To enhance the modeling accuracy and the targeted reliability analysis of the diesel en-
gine lubrication system, this study explicitly defines a set of fixed lubrication oil parameters,
for use in the quantitative modeling of system operating characteristics and performance
evaluation. These parameters remain constant throughout the analysis and serve as bound-
ary input conditions that reflect the physical behavior of the lubricating oil under real
operating environments, directly influencing equipment wear, thermal balance, and failure
risk. The fixed parameters include a kinematic viscosity of 15.23 mm? /s at 100 °C, indicat-
ing the fluidity of the oil at elevated temperatures; a low-temperature dynamic viscosity
of 6410 mPa-s, which reflects the lubricant’s flow resistance and performance during cold
starts; a high-temperature high-shear viscosity of 4.6 mPa-s measured at 150 °C and 10°s~!
shear rate, ensuring the stability of the lubrication film under high load and shear stress;
and a pour point of —28 °C, which ensures sufficient fluidity in extremely low-temperature
marine environments. These fixed physical parameters not only represent the characteristic
performance of the lubricating oil but also provide a robust physical basis and engineering
constraint for the development of fault prediction models, state recognition algorithms,
and overall system reliability assessment frameworks.

2.3. Signal Preprocess and Determination of State Boundaries
2.3.1. EEMD Denoise Algorithm for System Signal

Due to the complex and dynamic operating environment of ship lubrication systems,
hardware information sensors are prone to various external disturbances, such as me-
chanical vibrations, temperature fluctuations, and electromagnetic interference. These
disturbances result in significant noise in the signals collected by the sensors, thereby
affecting the accurate assessment of the lubrication system’s status. Therefore, before data
analysis, it is essential to perform denoising on the sensor fluctuation signals to extract
more accurate operational state information.

Ensemble Empirical Mode Decomposition (EEMD) has demonstrated good perfor-
mance in denoising nonlinear, non-stationary signals [29]. Consequently, this paper uses
the EEMD method to preprocess the fluctuation signals collected by the lubrication sys-
tem sensors. The EEMD method decomposes the raw fluctuation signals into a series of
Intrinsic Mode Function (IMF) components and a residual term. The correlation coefficient
between each IMF component, residual term, and the original signal is then calculated
to assess their contribution to the original signal. IMF components and the residual term
with higher correlation coefficients are selected to reconstruct the signal, completing the
denoising process.

To verify the denoising effect of the EEMD method, a known signal X is first generated,
and noise is added to form a noisy signal Y. The noisy signal Y is then decomposed using
EEMD, resulting in five IMF components and a residual term (denoted as the sixth IMF
component). The correlation coefficients of each IMF component are then calculated.



Appl. Sci. 2025, 15, 5310 10 of 35

In order to determine the effect of the experimental signal, we simulated and designed
a signal with an interval of (—1, 1), and tested the effect by adding noise and denoising.

Figure 3(top) shows an idealized, noise-free original signal. The signal consists of
the superposition of two sine waves with frequencies of 10 Hz and 30 Hz. Its waveform
shows obvious periodicity and smoothness, which is representative of the “clean signal”
in signal processing. The horizontal axis represents time (in seconds) and the vertical axis
represents the amplitude of the signal. This plot is the reference point for all subsequent
signal processing and reflects the real characteristics and frequency structure of the sig-
nal. In practical applications, bioelectrical signals and mechanical vibration signals often
have similar characteristics but are often contaminated by the interference of the external
environment or measurement errors.

Figure 3(middle) illustrates the noisy signal obtained after adding white Gaussian
noise to the original signal. This kind of noise widely exists in the natural environment
and measurement system. It is characterized by strong randomness and a wide spectrum
coverage, and easily masks the structural information of the original signal. It can be
observed that the signal fluctuates violently, locally presents a random jitter phenomenon,
and the periodicity and structure become difficult to identify. The traditional filter has
difficulty completely removing this kind of noise without loss of signal characteristics.

Figure 3(bottom) shows the signal results after noise reduction by the EEMD method.
It can be clearly seen from the figure that the denoised signal recovers good smoothness
and periodic structure, and is significantly closer to the original state of the top figure than
the noisy signal, which verifies the effectiveness of the proposed method in retaining the
principal components of the signal and removing random disturbances.

0.0 0.2 0.4 0.6 0.8
Time (s)

Original Signal
1 | /\/\ /\/\
()
©
2 — .
= 07 — Original Signal X
E W W
<
_1 .
0.0 0.2 0.4 0.6 0.8 1.0
Time (s)
Noisy Signal
o 21— Noisy Signal Y
©
2
5 01
€
<
_2 .
0.0 0.2 0.4 0.6 0.8 1.0
Time (s)
EEMD
1 -
(]
: M M
-T‘i 0 - —— Denoised Signal
E vV V
<
_1 -
1.0

Figure 3. Signal processing procedure.
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By selecting the IMF components 4, 5 and 6 in Table 2, which have correlation coef-
ficients greater than 0.6, the signal is reconstructed. Comparing the reconstructed signal
with the original signal reveals that the two are highly consistent. This indicates that the
EEMD method, combined with the correlation coefficient approach, effectively denoises
the noisy original signal. The results demonstrate that the EEMD method is capable of
successfully reducing noise in the original signal, ensuring a more accurate representation
of the system’s operational state.

Table 2. The correlation coefficient between the IMF component after signal Y decomposition and the
original signal.

IMF Component Correlation Coefficient IMF Component Correlation Coefficient
1 0.1920 4 0.7332
2 0.0364 5 0.7825
3 0.0280 6 0.9212

2.3.2. State Boundary Identification

Fourier transform is a traditional tool for analyzing fluctuating signals, but it is not suit-
able for non-stationary and nonlinear signals. Wavelet packet analysis effectively handles
non-stationary signals and provides higher resolution in the high-frequency range, over-
coming the shortcomings of traditional methods. Therefore, this study employs wavelet
packet analysis to process operational parameter signals and combines it with K-means to
classify the extracted features and determine the component’s operating state.

Sensor signals contain a large amount of information reflecting the operating state of
the equipment and exhibit non-stationary and nonlinear characteristics. Wavelet packet
analysis is an effective method for analyzing such signals. By decomposing signals using
wavelet packets, distinct energy values can be obtained, which help distinguish signals
under different operating conditions. The wavelet packet method decomposes the signal
into a series of frequency bands of a certain width and then calculates the energy values
within each frequency band, making it highly suitable for extracting feature vectors from
the target signal.

After wavelet packet decomposition, each subband of the signal is independent and
non-redundant. Therefore, according to the law of energy conservation, we have

2k_1
En(x(t)) = ZO En (x®m) (1)) ()

where E, (x(t)) represents the total energy of the signal, x(t) is the original signal, k is the
decomposition level, m is the index of the sub-band, withm =0, 1, ..., 2k _1,E, (x(kf’”) (i ))
denotes the energy of the signal in the m-th sub-band, and AU (i) represents the discrete
signal within the m-th sub-band. If the original signal x(#) has a length of N, then the length
of the discrete signal in the m-th sub-band, x (k) (i), is 27N, and its energy is given by:

1 2°kN

(km) (7)) = (k) (

En(x*"(0)) = 5 L E (xm (i) 3)
After normalization, the relative energy of the signal in the m-th sub-band can be

expressed as

En (x5 (1))

Eulm) = =5 )

(4)
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According to the law of energy conservation, it is evident that 23,1:8 E,(m) =1. The
ratio of each sub-band’s signal energy to the total signal energy serves as a feature vector ¢,
which effectively characterizes the operational state of the equipment. It is expressed as:

[En (x<k/1> (i)), E, (x(ki) (i)),. .., En (x(k'm) (i))]
- EaGx(D) ©

After undergoing the aforementioned processing and decomposition, the collected

data from the equipment operation process can be used as feature inputs for classification
algorithms to perform the next step in state classification.

