
Academic Editors: Young-Gab Kim

and Marco Mamei

Received: 11 February 2025

Revised: 30 April 2025

Accepted: 6 May 2025

Published: 9 May 2025

Citation: Qian, J.; Zheng, W.; Lu, X.;

Li, Z. Unknown IoT Device

Identification Models and Algorithms

Based on CSCL-Siamese Networks

and Weighted-Voting Clustering

Ensemble. Appl. Sci. 2025, 15, 5274.

https://doi.org/10.3390/app15105274

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

applied
sciences

Article

Unknown IoT Device Identification Models and Algorithms
Based on CSCL-Siamese Networks and Weighted-Voting
Clustering Ensemble
Junhao Qian 1, Wenyu Zheng 1,2, Xulin Lu 2 and Zhihua Li 1,2,*

1 School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
qjhao@jiangnan.edu.cn (J.Q.); wyzheng1015@163.com (W.Z.)

2 School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214112, China;
18360896220@163.com

* Correspondence: zhli@jiangnan.edu.cn

Abstract: Current methods for identifying unknown Internet of Things (IoT) devices
are relatively limited. Most approaches can identify only one type of the unknown IoT
devices at a time and with a relatively low accuracy. Herein, we propose a method for
unknown IoT device identification (UDI) based on cost-sensitive contrastive loss (CSCL)-
Siamese networks and a weighted-voting clustering ensemble (WVE). First, we integrate
data visualization techniques with a permutation sample-pairing strategy to generate a
complete and nonredundant set of positive–negative sample pairs. Then, we present an
algorithm to generate permutation positive–negative sample pairs to provide a rich set
of contrastive training data. To overcome the bias in the decision boundary caused by an
insufficient number of positive sample pairs, we developed a Siamese network based on
CSCL. The CSCL-Siamese network is used to identify known IoT devices and establish an
embedded vector database for known IoT devices. Next, we extract the embedding vectors
of unknown IoT devices using the trained CSCL-Siamese network and the embedded vector
database. Finally, combining weighting factors with a voting ensemble strategy, we develop
a UDI algorithm based on a WVE. This presented algorithm integrates the clustering
capabilities of multiple unsupervised clustering algorithms to perform clustering on the
extracted embedding vectors of unknown IoT devices, thereby enhancing the identification
capability of the CSCL-WVE-UDI method. Experimental results demonstrate that the
CSCL-WVE-UDI method can effectively identify multiple types of unknown IoT devices at
the same time.

Keywords: network traffic; positive and negative pair samples; ensemble learning; unknown
IoT device identification

1. Introduction
According to the International Data Corporation (IDC), the world’s total data volume

will reach 175 zettabytes (zettabytes) by 2025. About 80% of these data is generated by
smart sensors, mobile terminals, industrial devices, etc. [1]. This development trend
highlights the immense potential of the IoT device market and suggests that IoT technology
will revolutionize multiple industries. However, both academia and industry agree that
IoT devices have weak security defense capabilities owing to their low computing power
and limited storage capacity [2]. This inherent limitation of IoT devices is one of the main
causes of information and network security risks in IoT systems, particularly in areas

Appl. Sci. 2025, 15, 5274 https://doi.org/10.3390/app15105274

https://doi.org/10.3390/app15105274
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app15105274
https://www.mdpi.com/article/10.3390/app15105274?type=check_update&version=1

Appl. Sci. 2025, 15, 5274 2 of 34

such as cross-network attacks targeting IoT devices connected to the Internet, IoT-botnet
attack detection, and network-attack traceability. Accurate identification of IoT devices
is critical in these contexts because appropriate network defense strategies and technical
methods can only be selected through the accurate identification of device types and their
communication protocols. Nevertheless, most current IoT device identification methods
focus on recognizing known IoT devices in closed environments and struggle to adapt
to the continuously evolving open environments. Furthermore, these methods fail to
automatically update their models to identify unknown IoT devices [3], thus highlighting
the need for conducting studies on the identification of unknown IoT devices.

Researchers have conducted a series of studies in recent years to identify unknown
IoT devices in open environments. The authors of [4,5] adopted Siamese networks as the
training model. They first identified known IoT devices and constructed an embedded
vector database for them. Subsequently, the embedding vectors of unknown IoT devices
were checked against the database, with identification performed based on a predefined
similarity distance. The author of [6] demonstrated the capability of Siamese networks in
reducing model retraining. To identify unknown IoT devices, the author of [7] employed a
convolutional neural network (CNN) model and a triplet loss-minimization function to
generate embedding vectors of unknown IoT devices; subsequently, they classified the
vectors using the k-nearest neighbors (KNN) algorithm. The author of [8] proposed creating
a separate identification model for each type of known IoT device, which was matched
against unknown IoT devices to filter out their traffic data. The filtered data were further
clustered using the ordering points to identify the clustering structure (OPTICS) algorithm
to identify unknown IoT devices. However, the methods above for unknown IoT device
identification (UDI) present several limitations. In [4,5], the reliance on similarity distances
for identifying unknown IoT devices limits the ability to distinguish multiple types of
unknown IoT devices in one attempt. Although the KNN algorithm employed in [7] can
identify multiple types of unknown IoT devices, it requires prior knowledge regarding the
number of unknown devices and their corresponding data, which is typically unavailable
in open environments. In [8], considering the identification model was trained for each IoT
device individually, the training overhead increased exponentially with the number of IoT
devices. Moreover, these methods generally overlook the learning potential of multiple
clustering algorithms and fail to effectively integrate them for the clustering-ensemble
identification of unknown IoT devices. To effectively identify various unknown IoT devices
in open environments, we first combined data visualization techniques with a permutation
sample-pairing strategy to generate a set of permutation positive–negative sample pairs
(PNSPs). Then, to mitigate the bias in the decision boundary caused by the insufficient
number of positive sample pairs, we cast cost-sensitive factors into the contrastive loss
function to establish a Siamese network based on cost-sensitive contrastive loss (CSCL). This
network is trained to identify known IoT devices and build an embedded vector database
for them. Next, the embedding vectors of unknown IoT devices are extracted using the
trained CSCL-Siamese network and checked against the embedded vector database. Finally,
to integrate the clustering capabilities of multiple unsupervised clustering algorithms, we
improve the voting ensemble strategy by employing weighting factors. This approach
combines multiple unsupervised clustering algorithms to perform the clustering-ensemble
identification of unknown IoT device embedding vectors, thereby helping identify various
types of unknown IoT devices.

In summary, we propose a method for UDI based on CSCL-Siamese networks and
a weighted-voting clustering ensemble (WVE). The CSCL-WVE-UDI method generates
contrastive training data by combining data visualization techniques with a permutation
sample-pairing strategy and uses cost-sensitive factors and a contrastive loss function to

Appl. Sci. 2025, 15, 5274 3 of 34

design the CSCL-Siamese network for training on the contrastive data, thus achieving
known IoT device identification and realizing an embedded vector database. Next, the
CSCL-Siamese network and database were used to extract the embedding vectors of
unknown IoT devices. Finally, a clustering-ensemble learning algorithm was proposed
using weighting factors and a voting ensemble strategy to cluster the embedding vectors of
unknown IoT devices, thus enabling the identification of various unknown IoT devices.
The main contributions of this paper are as follows:

(1) An algorithm for generating PNSPs, which establishes a set of PNSPs by combining
data visualization techniques with a permutation sample-generation strategy, is
proposed. This algorithm ensures that each sample is fully utilized, thus mitigating
the issue of reduced identification performance caused by underutilized datasets.

(2) A Siamese network based on cost-sensitive contrastive loss (CSCL-Siamese) is pre-
sented. By improving the classical contrastive loss function, using the Manhattan
distance as the similarity metric, and leveraging the disparity between counts of
positive and negative sample pairs, this approach assigns greater weighting factors
to the positive sample pairs to increase their loss cost, thus addressing the issue
of decision boundary bias toward negative sample pairs caused by an insufficient
number of positive sample pairs.

(3) A UDI algorithm based on a WVE (WVE-UDI) is developed. By combining weighting
factors with a voting ensemble strategy, this algorithm integrates the clustering results
of multiple unsupervised clustering algorithms, thus overcoming the limitations
of individual clustering algorithms and improving the capability for identifying
unknown IoT devices.

(4) Finally, the algorithms above are integrated into the CSCL-WVE-UDI method for
UDI. Experimental results show that the CSCL-WVE-UDI method can effectively
identify multiple types of unknown IoT devices.

The rest of this paper is organized as follows. Section 2 reviews the existing methods
for IoT device identification, discusses their limitations, and highlights opportunities for
improvement through collaborative learning and clustering ensembles. Section 3 shows
the CSCL-WVE-UDI scheme, detailing its logical architecture and workflow. Section 4
performs an evaluation of the prototype on benchmark datasets (Aalto, UNSW, LSIF) and
compares it with the other methods. Section 5 derives the conclusions.