After performing wavelet packet decomposition on the sensor signals and extracting
the feature vectors ¢, K-means clustering is applied to classify the extracted features. First,
K cluster centroids are randomly initialized, where K = 4, corresponding to the four
operating states: the Normal Operation State (N), Initial Abnormal State (I), Degradation
State (D), and Severe Failure State (C). Then, each feature vector ¢ is assigned to the nearest
cluster center based on Euclidean distance. Each feature vector is assigned to the cluster
whose centroid is closest, and after assignment, the centroids are updated by calculating
the mean of all feature vectors in the cluster:

A= Yo ©

where Ny is the number of data points in cluster k, and ¢; are the feature vectors assigned
to cluster k.

After updating the centroids, the clustering assignment and centroid update steps
are repeated until convergence, meaning that the centroids no longer change significantly.
Once clustering is complete, each cluster corresponds to a specific operational state of the
equipment. The clusters help to classify the operating states of the equipment, and the
range of each cluster’s feature vector defines the operational state intervals.

2.4. DBN Analysis Model of Reliability

To discuss the reliability correlation of various components in the system, the DBN
analysis model is used for computation. A Dynamic Bayesian Network (DBN) is a prob-
abilistic distribution model that combines the structure of Bayesian networks with time
series principles [30]. The DBN can be defined as (Bj, B_;); B; is a Bayesian network that
defines the prior probability P(X7); and B_, is a two-layer time slice Bayesian network that
defines P(X; | X;_1). The probability relationship between (B, B_,) is P(X; | X;_1), which
is expressed as:

P(X: | Xi-1) H%tmm ) )

X(1j) is the i-th node at time t, Pa(X( ;) is the parent node of X(;; at time ¢,
and P(X(;;) | Pa(X(;;))) is the conditional probability of the i-th node given its parent node.
N represents the number of nodes in the Dynamic Bayesian Network (DBN).

A DBN defines the joint probability distribution over a finite time segment T by
expanding the 2-layer DBN, and the joint probability distribution over time segments
1to T is:

=

P(Xur) = ﬁ

=1i

P(Xe1Pa(X(es))) ®)

....
Il
—

T is the number of time slices; P (X(LT)) is the joint probability distribution of the
DBN from time slice 1 to T. The states of the ship’s lubrication system can be divided into
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the normal operation state (N), initial abnormal state (I), degradation state (D), and severe
failure state (C).

When the lubrication system is in the initial abnormal state (I), although the system can
still provide basic lubrication functions, it has already showed “abnormal signs” relative
to the normal state (N). These signs are often early warning signals of failure, that if not
handled in time, may lead to further deterioration in lubrication performance. According
to the working principle and common fault characteristics of the ship lubrication system,
these “abnormal signs” can be described more specifically as follows: Under the same
working condition, the temperature of the lubricating oil is higher than usual, indicating
that the heat of the friction pair increases or the cooling effect decreases. Lubricating oil
will be gradually oxidized or polluted during normal use. If there is a rapid color change
in a short period of time or the viscosity significantly deviates from the normal range, it
indicates that there may be oil deterioration or abnormal conditions such as impurities
and moisture. If the lubricating oil pressure or flow rate in the system shows significant
instability or periodic fluctuations, it may indicate an internal pipeline blockage, seal wear,
or abnormal pump operation. In general, the initial abnormal state (I) does not mean that
there will be a serious failure or shutdown of the equipment immediately, but the above
“abnormal signs” indicate that the lubrication performance has begun to degrade and need
to be checked and handled in time. For example: replace or replenish lubricating oil, clean
or replace the filter element, correct oil pressure and flow, check the wear of seals and key
components, etc. Otherwise, the system may deteriorate further in a short period of time,
enter a degraded state (D), and, eventually, a serious fault state (C), causing greater risks to
the safety and normal operation of the equipment.

In this paper, when using the Dynamic Bayesian Network (DBN) to analyze the multi-
state health factors of the ship’s lubrication system, the following assumptions are made:
The key components in the system are treated as root nodes in the DBN, and these nodes can
be in the N, I, D, or C states. In the Dynamic Bayesian Network (DBN) model established
in this paper, in order to describe the running health state of the ship lubrication system,
the key components of the system are modeled as root nodes, and each node can be in one of
the following four typical health states: N (Normal)—the normal operation state, indicating
that the lubrication system or its key components are running normally; without abnormal
indicators, all performance parameters are within the design range, the lubricating oil
quality is good, and the system is stable and reliable. I (Initial Abnormal)—the initial
abnormal state, indicating that the system is showing mild signs of abnormality but is still
functioning. This state often manifests as the temperature of the lubricating oil being high
but not beyond the limit; a slight fluctuation in oil pressure; an increase in trace impurities or
metal particles in the lubricating oil; equipment vibration; or noise being slightly abnormal.
Although these phenomena do not directly cause failure, they indicate that the system has
deviated from the normal operation track and may gradually degrade without intervention.
D (Degradation)—the degraded state, indicating that the lubrication performance has
decreased significantly, and some functions of the system have been affected, which may
pose a threat to the operation safety of the equipment. The common manifestations include:
oxidation deterioration in the lubricating oil; abnormal viscosity; sustained low oil pressure
or insulfficient oil flow; a continuous abnormal vibration or temperature rise; or the content
of metal abrasive particles in the oil increases rapidly. At this time, the system is already in
the stage of moderate failure, and if it is not maintained, it is very likely to further develop
into a serious failure. C (Critical Failure)—a serious failure state, indicating that the
lubrication system cannot continue to provide effective lubrication, or critical components
may be severely worn or even stuck due to a lack of oil or dry friction, which may lead to
equipment shutdown, damage, and other consequences.
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The lubrication system may randomly transition to the C state (severe failure state)
from any state; the state transition rate is constant and follows an exponential distribution,
which is used to model the system’s degradation process; the current degradation state
can be observed through lubrication-related monitoring parameters, and it is assumed that
the time of state detection can be ignored; and after scheduled maintenance, the system is
restored to a near-new state, meaning that the I and D states can be repaired to the N state
through scheduled maintenance, restoring lubrication functionality.

In Figure 4, we show the basic probability transition structure of the system. Other
state transitions are not impossible but can be calculated by the known probabilities in the
figure. Tables 3 and 4 list the complete transition probability matrix between each state,
including the maintenance and recovery paths from D — N and I — N. The transition
probabilities between all pairs of states can be consulted, and the model also fully considers
these paths during inference. Therefore, in order to avoid redundant lines in the figure
and affect the identification of the backbone structure, we only keep the state transition
directions that need to collect probability data in Figure 4, and the other state transition
probabilities can be deduced from the data in Tables 3 and 4.

A

Az

A1
Figure 4. State transition diagram of the root node in DBN.

The state transition process of the root node in the DBN is shown in Figure 4. The cor-
responding state transition equations for the ship’s voyage with maintenance are presented
in Table 3, while those without maintenance are presented in Table 4. The relationship
between the two tables is the calculation formula for the transition probabilities of various
states at time t to the states at time t + At. The structure of the DBN can be derived through
fault tree transformation. The interrelationship between the basic events and top events in
the fault tree can be converted into nodes and conditional probability tables (CPTs) in the
DBN. The dynamic changes in the nodes in the fault tree can be directly added as directed
edges between time slices, completing the expansion from time t to t 4+ At.