2. Literature Review
To identify unknown IoT devices in open environments, the author of [4] proposed

an IoT-Siamese method for identifying unknown IoT devices. The IoT-Siamese method
first reconstructs raw traffic packets into continuous flow data and removes all link-layer
fields from the flow. Next, it extracts the first 100 bytes of each packet to construct device
fingerprints. Subsequently, a Siamese network is trained on the fingerprints of known
IoT devices, and the trained model is saved to establish an embedded vector database for
known IoT devices. When new traffic data are received, they are input into the pretrained
Siamese network to obtain embedding vectors, which are then checked against the known
IoT device embedded vector database by calculating the shortest average similarity distance
to determine if the device is unknown. Experimental results show that, even for small
traffic volumes, the IoT-Siamese method can effectively identify IoT devices, although
the identification accuracy for some unknown IoT devices is less than 50%. Furthermore,
this method requires training a separate Siamese network for each new unknown IoT
device, significantly increasing the training overhead. The author of [5] proposed a UDI
method based on Siamese networks. Specifically, a Siamese network is utilized to learn
the relationships between known IoT devices and generate an embedded vector database

Appl. Sci. 2025, 15, 5274 4 of 34

of known IoT devices. When an unknown IoT device joins the network, its traffic data
are input into the pretrained Siamese network to generate embedding vectors, which are
then matched with the database using the nearest distance, thus reducing the necessity
for frequent model retraining due to device updates. The author of [6] evaluated the
performance of the Siamese network on different datasets and verified its ability to identify
IoT devices with different traffic patterns when new devices are added to the network.
However, a significant drawback of the methods presented in [5,6] is their inability to
determine the number of unknown IoT device types in the network under the participation
of multiple unknown devices. Although these methods can identify unknown IoT devices,
they require training separate network models for each device type to distinguish specific
types. To identify different types of IoT devices, the author of [7] proposed a method for
identifying unknown IoT devices based on the KNN algorithm. First, the network traffic of
IoT devices was truncated into 784-bit session data and then converted into 28 × 28 images
as device fingerprints. Subsequently, an auxiliary classifier generative adversarial network
was used for data augmentation on the image fingerprints. A CNN model was trained
with a triplet loss-minimization function to generate embedding vectors. Finally, the KNN
algorithm was employed to train the embedding vectors of multiple types of unknown IoT
devices. This approach achieved an identification accuracy of up to 90% for some devices.
However, the KNN algorithm requires prior knowledge of the true labels and number
of unknown IoT devices for training before classification can be performed. In actual
scenarios, administrators cannot determine the labels or number of unknown IoT devices
in advance, thus limiting the method’s effectiveness. The author of [8] introduced a hybrid
deep learning method to identify unknown IoT devices. The core approach was classified
into three steps: first, for each type of known IoT device, a separate network model was
trained and saved appropriately; second, when new traffic data were encountered, they
were matched with the saved models individually to filter out the embedding vectors of
unknown IoT devices; third, for these unknown devices, the data were compressed using
an autoencoder, and density-based clustering recognition was performed using the OPTICS
algorithm. However, as this method requires training a separate identification model for
each known device type, the training cost increases exponentially with the number of
known IoT devices.

In summary, the existing methods for identifying unknown IoT devices present several
limitations, including the inability to recognize more than one type of unknown IoT device
at a time and the relatively low accuracy. Moreover, these studies generally overlook the
potential of integrating multiple clustering algorithms, which can improve the identification
of multiple unknown IoT devices by leveraging their clustering capabilities. Clustering
algorithms can manage unlabeled data; however, their potential application in this domain
has not been fully investigated. Additionally, based on a prior survey [3], studies on the
identifying of unknown IoT devices are relatively scarce and underdeveloped. Therefore,
future designs of IoT device identification solutions should consider the possibility of
unknown IoT devices joining the network.

3. CSCL-WVE-UDI: Method for Identifying Unknown IoT Devices
3.1. Logical Architecture of CSCL-WVE-UDI Method

As shown in Figure 1, the logical architecture of the CSCL-WVE-UDI method com-
prises five components. The data-preprocessing component extracts session-level payload
data from raw traffic. Generating PNSPs converts the payload data into grayscale im-
age samples using an improved Nilsimsa algorithm and further applies the permutation
sample-pairing strategy to generate the corresponding positive–negative sample pairs for
each type of IoT device. The embedding-vector database-construction component, which

Appl. Sci. 2025, 15, 5274 5 of 34

is based on the CSCL-Siamese network, employs the proposed CSCL-Siamese network to
train the set of PNSPs, thus enabling the identification of known IoT devices and the con-
struction of an embedded vector database for known IoT devices. The filtering of unknown
IoT device embedding-vector component inputs the traffic features of unknown IoT devices
into the CSCL-Siamese network to obtain the corresponding embedding vectors, which
are then compared against the known IoT device embedded vector database. By setting a
similarity threshold, unknown IoT devices with features distinct from known devices are
filtered out. Finally, the clustering-ensemble component integrates the clustering results
of multiple unsupervised clustering algorithms through weighted voting and clusters
the embedding vectors of unknown IoT devices, thereby completing the identification of
unknown IoT devices. Each component is discussed in detail below.

Original pcap file

standardized

format

flow cleaning

Traffic

Splitting

Extraction of

Transport

Layer Payload

512-bit

hexadecim

al locally

sensitive

hashes

Data

preprocessing

gray-scale

image

Construction of Embedding Vector Database Based on

CSCL-Siamese Networks

Positive sample 1

...
...

Positive sample 2

Positive sample m

Negative Pair

Sample 1

Negative Pair

Sample 2

Negative pairs of

samples n

Sample traffic from

unknown IoT devices

Unknown IoT device

embedding vectors

Unknown IoT device

embedding vectors

Known IoT devices Unknown IoT devices:
Collect all embedding vectors

for next recognition

< >

similarity

threshold

Unknown device 1 traffic1

Unknown device 1 traffic q

Unknown device 2 traffic1

Unknown device 2 traffic w

Unknown device k traffic1

Unknown device k traffic e

Unknown IoT Device Embedding

Vector Filtering

Birch

GaussianMixture

Agglomerative

Identify unknown IoT

devices
weighted voting

clustering ensemble

cluster integration

Library of known IoT

device embedding

vectors

Library of known IoT

device embedding

vectors

sh
ared

w
eig

h
tin

g

sh
ared

w
eig

h
tin

g

Customizing the Siamese

Network Architecture

CSCL

Function

B
iL

S
T

M
B

iL
S

T
M

DenseDenseC
N

N
C

N
N

B
iL

S
T

M
B

iL
S

T
M

DenseDenseC
N

N
C

N
N

Generation of Permutation

Positive-negative Sample Pairs

Figure 1. Logical architecture of the CSCL-WVE-UDI approach.

3.2. Data Preprocessing

Raw traffic data from IoT devices typically contain noise. In open environments,
the format of traffic data sources from IoT devices lacks uniformity, thus rendering it
challenging to directly learn traffic features. Therefore, raw traffic data of IoT devices
must be preprocessed to ensure data quality and consistency, thus providing a basis for
effective feature learning. The data-preprocessing process is detailed in Figure 2. First, as
raw traffic data from IoT devices typically exist in pcap and pcappng formats, TShark [9] is
used to standardize the raw traffic data in pcappng format to pcap format. Next, to reduce
noise and simplify the extraction of traffic features, the raw pcap traffic data are cleaned
by removing invalid traffic data, such as packets without payloads or empty packets.
Subsequently, the SplitCap tool is employed to segment the cleaned large-scale traffic
samples into smaller-scale traffic files based on the five-tuple format (source IP address,
destination IP address, source port, destination port, and transport layer protocol) [10],
thus generating session data with finer granularity and richer information. Finally, as

Appl. Sci. 2025, 15, 5274 6 of 34

IoT devices typically have specialized communication protocols and data formats and
payload data contain the characteristic information of IoT devices while requiring minimal
computational resources and are independent of specific protocols or standards, the Scapy
tool (2.6.1) [11] is used to extract the effective payload from the transport layer of all packets
within each session.

original web traffic

pcap format pcappng format

TShark

pcap format

Flow cleaning

SplitCap

Fine-grained

sessions

Scapy

loading data

Figure 2. Flowchart of data preprocessing.

Based on the processing steps above, we propose a data-preprocessing algorithm. Its
pseudocode is described in Algorithm 1. Let xi represent the raw traffic sample of the i-th
IoT device. After data preprocessing, the effective payload is denoted as si ←

(
s1

i , s2
i , . . . , sm

i
)
,

where m represents the number of sessions generated after segmenting the i-th traffic sample.

Algorithm 1 Data Preprocessing

Input: xi // Sample raw traffic for the ith IoT device
Output: si ←

(
s1

i , s2
i , . . . , sm

i
)

// Load data
1: pcapi ←TShark(xi) // standardized format
2: for each dj in pcapi do // Cleans each packet in the flow
3: if (dj is Null) or (dj) contains no payload then delete dj from pcapi
4: end if
5: end for
6: Utilize SplitCap tool to segment pcapi into individual sessions, grouped based on

identical 5-tuple information, y1, y2, . . . , ym
7: si ← []
8: for each yj ← y1 to ym do // Indicates the first packet in the current session
9: for each tk ←Scapy(yj) do // Indicates the first packet in the current session

10: extract transport layer payloads from tk and append them to sj
i

11: end for
12: si ← sj

i // Obtain the payload of the ith flow sample
13: end for
14: return si

The computational overhead of Algorithm 1 primarily arises from traffic cleaning
and payload extraction. Traffic cleaning requires iteration through each data packet, thus

Appl. Sci. 2025, 15, 5274 7 of 34

resulting in a time complexity of O(n). Payload extraction requires iterating through each
packet in every session, thus resulting in a time complexity of O

(
n2). Thus, the total time

complexity of Algorithm 1 mainly results from here.