The CPT is calculated using noise AND gates and noise OR gates. The CPT calculation
formulas for the noise OR gate and noise AND gate are as follows P(Y | X1, Xp,..., X,) =
1=TTh<jen pj,P(Y | X1,X2,..., Xu) = ITi<j<n pj, Where p; is the probability that the child
node is in state C when the j-th node is in states I and D.
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Table 3. State transition relation of root node in DBN with maintenance.
t t+ At Formula t t+ At Formula
N N e~ (M2 tAs)At I C Ag(Ag+As) 7! (1 B e_(MHS)At)
N I MM+ Ag + A3) (1 — e (Mthatas)at D N 0
N D Ap(Aq + Ag + Az) 711 — e~ (thatAs)at D I 0
N C (M +Ay+A3) 7 (1 — e (hthatag)at D D e Mo
I N 0 D C 1— e A6t
I I e~ (AsTAg)At C N 1 — e~ At
I D As(Ag + A5)~1 (1 - e—WHs)Af) C I 0
C C e bt C D 0
Table 4. Relationship of root node state transition in DBN without maintenance.
t t+ At Formula t t+ At Formula
N N o~ (A2 +15)At D N Aa(Ag +As)~1 (1 _ e—(A4+A5)At)
N I MM+ Ag + A3) (1 — e (thatAs)at D I 0
N D MM+ Ap+Ag) 71— em(tAatAa)at D D e Mo
N C A3(Ar +Ag +A3) (1 — e~ athatAs)at D C 1 — e oAt
I N 0 C N 0
I I e~ (As+Aq)At C I 0
I D As(Ag+As) 7t ~(AatAs)At C D 0
I C Ag(Ag 4 As) 711 — e~ (RatAs)at C C 1

2.5. Multivariate Signal Processing of Components
Covariate Calculation Based on Feature Distance Evaluation

The lubricating oil system contains numerous sensor signals, and traditional Bayesian
networks (BNs) rely on predefined static conditional probability tables, making it difficult
to dynamically integrate multi-source heterogeneous data (such as sensor time-series data,
maintenance records, and environmental parameters); this is shown in Table 5 below.
Directly using all dynamic sensor data can lead to data explosion, resulting in an excessive
computational load beyond system capacity.

Time-domain statistical feature analysis of data focuses on analyzing the characteristics
manifested concerning time as the independent variable. Time-domain statistical features
can be used to calculate the magnitude, amplitude variation, and energy distribution of
the data, which can effectively reflect the operational status of the lubrication system.
Frequency-domain features, on the other hand, can reflect the dynamic characteristics and
changing patterns of the lubrication system [31].

Based on the above characteristics, to analyze the equipment’s behavior under different
operating states, the within-class and between-class distances of feature parameters are
calculated. The ratio of these distances is used as a distance evaluation factor. The greater
the value of the distance evaluation factor, the more sensitive the feature parameter is in
recognizing different operating states of the equipment, and it can represent equipment
degradation or failure information [32].
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Table 5. Signal for each part.

Component Name Relevant Signal Parameters

Turbine lubricating oil pump

Turbine lubricating oil pump inlet oil pressure
Turbine lubricating oil pump oil flow rate

Turbine lubricating oil pump outlet oil temperature
Turbine lubricating oil pump temperature

Power unit lubricating oil cooler

Total lubricating oil flow rate of the power unit

Power unit circulating cooling water flow rate

Main pipeline pressure of the power unit lubricating oil
Main pipeline temperature of the power unit lubricating oil

Electric lubricating oil pump

Total lubricating oil flow rate of the generating unit

Generating unit pump outlet pressure

Main pipeline pressure of the generating unit lubricating oil
Main pipeline temperature of the generating unit lubricating oil

Generator set lubricating oil cooler

Turbine generator unit inlet oil pressure
Turbine generator unit lubricating oil flow rate
Turbine generator unit outlet oil temperature
Turbine generator unit temperature

Return oil pressure

Return Oil Valve Return oil flow rate

Lubricating oil temperature

Overhead oil tank oil level

Overhead oil tank

Overhead oil tank oil temperature

Safety Pressure Relief Valve

Relief valve switch status
Relief valve vibration

2.6. Reliability Modeling of Marine Oil System

Let dl;, represent the between-class distance of the p-th feature parameter between
samples of different operating states, and d}; represent the within-class distance of the p-th
feature parameter between samples within the same operating state. The definition of
the operating state feature set is {q(m,t’p),m =12,...,Myt=1,2,...,T;p=1,2,...,P},
where t represents different operating states, p represents the types of feature parameters,
M; represents the number of feature parameter samples under the f-th operating state,
and ¢,  ») represents the m-th sample value of the p-th feature parameter under the ¢-th
operating state.

Calculate the average distance between different samples of each feature parameter
within a given operating state:

1

Wfﬁmm—n;%

M;
d( 3

M;
Yo mep) — G| ©)
1=1,I#m

where [ # m.
Compute the average within-class distance overall operating states:

W—lid (10)
P = P

The smaller the within-class distance, the more concentrated the values of the char-
acteristic parameters of the samples within the same state, and the higher the stability of
the features.
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Calculate the average value of each feature parameter under different operating states:

1 &
tr) = M, m; Q(m,t,p) (11)
Then, calculate the between-class distance between different operating states:

P

P TTo) st; [4(tp) = (s,p)] (12)

where s # t; the larger the distance between classes, the more significant the difference in
the mean values of the feature parameters between different states, and the stronger the

ability to distinguish between features.

: : ab . e

Calculate the distance evaluation factor A = |-7|, and quantify the sensitivity of
4

feature parameters to state classification.

Ideal features should satisfy: small intra-class distances (stable in the same class) and
large inter-class distances (significant differences between dissimilar classes).

Sort A, in descending order. Use the contribution rate-based inflection point monitor-
ing method to determine which A, to retain.

Normalize all data: /\}, = Ap/ 2521 Ap, and calculate the cumulative contribution:
C(k) = 21;21 fxp, k=1,...,P. Detect the inflection point of the cumulative contribution
1€
(1+C" (k)2)*/?

The inflection point k* corresponds to the maximum curvature (k). Features ranked

(maximizing the curvature criterion): x (k) =

1 to k* are selected as final covariates. The corresponding feature parameter type is used as
a covariate in the training and calculation of the proportional risk model.

Reliability Analysis of Individual Components

The proportional hazards model (PHM) can be used to establish a mapping relation-
ship between the equipment’s operational state information and reliability, allowing for the
reliability analysis of individual equipment. It has been widely applied in engineering.

(1) Normal proportional hazards model (NPHM)

If the normal distribution is chosen as the failure distribution function, the propor-
tional hazards model becomes the normal proportional hazards model (NPHM), with the
following expression:

h(t| Z) = ho(H)eP” (13)

where h(t | Z) is the hazard function (or hazard rate) given the covariate Z. hy(t) is the
baseline hazard function, representing the hazard rate in the absence of any covariate
influence. X is the covariate influencing the hazard rate, usually a vector. f3 is the model
parameter, indicating the effect of the covariate on the hazard rate.