3.3. Algorithm for Generating Permutation Positive–Negative Sample Pairs (PNSPs)

To generate a complete and nonredundant set of positive–negative sample pairs and
ensure efficient utilization of the data, we combined data visualization techniques with a
PNSP generation strategy to create contrastive training data. The objective is to provide a
rich set of contrastive learning samples for the network model. The process is classified
into two main stages: (1) constructing device fingerprints based on grayscale images and
(2) generating PNSPs. Each stage is discussed in detail below.

3.3.1. Construction of Device Fingerprints Based on Grayscale Images

To further reveal the inherent patterns and characteristics of the preprocessed payload
data, the preprocessed payload data are transformed into expressive grayscale images,
which are used as IoT device fingerprints. The specific steps are as follows: First, the
Nilsimsa algorithm [12] has a mathematical property that generates similar hash values for
similar content, which allows one to distinguish different IoT devices. However, the classic
Nilsimsa algorithm [12] generates relatively small hash values. Consequently, significant
details vanish during the hash image-conversion process, thus reducing the distinguisha-
bility of the preprocessed payload data. Therefore, a sliding window is introduced, and
the idea of generating mixed integers through shift operations from the executable and
linkable-format hash function is incorporated [13] to improve the Nilsimsa algorithm.
Subsequently, the length of the locally sensitive hash values produced by the improved
algorithm is extended to 512 bits. This ensures that the subsequent grayscale images retain
the detailed features of the payload data more accurately. Next, the data visualization
technique is introduced. The 512-bit hexadecimal hash value is mapped to a grayscale
image using the Pillow library (10.0.1) . In this mapping, 0 × 00 corresponds to black,
0 × FF corresponds to white, and each pixel represents two hexadecimal digits. The pixels
are arranged sequentially from left to right, thereby forming a 1 × 64-sized grayscale image
in JPG format. These grayscale images collectively constitute the fingerprint sample set of
IoT devices. The improvement strategy for the Nilsimsa algorithm is illustrated in Figure 3.

The improvement process can be summarized as follows:

(1) A sliding window W0 of size 5 with a step size of 1 is applied to the preprocessed
payload data sample si and slid to the right. Each window generates multiple
triplets, denoted as t1, t2, . . . , tz, and each triplet is processed by the tran53 function
to compute a value, denoted as index.

(2) A 512-length accumulator acc is defined. The index value is used to indicate the index
position of the accumulator. Each time an index value is computed, the corresponding
index position in the accumulator is incremented by 1. The sliding window shifts
sequentially, and all accumulated values are stored in acc.

(3) Two sliding windows, each with a size of 16 and a step size of 16, are defined to
generate more accumulated values. The initial positions of the first and second
windows are set to 0 and 8, respectively. The values in the first and second windows
are summed, which are denoted as w and v, respectively. Since the length of acc is
512, each window must slide 32 times.

(4) The accumulated values from the sliding window are processed via shift operations.
First, the lower 8 bits of w are XORed with the upper 8 bits of n1 to obtain n1, as
shown in Equation (1). Subsequently, the upper 8 bits of w are XORed with the lower
8 bits of v to obtain n2, as shown in Equation (2). The final values are constrained

Appl. Sci. 2025, 15, 5274 8 of 34

to the range of 0–255 by applying a bitwise AND with 255, thus ensuring they are
suitable for subsequent conversion into fixed-length hexadecimal hash values.

n1 = (w ∧ 255)⊕ ((v≫ 8) ∧ 255) (1)

n2 = ((w≫ 8) ∧ 255)⊕ (v ∧ 255) (2)

(5) The sliding window continues to shift to the right across acc, thus ultimately produc-
ing a 512-bit hexadecimal locally sensitive hash value.

00 6E 1A 6D FF 11 AE A5 FE A5 00 82 BB 3E 00 FF ...

AE A5 00 FE A5 00

tran53

...

12 9 3 1 5 18 0 9 13 ... 13 89 50 1 10 89

6E

sum

...

196 356

197 100 98 130

C5 64 62 89

xor xor

Byte stream of transport layer payload samples

triad

accumulator

512-bit hexadecimal hash

High 8 bits, &255

Lower 8 bits, &255 High 8 bits, &255

Lower 8 bits, &255

...

Figure 3. Example diagram of improvement strategy for Nilsimsa algorithm.

Based on the improvements above, we propose an improved Nilsimsa algorithm. The
pseudocode of this algorithm is presented in Algorithm 2. The input is the preprocessed
payload sample si =

(
s1

i , s2
i , . . . , sm

i
)

of the i-th type IoT device, and the output is the 512-bit
hexadecimal hash value h

sj
i

of the payload sample.

The computational overhead of Algorithm 2 primarily arises from the hash-value
generation. Specifically, the time complexity of computing the accumulator index positions
is O(n), and the time complexity of traversing the accumulator to compute the hash value
is O(n). Therefore, the total time complexity of Algorithm 2 is O(n + n), where O(n) is the
length of the payload data.

Appl. Sci. 2025, 15, 5274 9 of 34

Algorithm 2 Improved Nilsimsa Algorithm

Input: sj
i // Sample Load Data

Output: h
sj

i
// 512-bit hexadecimal hash

1: acc←[0]*512 // Defining Accumulators
2: num

sj
i
← [] // Define an empty list to hold the integers resulting from the sj

i process

3: Initialize a sliding window W0 with window size of 5 and step size of 1
4: t1, t2, . . . , tz ←W0(s

j
i) // Slide the window to the right to generate z triples

5: for each tk ← t1 to tz do
6: index ← tran53(tk) // Calculate index position
7: acc[index]← acc[index] + 1 // Accumulator corresponding to the index position accumulates 1
8: end for
9: for k←0 to 31 do // Indicates the first packet in the current session

10: w← Sum(acc[k ∗ 16], . . . , acc[(k + 1) ∗ 16])
11: v← Sum(acc[k ∗ 16 + 8], . . . , acc[(k + 1) ∗ 16 + 8])
12: Calculate n1 with equation (1) // Use of equation (1)
13: Calculate n2 with equation (2) // Use of equation (2)
14: num

sj
i
← n1, n2

15: end for
16: dj

i ← num
sj

i
// Getting Decimal Data

17: Convert num
sj

i
to h

sj
i

// Get the hexadecimal hash

18: return h
sj

i

3.3.2. Generation of PNSPs

The conventional approach for generating positive–negative sample pairs is to ran-
domly select a pair of samples from the device-fingerprint sample set. Positive sample
pairs comprise fingerprints from the same IoT device for training the model to capture
the consistent features of the same device. Negative sample pairs comprise fingerprints
from different IoT devices for training the model to be sensitive to the differences between
different devices. Although the random selection strategy is simple and easy to implement,
it may cause the repeated selection of some device-fingerprint samples, while others are
potentially overlooked. In IoT device identification, such randomness cannot fully reflect
the characteristics of the dataset, thus rendering it difficult to capture key traffic features.

To address the limitations of the random selection strategy and to fully utilize each
IoT device-fingerprint sample while clearly defining the relationships between sample
pairs, we propose a method for generating PNSPs, as shown in Figure 4. The proposed
method is based on the complete data samples generated in a previous study [4]. First,
for the grayscale image fingerprint samples of each IoT device, nonredundant positive
sample pairs are created to ensure that effective pairings are formed between samples of
the same IoT device. During this process, each fingerprint sample can be paired with itself
to enrich the number of positive sample pairs. Subsequently, each fingerprint sample of
the current IoT device is paired with the samples of all other IoT devices to construct the
complete set of negative sample pairs for the current device. When generating negative
sample pairs, redundant pairings are avoided through meticulous attention, thus ensuring
that previously paired negative samples are not rematched. For example, if ti1 is the first
fingerprint sample of the i-type IoT device and tj2 is the second fingerprint sample of
the j-type IoT device, then the pairing of

(
ti1, tj2

)
with

(
tj2, ti1

)
essentially represents the

same negative relationship, regardless of order. Therefore, when constructing negative
sample pairs for the j-type IoT device, redundant sample pairs are eliminated to remove
superfluous samples, thus improving the efficiency and quality of sample-pair generation.

Appl. Sci. 2025, 15, 5274 10 of 34

Sample set of device

fingerprints based on

grayscale images

Positive sample

library

Non-repeating

combinations

Filter Already

Matched

Negative sample

library

set of permutation

positive-negative sample

pairs

Load data
Improvement of

the Nilsimsa algorithm

Pillow

Library

Figure 4. Flowchart for generating a set of permutation positive–negative sample pairs.

3.3.3. PNSP Algorithm

Based on the process above, we propose an algorithm to generate PNSP. The pseu-
docode for the PNSP algorithm is presented in Algorithm 3.