(2) Exponential proportional hazards model (EPHM)

If the exponential distribution is chosen as the failure distribution function, the pro-
portional hazards model becomes the exponential proportional hazards model (EPHM)
expressed as:

h(t | Z) = AeP? (14)

where A is the baseline hazard rate (a constant). eP% represents the effect of the covariate on
the hazard rate. t is time.
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(3) The Weibull proportional hazards model (WPHM)

h(t,Z) = s (%) f leVZ where t is time, B is the shape parameter, # is the scale parame-
ter, Z is a vector of covariates that reflects the operational state of the equipment, i.e.,
Z = -[Z1,Z2,273,...,Z4)", and 7 is the regression parameter, v = [Y1,72,73, -, Tul,
which represents the extent to which the response covariates Z influence the equipment’s
failure rate.

The reliability function from the initial time to time t in the proportional hazards

model can be expressed as:
R(t| Z) = e~ Joh(s2)ds (15)

This function describes the probability that the system or equipment will continue
to operate without failure up to time t, given the impact of the covariates on the system’s
failure rate. For different components, the fault distribution function is not the same.

To determine the exact fault distribution type of each component, the historical full-life-
cycle experimental records of the components are used as the dataset; employ Maximum
Likelihood Estimation (MLE) to compute the log likelihood value ¢(8) for each model and
use the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for
model selection. The calculation process is as follows:

Assume we have a set of independent failure time data T = {f,t,,...,ty}, where
each t; represents the failure time of the i-th component, and they are independent and
identically distributed (i.i.d.). For different distributions, we formulate their probability
density functions (PDFs) and derive their respective log-likelihood functions to estimate
model parameters. The NPHM (Normal Distribution), EPHM (Exponential Distribution),
and WPHM (Weibull Distribution) have the following probability density functions f ()
and cumulative distribution functions F(t) .

Assuming that the lifetime follows a normal distribution A (y, ¢?), The cumulative

distribution function is F(f; u,0) = ® (ﬂ> , the survival function (reliability function) is

S(tu,o)=1— CID(t E ) and the log-likelihood function is:

N 1 (ti—;l)z N 2
KN 1/(}1, 0') = In e 272 = —Nln \/ 0' (16)
orma 1221 /271_0_ 1221

Assuming that the lifetime follows an exponential distribution with parameter A (i.e.,
mean lifetime 1/ ), its probability density function is f(t;A) = Ae~*, the survival function
is S(t;A) = e~M, and the log-likelihood function is:

N
Cap (A Z 1n( “f) — NInA—A Y ¢ 17)

i=1

By taking the derivative and solving for MLE, we obtain A = EN T
Assuming that the lifetime follows a Weibull distribution w1th shape parameter B
and scale parameter 7, its probability density function is f(t;8,7) = 4 ( )ﬁ e~/ the

survival function is S(£; 8,77) = e = (t/m)P , and the log-likelihood function is:

t.

t;

=1 _(4\P p
Cweivant (B, 1) Zln[ <17> 67(7) ] =NIng—Nlnyg+(—1) Zlnt —2(17) (18)

i=1

The MLE estimates 3,7 must be obtained numerically. AIC (Akaike Information
Criterion) and BIC (Bayesian Information Criterion) are used to evaluate model perfor-
mance. The formulas are AIC = —2¢(8) + 2k and BIC = —2¢(f) + kInN, where ¢(9) is the
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maximum log-likelihood value. k is the number of model parameters: NPHM (Normal):
k = 2(u,0). EPHM (Exponential): k = 1(A). WPHM (Weibull): k = 2(B,#). N is the

number of samples. The data calculated using this method are shown in Table 6.

Table 6. Model Selection Summary.

Component Name

Applicable Proportional Hazards Model

Main Failure Modes

Turbine lubricating oil pump

Weibull proportional hazards model

Bearing wear, seal leakage, impeller

(WPHM) damage (aging)
Power unit lubricating oil cooler Weibull proportional hazards model Scaling blockage, corrosion, reduced heat
& (WPHM) exchange efficiency (aging)
Electric lubricating oil pum Exponential proportional hazards model =~ Motor burnout, electrical control failure
& ot pump (EPHM) (random failure)

Generator set lubricating oil cooler

Weibull proportional hazards model
(WPHM)

Blockage, leakage, reduced heat exchange
efficiency (aging)

Return QOil Valve

Exponential proportional hazards model
(EPHM)

Sticking, spring fatigue, seal failure
(random failure)

Overhead oil tank

Normal proportional hazards model
(NPHM)

Sensor failure, sediment accumulation
(symmetrical lifetime distribution)

Safety Pressure Relief Valve

Exponential proportional hazards model
(EPHM)

Spring fatigue, seal leakage, valve failure
(random failure)

In this study, the reliability modeling of key components within the lubricating oil
system is based on appropriate proportional hazards models (PHMs), with failure modes
identified from both aging and random failure mechanisms. Although parameters such as
lubricating oil temperature, water content, and base number (BN) are not explicitly listed as
independent influencing variables, their effects are implicitly considered in the component-
level failure modeling. Specifically, these oil characteristics influence the degradation
mechanisms of system components. For instance, elevated oil temperature accelerates
bearing wear and seal aging in pumps and valves; water contamination contributes to
corrosion and scaling in oil coolers; and the decline in BN indicates lubricant degradation,
which is closely tied to component aging and reduced lubrication effectiveness. These
physical and chemical changes manifest as observable failure modes such as leakage,
blockage, and reduced heat exchange efficiency, all of which are accounted for in the
failure mode definitions of the respective components. Therefore, the state of the oil at
a component’s location is inherently reflected in its failure behavior and corresponding
hazard rate function. Modeling the 0il’s influence indirectly through component condition
and failure history avoids redundancy while ensuring that its impact on system reliability
is not neglected. This approach maintains the simplicity and focus of the model without
compromising its fidelity.

2.7. Bayesian Network Improvement

This method constructs a reliability Bayesian network based on FTA, and integrates
reliability information from multi-source data fusion using the forward and backward
propagation characteristics of dynamic Bayesian networks. Additionally, through cloud
models and scale-free network coupling analysis, it calculates the accuracy of the system
reliability analysis and clarifies the relationships between components. The aim is to better
assess the reliability of the ship lubricating oil system.
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2.7.1. Construction of a Reliability Bayesian Network Based on FTA

FTA has advantages such as qualitative reasoning of initial failures and event impacts
in complex systems, as well as simple modeling, making it widely used in the field of
reliability analysis. In this study, the qualitative deductive reasoning analysis of FTA is
integrated into the Bayesian network to construct FR-BN. Taking a key component of the
ship lubricating oil system as an example, the construction process of FR-BN is illustrated.
First, based on a fault analysis of the component, a fault tree model is established, which
consists of three main parts: Top-level event (E): represents the fault state of the component.
Intermediate events (u): represent the set of fault sub-nodes of the component, denoted
asu = {uy,uy,..., un}, where u;(i = 1,2,...,N) represents the i-th fault type, and N is
the total number of fault types for the component. Basic events (v): represent the set of
root nodes that reflect the symptoms of the component, denoted as v = {v1,vy,...,0,},
where v;(i = 1,2,...,n) represents the i-th symptom, and 7 is the total number of possible
symptoms reflecting the component’s condition.

2.7.2. Result Correction Based on Observational Data

To overcome the contradiction between the traditional DBN fixed transition rate
assumption and the time-varying characteristics of equipment degradation and the un-
certainty of maintenance effects in engineering practice, this paper proposes a correction
method based on real-time component reliability. By introducing the real-time reliability of
components as observational data and combining the bidirectional propagation characteris-
tics of a DBN, the system’s reliability prediction results are dynamically adjusted.

Using the unreliable reliability observation values R;() calculated by the method in
Section 2.4, a time-varying correction factor is constructed, as follows:

Ki(t) = a- (1= Ri(t)) (19)

where « is the correction strength coefficient, controlling the extent of adjustment made to
the prediction results based on observational data. In the previous DBN system reliability
evaluation method, the state transition rate Ax, ,x, .1 is determined by historical data.
Through the bidirectional propagation mechanism of forward and backward prop-
agation, real-time reliability data dynamically correct the inference process. Specifically,
forward propagation infers the future state of the system based on historical data and
the corrected state transition rates, while backward propagation corrects the current state
estimation based on real-time observational data. The forward propagation formula is:

N

P(Xi11]Xe) = [ [ P(Xps1,ilPa(Xiq,)) (20)
i=1

The backward propagation formula is:

Py aix (B) = P(Xea|Xh) - (14 Ki(8)) (21)

A grid search strategy is used to determine the optimal correction strength coefficient «,
and the root mean square error (RMSE) is used as the evaluation index. Experimental
results show that & = 0.3 is the most suitable choice.

2.7.3. Interval Analysis of FR-BN Variables Based on the Cloud Model

In FR-BN, there are a large number of symptom root nodes v; and their corresponding
component monitoring information nodes m;. This study leverages the advantages of
cloud model interval analysis to address the issue of state interval diversity caused by
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the “multivariate heterogeneity” characteristic of state monitoring information, thereby
improving FR-BN into pR-BN. The specific steps are as follows:

e Define a set of random variables { = {1, &2, ..., &y} and determine the initial state
space, where Gi=12,...,n represents the state of the monitoring information
node m; in FR-BN;

*  Define the number of discrete states for the interval as y, and partition the qualitative
domain D of the random variables into y subdomains [Dl, D,,..., Dy} . Each variable
generates a corresponding cloud model [Cy,Cy,...,Cy], where D;(i = 1,2,...,y)
represents the i-th subdomain corresponding to a specific state interval of the state
variable, and C;(i = 1,2,..., y) represents the i-th interval cloud model characterizing
the state interval of D;;

¢  For the state information cloud model with multiple variables and multiple intervals,
a cloud generator is used. The numerical characteristic parameters of each interval
cloud model C;, denoted as [XEyi, Xgui, XHeil (i = 1,2, ..., i), generate variable values
that satisfy the requirements of each interval. Here, xg,;,xg,i, and xp,; represent the
expectation, entropy, and hyper-entropy of C;, respectively;

¢  Substitute the cloud model parameters into the membership function for interval
analysis to obtain the membership degrees of different discrete states, denoted as
ui(i=1,2,...,N).

2.8. Data Processing Flow and Method

The technical route employed in this study is shown in Figure 5 below.
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Figure 5. Overall technical framework.
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3. Experimental Results

The experimental environment was set up on a Dell PowerEdge T640 tower worksta-
tion, equipped with an Intel Xeon Gold 6248R CPU (3.00 GHz, 2.99 GHz), 128GB RAM,
and running the Windows 11 operating system.

3.1. Denoise Preprocessing of Sensor Signals

Taking the daily cumulative amount of lubricating oil entering the turbo-lubricating
oil pump as an example, combined with the measured data and the empirically assumed
original fluctuation signal data of the lubricating oil system, it is assumed that the oil pump
turbine operates normally during the first 80 months, with a fault occurring between the
80th and 100th months, resulting in an increased amplitude of lubricating oil fluctuation.

The EEMD method was used to reduce the noise of the fluctuation signal, k = 0.2 and N
=100 were used to reduce the noise of the original vibration signal, and 14 IMF components
and the remaining items were decomposed. The remaining items were denoted as IMF15.
The correlation coefficient between the original signal and the IMF was calculated as shown
in Table 7.

Table 7. Correlation coefficient of original signal after EEMD decomposition.

Coefficient of Coefficient of Coefficient of
IMF Component Correlation IMF Component Correlation IMF Component Correlation
1 0.9417 6 0.0683 11 0.0014
2 0.1262 7 0.0061 12 0.0019
3 0.1503 8 0.0035 13 0.0026
4 0.1836 9 0.0040 14 0.006
5 0.1148 10 0.0010 15 0.0049

The correlation coefficient is chosen to be greater than 0 as described previously.
A positive correlation coefficient (greater than 0) indicates that the IMF component contains
some meaningful information related to the original signal rather than just noise. If the
correlation coefficient were negative or close to zero, it would mean that the IMF component
does not significantly contribute to the original signal or may even introduce artifacts,
making it unsuitable for reconstruction. The IMF1 component of 6 reconstructed the signal
to complete the noise reduction preprocessing of the original signal. The original vibration
signal and the signal after noise reduction are shown in Figure 6.
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Figure 6. Comparison diagram of sensor signal denoising.
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3.2. Dimensionality Reduction Preprocessing of Time Domain and Frequency Domain
Feature Parameters

The fluctuation signal is divided into two stages, which are the normal operation stage
from 0 to 80 months, and the stage of the gearbox operation fault from 80 to 100 months,
and the vibration acceleration amplitude increases sharply. The time domain and frequency
domain characteristic parameters of the vibration signals in the two stages are calculated,
respectively. The intraclass distance and interclass distance of the characteristic parameters
in the time domain and frequency domain in the normal operation state and fault state
are calculated, and the distance evaluation factor value of the characteristic parameters is
calculated based on it, and the results are shown in Tables 8 and 9.

Table 8. Each time domain characteristic parameter value and distance evaluation factor under

different running conditions.

Time Domain Characteristic Parameters Normal Failure Distance Evaluation Factor
4.5861 7.3958
Standard deviation 4.0433 9.3157 5.9720
3.3452 10.0678
19.1380 61.2737
variance 15.5499 82.5962 4.7736
13.8262 93.7664
10.6474 16.2266
Peak value 9.4719 17.1758 2.4520
10.9320 26.7617
3.5267 6.9092
Absolut 3.0921 7.9261 6.0793
sofute mean 2.6026 7.4857
4.1820 7.7753
Root 4.4395 8.9834 5.3709
oot mean square 3.3413 9.8353
0.3744 —0.8398
Mean value 0.4586 0.2229 0.4749
0.3371 0.3990
0.3320 0.0470
skewness 0.4397 —0.4461 0.4627
0.5806 0.3872
1.8478 1.7644
kurtosis 2.4754 2.1138 0.3190
2.5793 3.2862
10.8732 16.5552
Maximum value 9.3770 17.0674 2.5717
11.0391 26.9376
—0.1742 0.5286
Minimum value 0.0057 0.6916 1.0862
0.5071 0.6590

According to the structural analysis of the lubricating oil system, the fault tree of the
lubricating oil system is constructed. The reliability data in this paper are mainly from
simulation results, including normal operation (N state), repair state (I state), damage
state (D state), and deactivated state (C state) [33]. However, the upgrade process of faults
during the operation of the equipment cannot be ignored; therefore, the transition rate
of faults from state I to state D (A2 = A4) and from state N to state I (A1 = A5 = A6) are
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assumed to be equal in this paper. In addition, the data in IEEE STD-493 contain only two
states: normal operation and equipment failure [34]; therefore, this kind of equipment is
considered as binary nodes in this paper, that is, there are only normal states (N states) and
faulty states (C states). When the multi-state device is in state I and D, the probability of its
child node being in state C is obtained by judgment, and the relevant values are shown in
Table 10. The signals of each part are shown in Table 5.The fault tree is shown in Figure 7.