Algorithm 3 PNSP Algorithm

Input: S← (s1, . . . , si, . . . , s f) // Sample Load Data for IoT Devices

Output: Po ← (po1, . . . , poi, . . . , po f); Ne← (ne1, . . . , nei, . . . , ne f) // Full permutation of posi-
tive and negative pairs of samples

1: G ← []; Po ← []; Ne← []
2: for each si in S do // Traverse the payload samples of the i-th category of IoT devices

3: for each sj
i in si do // Traverse the j-th payload sample

4: h
sj

i
← Improved-Nilsimsa(sj

i) // Call Algorithm 2 to generate a 512-bit hexadecimal hash

value
5: gj

i ← h
sj

i
use Pillow // Generating grayscale images with the Pillow library

6: end for
7: G ← gi // Store the grayscale images of the i-th category of IoT devices
8: end for
9: for each i← 1 to f do

10: poi ← combine all positive pairs for gi
11: Po ← poi // Current IoT devices without duplicate positive pair samples
12: for ii← i + 1 to f do // Filtering already generated negative pair samples
13: for k← 1 to len(gi) do
14: for p← 1 to len(gi) do
15: nei ← (gk

i , gp
ii)

16: end for
17: end for
18: Ne← nei // Sample of all negative pairs of current IoT devices
19: end for
20: end for
21: return Po; Ne

The computational overhead of Algorithm 3 primarily originates from traversing the
IoT device payload samples to generate hash values, as well as from generating permutation
sample pairs. Generating the 512-bit hexadecimal hash value requires traversing every
payload sample of each IoT device, with a time complexity of O

(
n2). The permutation

sample-pair generation requires matching positive and negative sample pairs and filtering
out previously matched negative sample pairs, thus resulting in a time complexity of
O
(
n4). Thus the total time complexity of Algorithm 1 mainly results from the permutation

sample-pair generation.

Appl. Sci. 2025, 15, 5274 11 of 34

3.4. Embedding-Vector Database Generation Based on CSCL-Siamese Network: Embedding-Vector
Database Construction (EVDC)-CSCL-Siamese Algorithm

Embedding vectors offer an efficient feature-representation method that accurately
captures the core characteristics and structural information of device fingerprints [5]. The
network model, as a key technology for generating embedding vectors, is used primarily
to deeply learn and extract complex features of device fingerprints and then map them
into a high-dimensional embedding-vector space for an effective representation of the
fingerprints. This representation approach preserves key features of device fingerprints
while facilitating the numerical expression of the fingerprints, thereby providing robust
support for subsequent similarity calculations among various IoT devices. Existing models,
such as recurrent neural networks and GANs, can generate embedding vectors suitable for
multiclass identification after extensive training, thus enabling the effective identification of
multiple types of known IoT devices. However, these models necessitate frequent retraining
to adapt to the continually increasing number of unknown IoT devices, which renders
it difficult to satisfy the requirement of identifying increasing numbers of IoT devices in
open environments.

Hence, we propose an embedding-vector database-generation model based on the
CSCL-Siamese network. This model employs a Siamese network trained using a cost-
sensitive loss function to identify known IoT devices. Additionally, it leverages traffic
data from known IoT devices to construct an embedded vector database, thus facilitating
similarity computations with embedding vectors from unknown IoT devices. The overall
structure is illustrated in Figure 5, which we will discuss in detail below.

Positive

sample

library

Negative

sample

library

CSCL-Siamese Network

CSCL-Siamese Network

Library of known IoT

device embedding vectors
generate

Known IoT device datasets Training the CSCL-Siamese network

Figure 5. Structure of embedded vector database generation based on CSCL-Siamese network.

3.4.1. PNSP Algorithm

The author of [6] indicates that Siamese networks can effectively reduce the necessity
for frequent retraining and require only a few sample pairs for effective training. Therefore,
we adopted the Siamese network as the network model.

The CNN is adopted to hierarchically extract spatial patterns from grayscale image
fingerprints (1 × 64 pixels), where small convolutional kernels (1 × 4) capture localized
byte correlations (e.g., protocol headers) and pooling layers enhance positional robustness.
While IoT traffic inherently exhibits temporal dependencies, the hybrid CNN+BiLSTM
architecture synergizes spatial feature learning (via CNN) with sequential modeling (via
BiLSTM), addressing both static and dynamic characteristics. This design aligns with
prior studies [7,10] that validate CNNs for traffic-derived image classification. To ensure
IoT compatibility, a lightweight CNN (8 filters) and low-dimensional embeddings (256D)
minimize computational overhead.

Appl. Sci. 2025, 15, 5274 12 of 34

As shown in Figure 6, a single subnetwork of the defined Siamese network comprises
three layers. The first layer is a CNN layer for learning the image features of the samples.
This layer comprises convolutional and pooling layers. The convolutional layer has eight
1 × 4 filters and utilizes the rectified linear unit activation function for nonlinear trans-
formation. The pooling layer employs max pooling to reduce the size of the feature map
while retaining critical information. Next, considering the temporal characteristics of the
traffic data of IoT devices [14], the second layer utilizes a bidirectional long short-term
memory (BiLSTM) network to extract temporal features. The final layer is a dense layer
containing 256 neurons, which outputs the embedding vectors. This layer does not employ
any activation function to preserve the original scale of the output embedding vectors, thus
providing accurate vector representations for subsequent similarity measurements.

C
o
n

v
2
D

R
eL

U
R

eL
U

R
eL

U

M
ax

P
o

o
l2

D
M

ax
P

o
o
l2

D
M

ax
P

o
o
l2

D

F
latten

F
latten

F
latten

CNN layerCNN layer

B
iL

S
T

M
B

iL
S

T
M

B
iL

S
T

M

BiLSTM layerBiLSTM layer

F
latten

F
latten

F
latten

......

Dense layerDense layer

Figure 6. Structure of a single subnetwork of the Siamese network.

3.4.2. CSCL Function

To accurately measure the similarity between IoT devices, a contrastive loss function
is typically employed to guide the training process of the Siamese network. This func-
tion trains the Siamese network by minimizing the contrastive loss, thereby generating
compact and dispersed interclass embedding vectors [15]. However, the PNSP algorithm
proposed in Section 3.3.3 causes a significant imbalance: the number of negative sample
pairs will significantly exceed that of positive ones. If we continue using the contrastive
loss function as the learning objective for the Siamese network, then the loss for positive
and negative sample pairs will retain the same weighting factors, thus causing the iden-
tification boundary of the Siamese network to skew toward negative sample pairs and
degrade the recognition performance for the same IoT device. In IoT device identification,
distinguishing between identical and different devices is important. Therefore, the classical
contrastive loss function is inadequate for processing PNSPs.

To mitigate the bias in the decision boundary toward negative sample pairs due
to the insufficient number of positive sample pairs, we propose a CSCL function that
combines cost-sensitive weighting factors [16] with the contrastive loss function [15]. The
CSCL function comprises two components, as presented in Equation (3). The left section
represents the loss for positive sample pairs, whereas the right section denotes the loss
for negative sample pairs. Here, W represents the network weights; ea and eb denote the
embedding vectors for samples a and b, respectively. The indicator yab indicates whether ea

and eb belong to the same class; if ea and eb belong to the same class, then y = 1; otherwise,
y = 0. The threshold m denotes the minimum acceptable distance among negative sample
pairs. First, the model weights W are obtained by training the Siamese network. Let dw

represent the Manhattan distance between ea and eb to assess the similarity between the
two embedding vectors. It can be calculated using Equation (4), where i is the feature
dimensions of the embedding vectors. Next, the disparity in the number of positive and
negative sample pairs is utilized to compute the cost-sensitive weighting factors. The loss
of positive sample pairs λpo and that of negative sample pairs λne are calculated using
Equations (5) and (6), respectively. Here, npo and nne represent the counts of positive and
negative sample pairs, respectively. Since npo ≪ nne, then λpo ≫ λne. This condition

Appl. Sci. 2025, 15, 5274 13 of 34

enhances the sensitivity of the Siamese network to the loss of the positive sample pairs to
that of the negative sample pairs, i.e., λpoyabd2

w >> λne(1− yab)
{

max(0, m− d2
w)

}
, which

consequently increases the focus on the positive sample pairs.

L(W, (ea, eb, yab)) = λpoyabd2
w

+ λne(1− yab){max(0, m− d2
w)}

(3)

dw =
255

∑
i=0
|eai − ebi| (4)

λpo =
nne

npo + nne
(5)

λne = 1− λpo =
npo

npo + nne
(6)

Based on Equations (3)–(6), when yab = 1, i.e., the sample pairs are similar, the
loss is L = λpod2

w. In this case, we are only required to minimize dw. When yab = 0,
i.e., the sample pairs are different, and minimizing the loss is equivalent to maximizing
λne

{
max

(
0, m− d2

w
)}

. In this case, an extremely small value of dw suggests that the em-
bedding vectors of negative sample pairs are closely spaced, thus warranting an increased
penalty λne

(
m− d2

w
)

to reduce the loss. Meanwhile, a large value of dw indicates that the
embedding vectors of negative sample pairs are distant from each other. If this value
exceeds the threshold m, then no minimization is required and the loss L can be set to
zero. Thus, the objective of minimizing the CSCL function can be expressed as shown in
Equation (7),

W = arg min
n

∑
j=1

L(W, (eja, ejb, yj)) (7)

where, n denotes the total number of positive–negative sample pairs.

3.4.3. CSCL-Siamese Network

Combining Sections 3.4.1 and 3.4.3, we propose a Siamese network based on CSCL
(CSCL-Siamese). The structure of the CSCL-Siamese network is illustrated in Figure 7. First,
the Siamese network comprises two identical subnetworks that share weights. The structure
of each subnetwork is shown in Figure 6. This network accepts two samples at once and
generates two 256-dimensional embedding vectors for each sample. Next, it calculates
the Manhattan distance between the embedding vectors and passes this distance value to
the CSCL function to compute the loss. Finally, the calculated loss is backpropagated to
perform gradient updates on the parameters of the Siamese network.

Positive and

negative pair

sample

libraries

Siamese subnetwork 1

Siamese subnetwork 2

Sample 1

Sample 2

256-dimensional

embedding vector1

256-dimensional

embedding vector2

Manhattan Distance
cost-sensitive

contrastive loss

Customizing the Siamese

Network

gradient update

Figure 7. Structure of the CSCL-Siamese network

Appl. Sci. 2025, 15, 5274 14 of 34

3.4.4. Embedding-Vector Database Generation Based on CSCL-Siamese Network

A previous study [4] showed that the embedding vectors of unknown and known IoT
devices differ significantly. To obtain the embedding vectors of all unknown IoT devices,
one must construct an embedded vector database for known IoT devices in advance for
filtering the embedding vectors of unknown devices. The main steps for generating the
embedded vector database are as follows: First, the CSCL-Siamese network is trained using
the set of PNSPs and the trained model is saved. At this stage, the CSCL-Siamese network
can generate compact embedding vectors for similar IoT devices while dispersing those for
dissimilar devices, thereby enabling the identification of known IoT devices. Subsequently,
traffic data from known IoT devices are input into the saved CSCL-Siamese network to
extract and store the embedding vectors for each device. Thus, when new traffic data
arrive, the corresponding embedding vector can be extracted using the CSCL-Siamese
network and compared against the embedded vector database using a similarity threshold.
Thus, the embedding vectors that do not match the known IoT devices are filtered out
promptly—they are the embedding vectors of unknown IoT devices.

3.4.5. EVDC-CSCL-Siamese Algorithm

Based on the study above, we propose the EVDC-CSCL-Siamese algorithm. The pseu-
docode for the EVDC-CSCL-Siamese algorithm is described in Algorithm 4. The input
comprises a set of PNSPs, i.e., Po and Ne. Before training the CSCL-Siamese network, the
positive–negative sample pairs are randomly segmented into a training set Xtr ← (Potr; Netr),
validation set Xva ← (Pova; Neva), and test set Xte ← (Pote; Nete) at a 6:2:2 ratio. The output
includes the trained CSCL-Siamese network model M, the identification results Ŷ for known
IoT devices, and the embedded vector database ED for known IoT devices.

Algorithm 4 EVDC-CSCL-Siamese Algorithm

Input: Po ← (po1, . . . , poi, . . . , po f); Ne← (ne1, . . . , nei, . . . , ne f) // Full permutation of positive
and negative pairs of samples

Output: M; Ŷ; ED
1: Divide (Po; Ne) into Xtr; Xva; Xte
2: Create CSCL− Siamese← CNN + Flatten + BiLSTM + Flatten + Dense
3: npo ← len(Po); nne ← len(Ne)
4: Use Equation (5) to calculate λpo // Use of Equation (5)
5: Use Equation (6) to calculate λne // Use of Equation (6)
6: Set model parameters Epoch, Batch Size, and learning rate, etc.
7: for each epoch←1 to Epoch do
8: for each Batch Size in Xtr do
9: for each (xa; xb) in Xtr do

10: (ea; eb)← CSCL− Siamese(xa; xb)
11: Use Equation (4) to calculate dw // Use of Equation (4)
12: Use Equation (3) to calculate L // Use of Equation (3)
13: L.backward // Reverse Update Model Parameters
14: end for
15: end for
16: CSCL− Siamese(Xva) // Input of validation sets into the CSCL-Siamese network
17: end for
18: save M // The training generates the model M
19: si ← []
20: Ŷ ← M(Xte) // Known IoT device identification results
21: ED ← M(Po; Ne) // Calling Model M to Generate a Database of Known IoT Device Embedding Vectors
22: return M; Ŷ; ED

The computational overhead of Algorithm 4 primarily originates from training the
CSCL-Siamese network model. Because the number of training epochs and batch size are

Appl. Sci. 2025, 15, 5274 15 of 34

constant, the time complexity of the BiLSTM model at any time is O
(
n2). Thus the total

time complexity of Algorithm 4 mainly results from here.

3.5. WVE-UDI: UDI Algorithm Based on WVE

To fully leverage the clustering potential of multiple clustering algorithms for cluster-
ing the filtered embedding vectors of all unknown IoT devices, we combined weighting
factors using a voting ensemble approach to identify unknown IoT devices. This method
aims to overcome the limitations of individual clustering algorithms and enhance the
identification capability for unknown IoT devices. The process is categorized into two main
stages: (1) filtering the embedding vectors of unknown IoT devices and (2) identifying
unknown IoT devices through WVE. Each stage is discussed in detail below.

3.5.1. Filtering of Embedding Vectors for Unknown IoT Devices

Because the embedding vectors of unknown IoT devices typically differ significantly
from those of known IoT devices [6], calculating the similarity between these two types of
embedding vectors allows one to filter the embedding vectors of all unknown IoT devices
from the numerous embedding vectors. To accurately quantify this similarity difference, we
utilized the Euclidean distance [17] as the similarity metric, which is calculated as shown
in Equation (8). The filtering process for the embedding vectors of unknown IoT devices
is illustrated in Figure 8. When new traffic data arrive, they are first subjected to data
preprocessing. Next, Algorithm 2 (the improved Nilsimsa algorithm) is called to generate a
512-bit hexadecimal hash value, which is then converted to a grayscale image using the
Pillow library. Subsequently, the corresponding embedding vectors are generated using the
trained and saved CSCL-Siamese network model. Finally, based on the Euclidean distance,
these embedding vectors are compared with those in the embedded vector database for
known IoT devices, where those that are below a predetermined similarity threshold, i.e.,
the embedding vectors of unknown IoT devices, are filtered out.

dmin =

√√√√255

∑
i=0

(eai − ebi)
2 (8)

Data

preprocessing

New flow data

similarity

threshold

Improved-Nilsimsa Algorithm

CSCL-Siamese Network

Euclidean distance

> <

gray-scale image

embedding vector

Pillow Library

Library of known IoT

device embedding

vectors

Library of known IoT

device embedding

vectors

Unknown IoT device

embedding vectors

Unknown IoT device

embedding vectors

Known IoT device

embedding vector

Known IoT device

embedding vector

Figure 8. Filtering flowchart for unknown IoT device embedding vectors.

Appl. Sci. 2025, 15, 5274 16 of 34

3.5.2. WVE for UDI

To fully exploit the clustering potential of multiple unsupervised clustering algorithms,
we introduce weighting factors to improve the existing voting ensemble strategy [18]. By
integrating the clustering results of three different unsupervised clustering algorithms, we
aim to achieve clustering-ensemble identification of multiple unknown IoT devices. The
main steps are illustrated in Figure 9.

Agglomerative

Birch

GaussianMixture

...
...

...

Unknown IoT device

embedding vectors

Unknown IoT device

embedding vectors Voting Integration

weighting factor
w

eig
h
t

Clustering resultsClustering results

10a

23a

ika

10b

23b

ikb

10g

21g

ikg

Figure 9. Flowchart of weighted-voting clustering integration to identify unknown IoT devices.

In the first step, the embedding vectors of unknown IoT devices obtained from the
filtering process in Section 3.5.1 are clustered sequentially using agglomerative, BIRCH,
and Gaussian mixture algorithms, and their respective clustering results are obtained. Both
the agglomerative [19] and Birch [20] algorithms do not require specifying the number
of clusters, and the Gaussian mixture algorithm [21] determines the optimal number of
clusters using the elbow method. The clustering result of the agglomerative algorithm
is a10, a23, . . . , aik, the result of the Birch algorithm is b10, b23, . . . , bik, and the result of the
Gaussian mixture algorithm is g10, g21, . . . , gik. Here, aik indicates that the i-th embedding
vector of the unknown IoT device is clustered into class k (i.e., label k) by the agglom-
erative algorithm, and so on. In the second step, weights are assigned to the clustering
results of each algorithm. The Gaussian mixture algorithm utilizes Gaussian distributions
to accurately capture the data distribution and can flexibly reflect the actual structural
characteristics of the data [21]. Therefore, it is assigned a higher weight to emphasize its
critical contribution to the clustering results. Thus, weight factors of 0.2, 0.2, and 0.6 are
assigned to the agglomerative, BIRCH, and Gaussian Mixture algorithms, respectively. In
the third step, the clustering labels are integrated. For each sample in the clustering results,
the weight of each label is calculated based on the clustering labels obtained from the three
individual clustering algorithms and their corresponding weighting factors. For example, if
the agglomerative algorithm clusters the i-th embedding vector of an unknown IoT device
into class k, then its weighted value waik is calculated using Equation (9). The label with the
highest weighted value is selected as the final integrated label for that sample. During this
process, the management of potential label conflicts, where multiple clustering algorithms
may assign the same embedding vector to different classes with identical weighted values,
is prioritized. For instance, if the agglomerative algorithm clusters the second embedding
vector of an unknown IoT device into class 3, the BIRCH algorithm into class 3, and the
Gaussian mixture algorithm into class 1, but all weighted values are 0.6, then the Gaus-

Appl. Sci. 2025, 15, 5274 17 of 34

sian mixture algorithm’s class is prioritized, i.e., class 1 is selected as the final integrated
label. This prioritization is because the Gaussian mixture algorithm was assigned a higher
weight in the previous weight assignment, thus indicating its greater significance in the
identification results.

waik = 0.2 · aik (9)

3.5.3. WVE-UDI Algorithm

Based on the process above, we propose the WVE-UDI algorithm. The pseudocode for
the WVE-UDI algorithm is described in Algorithm 5. The inputs include new traffic data
Xu (which contains traffic data from unknown IoT devices), the embedded vector database
ED of known IoT devices, the trained and saved CSCL-Siamese network model M, and
a preset similarity threshold θ. The output is the identification result of the unknown IoT
devices Ŷu.