Table 9. Each frequency domain characteristic parameter value and distance evaluation factor under
different running conditions.

Frequency Domain

Distance Evaluation

Characteristic Parameters Normal Failure Factor
308.6667 368.2122
P1 769.4345 934.4990 0.2661
459.4171 533.5448
23,016.8406 145,680.8745
P2 222,145.9256 1,029,877.5849 1.0694
69,255.5283 248,311.4071
0.3389 —0.3178
P3 1.8584 —0.1908 2.3919
1.1854 —0.1857
2.9644 8.7022
P4 10.0102 7.2467 0.1371
4.7948 3.4943
1266.6140 1163.7718
P5 2512.4981 2348.9416 0.0011
3746.0745 3487.8604
1266.6140 1163.7718
Pe6 2512.4981 2348.9416 0.0010
3746.0745 3487.8604
1192.0432 1152.3006
P7 2575.5760 2592.5181 0.0010
3728.0676 3575.9603
7.3577 4.2680
P8 2.2600 2.2534 0.0658
21.5917 21.7248
3854.9987 1581.6570
P9 6309.6179 2441.5379 2.6607
4478.0834 1992.5765
3.0380 1.2276
P10 2.6595 1.0377 1.5447
1.2127 0.5349

In this paper, Genie Bayesian software (GeNie 2.3 academic) is applied to model this
system. According to the construction principle of the DBN structure, the fault tree of the
ship oil system is transformed into a DBN, and the conditional probability table of each
node in the DBN can be output. During DBN inference, the time interval At is set to 1 day
(24 h). The ship sails 29% of the time per year, or about 106 days. For the initial time period
t = 0, each device is completely reliable, that is, the prior probability of the root node is one.
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Figure 7. Fault tree of ship oil system.
Table 10. Reliability data.
Device ID A1 (Failures/h) A, (Failures/h) Aj; (Failures/h) H1 I D
(Repairs/h)
MP 63.08 x 10° 33.40 x 10° 19.10 x 100 0.0105 0.10 0.60
CP 38.78 x 10° 9.62 x 10° 27.08 x 10° 0.0505 0.05 0.80
SP 24.71 x 10° 18.54 x 10° 32.75 x 10° 0.0180 0.15 0.65
RV - - 1.16 x 106 0.0297 - -
HE - - 0.15 x 10° 0.0263 - -
PP - - 2.52 x 10° 0.0604 - -
AM - - 5.00 x 10° 0.0208 - -

The reliability of the system is measured by the instantaneous availability of the system
through the forward inference of the DBN. The specific process is as follows:

(1) According to the failure rate and repair rate of the equipment in Tables 2 and 10,
the state transition table of the root node in the DBN with maintenance during the
voyage can be obtained.

@)

According to the failure rate and maintenance rate of the equipment in Tables 3 and 10,

the state transition table of the root node in the DBN without maintenance during the
voyage can be obtained.

®)

The obtained state transition table with or without maintenance during navigation

is substituted into the root node, and the running time is set. The instantaneous

availability change of the system can be obtained by running the DBN model.

The transient availability of the ship’s marine oil system with and without maintenance

during the voyage is shown in Figure 8. It can be seen that the instantaneous availability
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of the marine oil system with maintenance during navigation was higher than that of the
marine oil system without maintenance during navigation. Therefore, maintenance during
navigation can effectively improve the reliability of the marine oil system.
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Figure 8. Comparison of system transient availability.

In order to accurately evaluate the reliability evolution characteristics of the ship main
oil system under the condition of no maintenance, this paper constructs a Dynamic Bayesian
Network (DBN) model based on system functional logic. The proposed method is compared
with the traditional static Fault Tree Analysis (FTA). By modeling the failure rate of key
components (including the main oil system GUB1 and the oil pump PUB1), the reliability
curves of their evolution with the running time are drawn as shown in Figure 9.

From the comparison results, it can be seen that the DBN method is significantly better
than the traditional FTA method in terms of system modeling accuracy, and can more truly
capture the dynamic redundancy strategy and state transition mechanism of the system.
Taking the main oil system GUBI as an example, its reliability at the end of the operation
cycle (e.g., 4 x 10*h) is 0.261 in the DBN model but only 0.169 in the traditional fault tree
model, with an improvement of 9.2%. The results show that the DBN can more accurately
model the logic of the cold standby pump starting up after the failure of two running
pumps, thereby avoiding the error of the traditional method that the standby pump is
continuously involved in the failure process.

Similarly, for the slip-oil pump PUBI, the modeling advantage of the DBN method
is more significant. Under the same running time limit, the reliability of the proposed
method is improved from 0.207 through the FTA method to 0.349, and the improvement is
as high as 14.2%. This reliability improvement is attributed to the advantages of a DBN in
modeling the multi-state characteristics of the oil pump and its backup logic, especially
when considering the nonlinear and non-independent state transition relationship, which is
more expressive. In addition, the DBN supports dynamic reasoning on the time evolution
of the system, which provides more reliable data support for preventive maintenance and
condition prediction of the oil system.

In practical ship operations, Scheduled Maintenance (SM) is a critical strategy to
ensure high system availability. To analyze the effect of maintenance strategies on system
reliability, this study further incorporates a maintenance rate parameter i into the DBN
model, allowing for dynamic updates of state transition probabilities. Specifically, for a
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component in a failed state, the probability of being repaired within a time interval At is
expressed as follows:

PIA(t+At) =1|A(t) =1] =1 — e M2 (22)

P[A(t+ At) = 0|A(t) = 1] = e M (23)

Based on the updated conditional probability tables (CPTs), the reliability evolution
of the system under scheduled maintenance is derived. As shown in Figure 10, taking
GUBI1 as an example, after the implementation of an appropriate maintenance schedule,
the reliability stabilizes around 0.9873 after approximately 0.4 x 10° h of operation, which
is significantly higher than the final reliability of 0.24 without maintenance. This indicates
that periodic maintenance can effectively slow down system degradation.
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Figure 9. Reliability curves of GUB1 and PUBI.

In conclusion, the proposed DBN-based reliability assessment method demonstrates
superior adaptability and accuracy compared to the traditional fault tree approach, par-
ticularly in handling redundancy logic, dynamic system behavior, multi-state modeling,
and integration of maintenance strategies. This makes it particularly suitable for complex
engineered systems such as the ship’s lubrication oil system, offering strong support for
health assessment and scientifically informed maintenance planning.

Since the input variables of the DBN are mainly calculated based on the failure rate and
repair rate of the equipment, the sensitivity of each piece of equipment is obtained by setting
the uncertainty of the failure rate of a single piece of equipment to 10%. The specific process
is as follows: keep the failure rate of other equipment unchanged, adjust the failure rate of
a single device to 110% and 90% of the original failure rate, and obtain the instantaneous
availability value of the system after the change in the failure rate of the device, as shown
in Figure 11. With the increase in the equipment failure rate, the reliability of the system
decreases. As the failure rate of equipment decreases, the reliability of the system increases.
The order of the influence of the failure rate of each piece of equipment on the instan-
taneous availability of the system is EOP > TOP > GSOC > ORV > SPRV > HFT > PUOC,
and the weakest equipment affecting the reliability of the system are the Main Pump, Heat
Exchanger, and Priming Pump.