Algorithm 5 WVE-UDI algorithm

Input: Xu; ED; M; θ
Output: Ŷu // Unknown IoT device identification results

1: for each xu in Xu do
2: NS← call Data Preprocess(xu) // Call Algorithm 1 to perform data preprocessing on new traffic

data
3: end for
4: for each ns in NS do
5: hns ← call improved-Nilsimsa(xu) // Call Algorithm 2 to generate a 512-bit hexadecimal hash

value
6: gns ← hns use Pillow // Generating grayscale images with the Pillow library
7: Gns ← gns // Get a sample set of grayscale images
8: end for
9: NED ← M(Gns) // Get all embedding vectors for new traffic data

10: for each ned in NED do
11: for each ed in ED do
12: dmin ← Use Equation (8) to calculate and find out minimum // Calculate the

minimum similarity distance using Equation (8)
13: if dmin < θ then then // Comparison of Similarity Thresholds
14: UED ← ned // Save filtered embedding vectors for all unknown IoT devices
15: end ifUnknown IoT Device Identification Models and Algorithms based on

CSCL-Siamese Networks and Weighted-Voting Clustering Ensemble
16: end for
17: end for
18: A← Agglomerative(UED) // Agglomerative identification results
19: B← Birch(UED) // Birch Recognition Results
20: G ← GaussianMixture(UED) // GaussianMixture Recognition Results
21: WA ← 0.2; WB ← 0.2; WG ← 0.6 // Assignment of weights
22: for each aika in A do
23: for each bikb

in B do
24: for each gikg in G do
25: labels_weight← max(WA · aika ; WB · bikb

; WG · gikg)

26: if len(labels_weight) ̸= 1 then then // Label conflicts after weighting
27: k← gikg

28: elsek← labels_weight
29: end if
30: Ŷu ← k // Final identification results
31: end for
32: end for
33: end for
34: Ŷu

Appl. Sci. 2025, 15, 5274 18 of 34

The computational overhead of Algorithm 5 primarily originates from the grayscale
image fingerprint-sample generation, the embedding-vector filtering of unknown IoT
devices, and the clustering-ensemble identification. The generation of grayscale-image
fingerprint samples involves cleaning the data sample set and converting each sample
into a grayscale image, which results in a time complexity of O(n). The embedding-vector
filtering of unknown IoT devices requires iterating through each embedding vector and
comparing its similarity distance with the embedded vector database of known IoT devices,
which results in a time complexity of O

(
n2). The clustering-ensemble identification requires

integrating the clustering results of the three clustering algorithms, with a time complexity
of O

(
n3). Thus, the total time complexity of Algorithm 5 mainly results from the three

clustering algorithms.
By integrating Algorithms 1–5, we propose the CSCL-WVE-UDI method (unknown IoT

device identification method based on CSCL-Siamese networks and WVE). The workflow
of the CSCL-WVE-UDI method is as follows: First, Algorithm 1 is called to preprocess the
raw traffic data Xrow of known IoT devices, thus resulting in payload data S. Subsequently,
Algorithms 2 and 3, specifically the improved Nilsimsa and PNSP algorithms, are invoked
to transform the payload data S into PNSPs Po and Ne. Next, Algorithm 4, i.e., the EVDC-
CSCL-Siamese algorithm, is applied to train the CSCL-Siamese network based on the
positive–negative sample pairs Po and Ne as well as obtain the model M, thereby achieving
the identification of known IoT devices. Additionally, the algorithm is used to construct
the embedded vector database ED for known IoT devices. Finally, Algorithm 5, i.e., the
WVE-UDI algorithm, is employed to integrate three unsupervised clustering algorithms
to identify unknown IoT devices. The pseudocode of the CSCL-WVE-UDI method is
described in Algorithm 6. The inputs include raw traffic data Xrow from known IoT devices
and new raw traffic data Xu containing traffic data from unknown IoT devices. The output
is the identification results of unknown IoT devices Ŷu.

Algorithm 6 CSCL-WVE-UDI approach

Input: Xrow; Xu
Output: Ŷu

1: for each xi in Xrow do
2: si ← call Data Preprocess (xi) // Call Algorithm 1 for data preprocessing
3: S← si // Obtaining payload sample sets
4: end for
5: (Po; Ne)← call PNSP (S) // Call Algorithm 3 (Algorithm 2 is called in Algorithm 3) to generate fully

aligned positive and negative pair samples
6: ED; M; Ŷ ←call EVDC-CSCL-Siamese(Po; Ne) // Calling Algorithm 4
7: Set threshold θ // Setting the similarity threshold
8: Ŷu ←call WVE-UDI(Xu; ED; M; θ) // Calling Algorithm 5 for unknown IoT device identification
9: return Ŷu

The computational overhead of the CSCL-WVE-UDI method is primarily derived
from Algorithms 1–5. The time complexities of Algorithms 1–5 are O

(
n2), O(n), O

(
n4),

O
(
n3), and O

(
n3), respectively. Thus, the total time complexity of the CSCL-WVE-UDI

method mainly results from here. The symbols used in this paper are shown in Table 1.

Table 1. Symbol Definitions.

Symbol Definition Symbol Definition

xi Raw traffic sample of the i-th IoT device si Preprocessed payload data of the i-th device

hj 512-bit hexadecimal hash value from improved Nilsimsa gj
i

Grayscale image fingerprint of the j-th sample from
device i

Appl. Sci. 2025, 15, 5274 19 of 34

Table 1. Cont.

Symbol Definition Symbol Definition

Po Set of positive sample pairs Ne Set of negative sample pairs

W Network weight parameters ea, eb 256D embedding vectors of samples a and b

yab Label for sample pair (1=same class, 0=different class) λpo Weighting factor for positive pairs: nne
npo+nne

λne Weighting factor for negative pairs: npo
npo+nne

dw Manhattan distance: ∑ ∥eai − ebi∥

m Minimum acceptable distance threshold for negative pairs L CSCL loss function

ED Embedded vector database for known devices NED Embedded vectors of new traffic data

dmin Minimum Euclidean distance θ Similarity threshold for filtering unknown devices

A, B, G Clustering results (Agglomerative/BIRCH/GaussianMix-
ture) WA, WB, WG Weights for clustering algorithms (0.2/0.2/0.6)

aik Cluster label of sample i by Agglomerative Ŷu Final identification results of unknown devices

TP, TN True positive/negative counts FP, FN False positive/negative counts

G-mean Geometric mean of TPR and TNR npo , nne Number of positive/negative sample pairs

4. Experimental Results and Analysis
4.1. Experimental Datasets

The experiments were conducted on the Aalto [22], UNSW [23], and LSIF datasets [24],
obtained from IoT device traffic data during device installation, user interaction, and idle
states, respectively. As Siamese networks rely on the relative relationships between samples
rather than absolute labels, only a small amount of data is required for effective learning.
Thus, up to 50 payload samples were randomly selected from each IoT device to construct
a set of PNSPs. The specific number of samples for each device is shown in Table 2.
To ensure fairness, all subsequent comparison experiments considered 50 samples for
each IoT device. In addition, in order to facilitate the unknown IoT device identification
experiments, three IoT devices were randomly excluded as unknown IoT devices from the
training set beforehand.

Table 2. Experimental datasets.

Dataset Name Number of Positive Samples Number of Negative Pair Samples

Aalto 8008 25,968
UNSW 11,000 46,000

LSIF 8800 28,800

4.2. Evaluation Indicators

Since the training data samples of the CSCL-Siamese network are positive–negative
pairwise relations, it can be regarded as a binary classification task, i.e., the correctly
predicted positive–negative pairwise relations are treated as the positive class, and vice
versa as the negative class. Therefore, the predictors are defined as shown in Table 3.

Table 3. Definitions of forecasting indicators.