According to the three axioms of a DBN, the established DBN model is verified and
analyzed. The failure probability of the root node TOP1 is set to 0.5, and after 106 days of
model operation, the transient availability of the marine oil system without maintenance
during navigation decreases from 0.811 to 0.690. On this basis, the initial failure probability
of the root node PUOCT is set to 0.5, and after 106 days of system operation, the transient
availability of the marine oil system without maintenance during navigation is reduced
to 0.628. The analysis results are consistent with the three axioms of a DBN, and the
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availability of the DBN model in this paper is verified. A reliability block diagram and
Monte Carlo simulation are widely used for reliability analysis of two-state or multi-state
systems. In this paper, this method is used to solve the instantaneous availability of the
system, and it is compared with the instantaneous availability calculated by the DBN
method to verify its effectiveness. The results are shown in Figure 12. The reliability block
diagram and the availability curve under the Monte Carlo method and the DBN method
are basically consistent, which verifies the effectiveness of the method.
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Figure 10. Reliability curve of main oil system under regular maintenance condition.
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3.3. Comparison of This Paper with Other Fault Diagnosis Methods

In the field of ship critical system reliability analysis, a variety of emerging technolo-
gies and methods have appeared in recent years, including neural network testing, system
Theoretical Process Analysis (STPA) combined with Fuzzy cognitive maps (FCMs), cog-
nitive uncertainty modeling of multi-state Bayesian networks, the AHP-FCE intelligent
state assessment method, and the GO-Bayesian network model. These methods have
their own characteristics and show strong fault diagnosis and prediction capabilities in
different scenarios.

Neural network methods have shown superior feature extraction and decision-making
capabilities, especially in fields with high safety requirements such as autonomous driving
and medical diagnosis. Their application in autonomous ship navigation and anti-collision
nature enhance the robustness of the system by means of mechanisms such as adversarial
testing and coverage testing. However, due to their “black-box” characteristics and difficult
to interpret internal mechanisms, the application of neural network models in complex
systems such as ship lubrication systems with high requirements for transparency and
reliability still faces challenges. In contrast, the fusion method of the PHM model, dynamic
Bayesian network, and cloud center of gravity model proposed in this paper not only has
strong data processing ability but also can clearly show the state transition and causal
relationship between components through Bayesian structure modeling, which has stronger
interpretability and dynamic modeling ability.

The combination method of STPA and FCM is based on control theory and is suitable
for risk analysis between Autonomous Sailing Ship (MASS) functional systems, which
reflects the failure probability of the system under steady-state conditions by identifying
unsafe control behavior (UCA) and potential causes. This method is more suitable for
function analysis at macro system level, especially for risk modeling at control logic level,
but it has less ability to deal with real-time state changes and multi-source information
fusion at the component level. In contrast, the proposed method not only quantifies the
change in failure rate of a single component, but also integrates multi-state and multi-
strategy information of the system to realize the dynamic reliability analysis from the
component to the system level.

Aiming at the epistemic uncertainty problem of multi-state Bayesian networks in prac-
tical engineering applications, some studies have combined the analytic hierarchy process
(AHP) and triangular fuzzy number methods to try to reduce the subjectivity introduced
by expert scoring. However, these methods still face the problems of high computational
complexity and low reasoning efficiency when constructing large-scale conditional proba-
bility tables. This paper adopts the dynamic Bayesian network structure and introduces
the fuzzy evaluation mechanism combined with the cloud center of gravity model, which
effectively alleviates the epistemic uncertainty problem in conditional probability inference
while maintaining the flexibility of modeling. Moreover, the dynamic update of historical
operation data can improve the inference efficiency and accuracy.

In addition, the AHP-FCE model shows good results in the state assessment of a
ship seawater system, and the scientificity of the assessment is improved by combining
the multi-level fuzzy comprehensive assessment after the state is identified by a neural
network. However, this method mainly focuses on static state recognition and multi-stage
information fusion, and has shortcomings in dynamic reasoning and system evolution
modeling. The PHM-Dynamic Bayesian Network—Cloud model proposed in this paper
not only realizes the life prediction and dynamic evolution simulation of unit components
but also simulates the system availability change for different maintenance strategies.
The results show that the system availability is 0.842 and 0.965, respectively, in the case of
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no maintenance and planned maintenance, which further verifies the effectiveness of the
model in practical applications.

3.4. Comparison with Existing Methods

In order to further verify the effectiveness and adaptability of the proposed method,
it is necessary to systematically compare it with the existing mainstream equipment fault
diagnosis and health assessment methods. In recent years, the health diagnosis method
combining feature engineering, dimension reduction technology, and multi-model combi-
nation has achieved remarkable results in the operation and maintenance decision making
of industrial equipment. For example, Martins proposed a health diagnosis method for
dry press rollers in the paper industry, which combines deep neural networks, principal
component analysis (PCA), k-means clustering, and Hidden Markov Models (HMMs) [35].
The three-state health classification of equipment (normal, early warning, fault) is success-
fully implemented, and the diagnostic ability of the method under the condition of a small
sample size and its generalization among multiple types of equipment are verified.

Compared with these methods, the proposed system reliability assessment framework
integrating feature dimension reduction, the proportional hazards model (PHM), a Dy-
namic Bayesian Network (DBN), and the cloud center of gravity model has the following
significant advantages. Firstly, at the feature processing level, we also use dimensionality
reduction techniques to improve modeling efficiency and reduce information redundancy.
However, compared with the traditional PCA method, the dimensionality reduction strat-
egy used in this paper focuses more on maintaining the physical meaning of key reliability
variables, which is helpful for the interpretability of subsequent models. Secondly, in the
aspect of fault modeling, HMM usually assumes that the state transition is a fixed Markov
process, which has difficulty dynamically integrating the influence of different equipment
states and maintenance strategies. On the other hand, dynamic Bayesian networks have
the ability to flexibly express the evolution characteristics of multi-state devices over time,
especially suitable for the temporal reasoning and uncertainty modeling of complex sys-
tems. In addition, the cloud center of gravity model introduced in this paper makes the
fuzzy assessment of the system health state possible, and makes up for the discrimination
difficulty of the pure classification model in the face of fuzzy boundaries (such as “critical
state”), thus improving the accuracy and robustness of the system state assessment.

Nevertheless, the method in this paper has some limitations. Firstly, the dynamic
Bayesian network model has a strong dependence on prior knowledge in the process
of structure learning and parameter training. If the system structure is complex or the
sensor coverage is insufficient, the performance of the model may be limited. Secondly,
although the cloud model can describe the fuzziness well, its parameter tuning process is
complex and easily affected by the sample size and quality. In addition, compared with
some end-to-end deep learning methods, the proposed method may put forward higher
requirements for computing resources and model integration at the deployment level,
and it is necessary to trade off accuracy and complexity in practical applications.

4. Conclusions
4.1. Research Conclusions

In this paper, the dimension reduction of the high-dimensional feature vector of the
fluctuation signal is completed by the method of distance evaluation feature dimension
reduction, and the operation reliability is analyzed by the Weibull proportional failure
rate model. In this paper, a DBN is used to establish the reliability evaluation model
of the ship marine oil system considering the multi-state equipment and maintenance
strategy. Based on the equipment decay evolution rule considering the influence of en-
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vironmental factors, the steady-state availability and average cost rate are specified to
optimize the process. As can be seen from the experiments in this paper, maintenance
during the voyage can effectively improve the reliability of the ship oil system and ensure
its safe operation. The failure rate of the ship lubricating oil system without mainte-
nance during the voyage is more sensitive to the failure rate of the equipment than that
of the ship lubricating oil system with maintenance during the voyage. The equipment
with higher reliability and a lower failure rate should be selected. According to the sen-
sitivity analysis, the order of attention to equipment in the marine oil system should
be: EOP > TOP > GSOC > ORV > SPRV > HFT > PUOC. Under the multi-objective model,
the influence of different environmental factors on the preventive maintenance time interval
was discussed quantitatively, including considering three cases of a good environment,
gradually deteriorating environment, and harsh environment. The results show that pro-
viding a good working environment for equipment is beneficial to prolonging the life
of equipment.

The proposed DBN-based reliability assessment method achieves significant improve-
ments over the traditional Fault Tree Analysis (FTA). Specifically, the reliability of the main
lubrication oil system (GUB1) increases from 0.169 to 0.261, representing a 9.2% improve-
ment. For the lubrication oil pump (PUBL), the reliability increases from 0.207 to 0.349,
with an improvement of 14.2%. Furthermore, under scheduled maintenance conditions,
the system reliability stabilizes at approximately 0.9873 after 0.4 x 10° h, compared to only
0.24 without maintenance. These results demonstrate the effectiveness of the DBN approach
in enhancing system reliability through accurate modeling and maintenance integration.

4.2. Implications of the Research

This research has profound implications at both theoretical and practical levels.
In terms of industrial practice, considering the multi-state characteristics and complex
environmental influences of the CNOOC system during ship sailing, the comprehensive
method based on distance evaluation feature dimension reduction and the Weibull propor-
tional failure rate model proposed in this paper can improve the quality of maintenance
decision making during the whole operation of the equipment under the premise of ensur-
ing the real-time reliability of the system. By integrating the dynamic effects of multiple
environmental factors on the deterioration process of equipment, and using a deep Belief
Network (DBN) to globally characterize the system failure mechanism and decay law,
this study provides a feasible analysis tool and quantitative basis for the operation and
maintenance management of offshore oil systems. This method not only finds and predicts
the risk points of key components in time during the long voyage of the ship but also
maximizes the availability of equipment and navigation safety under the condition of
limited resource allocation. At the same time, the research results have targeted guiding
value for industry practice, which can help shipping enterprises strike a balance between
cost and safety, and provide a scientific basis for management decisions such as equipment
selection and operation environment optimization.

At the level of academic research, this study proposes a new path for fault mechanism
mining and risk assessment of multi-state systems by integrating the dimensionality reduc-
tion method based on distance evaluation of feature vectors of high-dimensional fluctuation
signals with the reliability analysis based on the Weibull proportional failure rate model.
The traditional reliability research is mostly based on a single or a small number of charac-
teristic indicators, which has difficulty fully capturing the potential sensitive information
in high-dimensional complex signals. The dimensionality reduction strategy adopted in
this study not only effectively compresses the feature space dimension but also retains
the critical fault information, which makes the subsequent model training and analysis
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more accurate and stable. Combined with the application of the DBN model in multi-state
system reliability analysis, this study provides a new idea and technical breakthrough for
multi-state reliability modeling and analysis by quantifying the influence mechanism of
environmental factors on the equipment failure process and decline law. In addition, this
study deeply explored the impact of maintenance strategies on system availability and
economic benefits under different work situations, which provided theoretical support for
and empirical demonstration of the expansibility research of intelligent operation and fault
diagnosis theory in the field of ocean engineering.

The interdisciplinary characteristics of this study have certain implications for the
fields of ship engineering, operations research, information science, and complex system
analysis. By combining environmental evolution with the equipment decay process, a more
comprehensive and dynamic reliability evaluation model is constructed, which provides a
theoretical basis for subsequent research in application scenarios such as extreme ocean
environments and large complex integrated systems of ships. Through the effective di-
mensionality reduction of high-dimensional features and the deep learning of multi-layer
network structure, the feature extraction and state recognition method demonstrated in
this study can further promote the development of accurate fault diagnosis and the whole
life cycle maintenance management theory of complex industrial systems. The sensitivity
analysis and multi-objective optimization ideas adopted in this study have high reference
value for discussing a series of core problems in the academic research level, such as the
fault pattern recognition method of a multi-state system, optimizing the maintenance time
interval, and balancing safety and economy:.

Although this study proposed a new method system integrating distance evalua-
tion feature dimension reduction, Weibull proportional failure rate modeling, and deep
belief network (DBN) learning in the field of marine oil system reliability analysis and
maintenance optimization, and verified its certain advantages in theoretical modeling
and performance indicators through numerical experiments, it must be admitted that this
method still has obvious limitations in several aspects, which urgently need to be further
carefully improved in future research.

From the perspective of the scalability of the method, although the DBN has strong
nonlinear modeling ability and hierarchical feature abstraction ability, its computational
complexity will increase significantly when dealing with larger scale systems, heteroge-
neous device state evolution characteristics, and high-frequency real-time data streams,
which may lead to a long model training time and poor convergence stability. It is even
difficult to deploy in the edge computing environment with limited hardware resources.
In addition, the assumption of distance evaluation based on the feature dimension re-
duction method is that the distance metric with good discrimination in feature space is
representative in system health status classification. However, this assumption may not al-
ways hold in complex practical scenarios where multi-source heterogeneous signals coexist,
which may cause the loss of key fault features in the process of information compression.
Furthermore, it affects the accuracy of the overall reliability assessment.

At the level of practical engineering application, the proposed method faces practical
challenges such as a strong dependence between data acquisition and labels, and difficulty
in accurately quantifying system parameters. Although this study considers the failure
law evolution of equipment under different environmental conditions, due to the highly
nonlinear environmental disturbance and the lack of prior statistical distribution in real
sailing conditions, the environmental parameter modeling faces great uncertainty in actual
deployment, which can easily cause misjudgment and false alarms. In addition, the deep
learning model highly depends on the quality of historical data samples and the accuracy of
labeling. However, in the shipping industry, a large number of operation and maintenance



Appl. Sci. 2025, 15, 5310

33 of 35

data are missing, lagging, or not standardized, which weakens the generalization ability
and robustness of the model.

4.3. Research Prospects

The reliability analysis and prediction technology of the marine lubricating oil system
plays an irreplaceable role in the intelligent operation and maintenance system. However,
there are still many challenges and much room for improvement in the current research.
Future research will focus on multimodal data fusion, intelligent optimization algorithms,
dynamic decision-making modeling, and system-level health management, so as to improve
the intelligent level of ship operation and maintenance and ensure the safety and economy
of ship operation.

In the aspect of system reliability evaluation, the traditional Weibull proportional
failure rate model has certain parameter dependence, which cannot fully represent the
dynamic failure mode of complex systems. Future research can explore reinforcement
learning and meta-learning strategies, and dynamically update key failure mode parame-
ters based on Reinforcement Agents to construct an adaptive failure mechanism modeling
framework. At the same time, the degradation modeling methods based on non-stationary
random processes, such as Markov Decision Process (MDP) and Particle Filtering, are
constructed to realize the degradation evolution prediction of equipment under complex
environmental factors.

At the decision level of operation and maintenance optimization, the current optimiza-
tion objectives of maximizing steady-state availability and minimizing average cost rate
still have certain lags and limitations in extreme operating conditions and sudden failures.
Therefore, future research can combine Game Theory and the multi-objective evolutionary
algorithm (MOEA) to establish a robust operation and maintenance optimization strategy
adapted to a multi-scale operating environment. In addition, an intelligent operation and
maintenance system based on the Digital Twin architecture is constructed to realize the
intelligent control of the whole life cycle from sensor data acquisition, health status analysis,
fault prediction to decision optimization, and provide global optimization decision support
for the operation and maintenance of intelligent ships.
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