Positive Class Negative Class

Predicted TP (Positive class predicted to be positive) FP (Negative class predicted to be positive)
Unpredicted FN (Positive class predicted to be negative) TN (Negative class predicted to be negative)

The experiment mainly uses Accuracy, Precision, Recall, and F1 value as the evaluation
metrics. Accuracy measures the accuracy of the overall forecast, Precision measures the
correctness of positive class predictions, Recall measures the predictive coverage of the

Appl. Sci. 2025, 15, 5274 20 of 34

positive class, and the F1 value integrates the trade-off between Precision and Recall. Their
respective formulas are expressed below:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2× Pr ecision× Recall

Pr ecision + Recall
(13)

Since the number of negative pair samples is much larger than positive pair samples, and
the above metrics mainly focus on the prediction performance of positive pair samples, the
G-mean metric is further introduced as an evaluation metric. The G-mean metric measures
not only the ability to correctly identify positive pairs of samples (true positive rate TF), but
also takes into account the ability to correctly identify negative pairs of samples (true negative
rate TN), thus providing a more comprehensive assessment of the unbalanced set of positive
and negative pairs of samples. The formula is expressed as follows:

G−mean =

√
TP

TP + FN
TN

TN + FP
(14)

4.3. Experimental Environment and Experimental Parameter Settings

The hardware and software configurations used for the experiment are listed in Table 4,
and the hyperparameter settings are listed in Table 5, where Optimizer denotes the optimizer,
Learning rate denotes the learning rate, Batch size denotes the number of training samples
per batch, and Epochs denotes the number of training rounds. In order to fully evaluate
the effectiveness and efficiency of the proposed method, the relevant hyperparameters for
adaptive reduction of learning rate are introduced: Patience is the automatic reduction of
learning rate when the validation loss still does not decrease after 3 Epochs; Factor is the
learning rate that is reduced by 0.1 times each time; and Min learning rate is the lower limit of
the learning rate, i.e., the learning rate can be reduced to the Min learning rate is the lower
limit of learning rate, i.e., the lowest value that learning rate can be reduced to.

Table 4. Experimental environment configuration.

Software and Hardware Type Value

System Windows10
CPU AMD Ryzen 7 5800H
GPU NVIDIA GeForce RTX 3060

Programming language Python3.8
Deep Learning Framework Keras2.4.3

Table 5. Hyperparameter settings for the base learner.

Parameter Name Parameter Value

Optimizer Adam
Learning rate 0.001

Batch size 64
Epochs 50
Factor 0.1

Patience 3
Min learning rate 0.0001

Appl. Sci. 2025, 15, 5274 21 of 34

4.4. Experiments on the Efficiency of the CSCL-WVE-UDI Methodology

In order to verify the efficiency of the CSCL-WVE-UDI method, it is compared with the
literature [4,5,7]’s methods, which are more effective in recognizing unknown IoT devices.
This experiment is conducted in an environment where three unknown IoT devices coexist,
where it is difficult for the literature [4,5]’s method to recognize multiple unknown IoT
devices at one time; therefore, in order to achieve the recognition of three unknown IoT
devices by the literature [4,5]’s method, separate recognition models need to be trained
for each unknown IoT device. Considering that the network traffic in the IoT device–
user interaction scenario is more representative [25], the UNSW dataset is chosen for this
experiment. In addition, three unknown IoT devices are selected as the experimental
objects for this experiment; firstly, because the literature [7] has referred to the practice
of randomly selecting three unknown IoT devices from the UNSW dataset, and secondly,
because the three unknown IoT devices not only ensure that the experiments are moderately
complex, but also are sufficient to effectively compare the recognition effects of different
methods [7]. The results of the comparison of the recognition accuracy of each method are
shown in Figure 10.

Figure 10. Recognition results of different methods on three unknown IoT devices [4,5,7].

As can be seen from Figure 10, in the scenario where the three unknown IoT devices
coexist, the overall performance of the CSCL-WVE-UDI method is relatively better, and
it is able to achieve a high recognition effect. In particular, it achieves 89.6% and 100%
recognition accuracy for Belkin Wemo Switch device and Insteon Camera device, respec-
tively, but there are still deficiencies, as follows: (1) Compared with literature [4,5], which
uses the shortest similarity distance as a recognition method for unknown IoT devices, the
recognition accuracy of the CSCL-WVE-UDI method is higher than that of both methods,
with a maximum improvement of 97.5 percentage points. This is because literature [4,5]
relies on the embedding vectors and similarity metrics generated by the traditional Siamese
network, and if the traditional Siamese network is poorly trained, the similarity distances

Appl. Sci. 2025, 15, 5274 22 of 34

between the embedding vectors are too large, which affects the recognition effect; at the
same time, there is a certain degree of similarity between the Canary Camera device and
the Insteon Camera device itself, which further reduces the accuracy of the recognition.
In addition, when facing N unknown IoT devices, the method proposed in literature [4,5]
needs to train N recognition models, which will increase the computational overhead;
(2) Compared to the KNN algorithm-based unknown IoT device identification method in
literature [7], the CSCL-WVE-UDI method exhibits higher accuracy in identifying Insteon
Camera devices, but is slightly less accurate in identifying Belkin Wemo Switch devices
and Canary Camera devices, which are lower by 10 percentage points and 19 percentage
points. The main reason for this difference is the supervised classification implementation
based on the KNN algorithm in literature [7], which therefore has prior knowledge of
the real labels and number of unknown IoT devices and uses this information for model
training to achieve a high recognition accuracy. In contrast, the CSCL-WVE-UDI method is
implemented by integrating multiple unsupervised clustering algorithms, which performs
the recognition without real labels, thus resulting in lower recognition accuracies than
literature [7] for Belkin Wemo Switch devices and Canary Camera devices. However, in
open environments, the inability to obtain the real tags and the number of devices of
unknown IoT devices beforehand makes it difficult to apply the method in literature [7]
directly. In contrast, the CSCL-WVE-UDI method does not require prior knowledge of the
true labels of unknown IoT devices, which makes it more adaptable.

In summary, it can be seen that the CSCL-WVE-UDI method proposed in this paper
has good recognition ability in the environment where three unknown IoT devices coexist,
and accomplishes the efficient recognition of unknown IoT devices. This experimental
result proves that the CSCL-WVE-UDI method is suitable for network traffic-oriented
unknown IoT device identification.

4.5. Comparative Experiments with PNSP Algorithm

In order to verify the effectiveness of the PNSP algorithm, this experiment compares
the overall recognition effectiveness of the CSCL-Siamese network for known IoT devices
with randomized strategy and PNSP algorithm generating positive and negative pairs of
samples on the Aalto dataset, UNSW dataset, and LSIF dataset, respectively. Considering
that there is an imbalance in the sample set of positive and negative pairs, this experiment
uses the Accuracy rate and G-mean value as the main evaluation index. The experimental
results are shown in Figure 11.

As can be seen from Figure 11, the overall performance of the PNSP algorithm out-
performs the randomized strategy on all three different scenario datasets, especially in
terms of accuracy, as follows: First, the accuracy of the PNSP algorithm improves by 18.8%
on the Aalto dataset, 12.3% on the UNSW dataset, and 11.1% on the LSIF dataset, which
suggests that the recognition ability based on the PNSP algorithm is able to classify the
majority of the sample pairs more accurately even if there is an imbalance in the data;
Second, the enhancement of the G-mean value of the PNSP algorithm is smaller than the
enhancement of the Accuracy rate, which is because the G-mean value integrates the ability
of correctly recognizing the positive pair of samples and the negative pair of samples,
whereas the small number of positive pair of samples leads to a relatively low enhancement
of the G-mean value; Finally, the overall recognition improvement of the PNSP algorithm is
relatively large compared to the random strategy for generating positive and negative pairs
of samples, thanks to the fact that the PNSP algorithm fully and comprehensively utilizes
all the samples in the dataset for generating positive and negative pairs, thus proving the
effectiveness of the PNSP algorithm.

Appl. Sci. 2025, 15, 5274 23 of 34

Figure 11. Comparison results of two algorithms for recognizing known IoT devices.

4.6. CSCL-Siamese Network Ablation Experiments

In order to verify that the cost-sensitive contrastive loss function (CSCL) can effectively
alleviate the deficiency of the recognition boundary shift due to the small number of posi-
tive pairwise samples, this experiment compares the Siamese (Siamese network based on
contrastive loss function, CL-Siamese) network and CSCL-Siamese network for recognizing
known IoT devices. The results of the ablation experiments of the CSCL-Siamese network are
shown in Figure 12.

As can be seen from Figure 12, the overall performance of the CSCL-Siamese network
proposed in this paper is relatively better on the three different scenario datasets, which
can all achieve high G-mean values. First, on the Aalto and UNSW datasets, the CSCL-
Siamese network improves the ability to recognize positive pairs of samples by improving
the traditional contrast loss function, leading to Recall improvements of 14.3% and 12.8%,
respectively. However, this improvement also brought about a decrease in the Precision
rate, 13% and 16%, respectively, as more negative pair samples were misclassified as positive
pairs. Second, on the Aalto dataset and the UNSW dataset, the slight decrease in recognition
accuracy (up to 2.8 percentage points) is exchanged for a larger increase in G-mean value (up
to 7.4 percentage points), which indicates that the CSCL-Siamese network has made significant
progress in balancing the recognition of both positive and negative pairs of samples, and that
the overall recognition performance has been effectively improved. Therefore, sacrificing
some accuracy is worth it. In addition, by comparing Figure 12a–c, it can be seen that the
recognition effect of the CSCL-Siamese network on the LSIF dataset is higher than that of
the other two datasets, and all the evaluation metrics are better than that of the traditional
CL-Siamese network, which on the one hand, indicates that the CSCL-Siamese network has a
better recognition ability for IoT devices in the idle state of the traffic data, i.e., the LSIF dataset
has a better recognition ability; on the other hand, it also verifies that the CSCL-Siamese
network can alleviate the shortcoming of the recognition boundary shift due to the small
number of positive pairs of samples, and has a certain degree of adaptability to the IoT device
traffic data in different scenarios. In addition, in order to verify the superiority of the proposed
cost-sensitive contrast loss function, compared to the traditional contrast loss function, in
reducing the loss values in the set of PNSPs, the change of the loss values with the increase in
the number of training rounds is further compared between the CL-Siamese network and the
CSCL-Siamese network, as shown in Figure 13, where the blue dashed line shows the change
in loss values for the CL-Siamese network and the yellow solid line shows the change in loss
values for the CSCL-Siamese network.

Appl. Sci. 2025, 15, 5274 24 of 34

(a) Aalto dataset

(b) UNSW dataset

(c) LSIF dataset

Figure 12. Experimental results of ablation of CSCL-Siamese network.

Figure 13. Plot of the change process of the loss value of the two networks.

Appl. Sci. 2025, 15, 5274 25 of 34

As can be seen in Figure 13, the loss value of the CSCL-Siamese network has a more
significant reduction compared to the CL-Siamese network. At the first iteration, the loss
value of the CSCL-Siamese network has reached about 0.043, which is 8.8 percentage points
lower compared to the CL-Siamese network. As the number of iterations increases, after
16 iterations, the loss value of the CSCL-Siamese network reaches a minimum point of only
0.034. However, in the subsequent iterations, the loss value of the CSCL-Siamese network
appears to fluctuate back and forth with changes, which may be due to some stochastic
factors in the training process or the model itself. Nevertheless, in terms of the overall
trend, the CSCL-Siamese network still outperforms the CL-Siamese network in terms of
the overall performance on the loss value, and is able to reduce the loss value effectively.

4.7. EVDC-CSCL-Siamese Algorithm Comparison Experiments

In order to validate the effectiveness of the EVDC-CSCL-Siamese algorithm in Section 3.4.5,
this paper conducts a comparison experiment of known IoT device recognition on the classical
UNSW dataset. Since the EVDC-CSCL-Siamese algorithm is completely dependent on the recog-
nition accuracy of the proposed CSCL-Siamese network in constructing the database of known
IoT device embedding vectors, this experiment only focuses on analyzing the experimental
results of the CSCL-Siamese network. The results of the comparison experiments between the
CSCL-Siamese network and the IoTSense [26], IoTDevID [27], Kotak [10], and SmartRecon [25]
in the multiclassification recognition network are shown in Figure 14.

As can be seen in Figure 14a, the recognition accuracy of the CSCL-Siamese network
reaches 90.1%, which is higher than that of the other four multiclassification networks. The
main reason for this advantage is that the CSCL-Siamese network is essentially a kind of
metric learning network structure, which requires only a small number of pairwise samples
to achieve effective recognition, and the 50 data samples taken in this paper to construct a set
of PNSPs. In this paper, 50 pairs of data samples are taken to construct the full arrangement
of positive and negative samples, which is just in line with the characteristics of the CSCL-
Siamese network; on the contrary, the remaining four recognition networks adopt the
structure of multiclassification network, which usually requires a large number of training
samples to achieve a higher accuracy, and theoretically, the more the amount of data, the
more abundant the information, and the higher the accuracy of the recognition. Thus, the
sample size of 50 data is relatively small for the large number of samples required for the
structure of the multiclassification networks, leading to insufficient training and making
the probability of misclassification of these multiclassification networks increase. Further,
by comparing Figure 14b,c, it can be seen that compared to the multiclassification networks,
the recognition Precision rate of the CSCL-Siamese network decreases, but the Recall rate is
relatively high at 82.8%, which is higher than that of the multiclassification networks by up
to 15.8 percentage points. This is due to the difference in recognition mechanisms between
CSCL-Siamese networks and multiclassification networks. CSCL-Siamese networks focus
on learning the similarity between data samples, whereas multiclassification networks
focus on modeling through data samples to make classification decisions. This difference
in mechanism results in CSCL-Siamese networks having a slightly lower recognition
Accuracy than multiclassification networks. However, the advantage of higher Recall of
CSCL-Siamese networks ensures that more IoT devices are correctly recognized. Therefore,
although the recognition Precision rate of CSCL-Siamese network has decreased, its good
Recall rate and high Accuracy rate can ensure reliable recognition performance in the
field of IoT device recognition, and also verifies the effectiveness of the EVDC-CSCL-
Siamese algorithm.

Appl. Sci. 2025, 15, 5274 26 of 34

(a) Accuracy

(b) Precision

(c) Recall

Figure 14. Comparative experimental results of different network models.

Appl. Sci. 2025, 15, 5274 27 of 34

4.8. WVE-UDI Algorithm Ablation Experiments

In order to validate the effectiveness of the WVE-UDI algorithm (in Section 3.5.3)
in integrating multiple clustering algorithms, a series of unknown IoT device ablation
comparison experiments were designed on the classic UNSW dataset, covering the presence
of one, two, and three different unknown IoT device recognition scenarios, respectively,
in an open environment. These experiments assess the effectiveness of the WVE-UDI
algorithm in the unknown IoT device recognition task by comparing the difference in
recognition accuracy of the WVE-UDI algorithm before and after the integration of the
three clustering algorithms. In this experiment, the similarity threshold θ was set to 0.8. In
addition, the WVE-UDI algorithm did not use labeled data in the clustering process, and
only used real labels in calculating the recognition accuracy.

(1) The results of the ablation comparison experiments in the presence of an unknown
IoT device in an open environment are shown in Table 6.

Table 6. Comparison results of recognition accuracy of individual unknown IoT devices.

Algorithms
Unknown IoT Devices Belkin Wemo Switch Canary Camera Insteon Camera

Agglomerative algorithm 100% 90% 100%

Birch algorithm 100% 90% 100%

GaussianMixture algorithm 100% 100% 100%

WVE-UDI algorithm 100% 90% 100%

As can be seen from Table 6, the recognition accuracy of the WVE-UDI algorithm
is approximately the same before and after integration when only a single unknown
IoT device exists in the open environment. First, for the Belkin Wemo Switch device
and the Insteon Camera device, their recognition accuracies are 100% with or without
integration, which is because when only one new unknown IoT device is added to the
open environment, a single clustering algorithm is accurate enough to make the clustering
labels of each clustering algorithm the same, which results in the WVE-UDI algorithm
having the same recognition accuracy as the remaining three clustering algorithms after
integration; Second, for the Canary Camera device, although the recognition accuracy of
the individual clustering algorithms is 90%, 90%, and 100%, respectively, the WVE-UDI
algorithm has an accuracy of 90%, which is not 100%, mainly because the recognition results
of the Agglomerative algorithm and the Birch algorithm have larger values of incorrect
labels, which leads to its weighted value being higher than the weighted value of the
corresponding label of the WVE-UDI algorithm, which affects the final judgment of the
WVE-UDI algorithm and makes the final integrated label tend to be the wrong label, thus
pulling down the Accuracy rate. Nevertheless, the recognition accuracy of the WVE-UDI
algorithm still reaches 90% and above for a single unknown IoT device, which indicates
that the WVE-UDI algorithm is able to effectively integrate the clustering capabilities of
multiple clustering algorithms in a single unknown IoT device environment.

(2) The results of the ablation comparison experiment for the presence of two un-
known IoT devices in the open environment are shown in Figure 15. In order to ensure
the comprehensiveness of this comparison experiment, each unknown IoT device was
separately identified for comparison between two and two.

Appl. Sci. 2025, 15, 5274 28 of 34

(a)

(b)

(c)

Figure 15. Comparison results of recognition accuracy of two unknown IoT devices. (a) Presence of
Belkin Wemo Switch devices and Canary Camera devices in the open environment; (b) Presence of
Belkin Wemo Switch devices and Insteon Camera devices in the open environment; (c) Presence of
Canary Camera devices and Insteon Camera devices in the open environment.

Appl. Sci. 2025, 15, 5274 29 of 34

As can be seen from Figure 15, when two unknown IoT devices coexist in the open
environment, the WVE-UDI algorithm is usually able to achieve more than 90% recognition
accuracy, showing relatively good recognition results, as follows: (1) In the open environ-
ment where Belkin Wemo Switch and Canary Camera devices coexist, a single clustering
algorithm often only achieves high accuracy for the Belkin Wemo Switch devices to achieve
high accuracy recognition, while the recognition effect on Canary Camera devices is poorer,
both reaching 80%. With the integration of the WVE-UDI algorithm, while the recognition
accuracy of the Belkin Wemo Switch device decreased slightly to 93.8%, a decrease of
4.1 percentage points, the recognition accuracy of the Canary Camera device increased
significantly to 88%, a maximum improvement of 78 percentage points. This shows that the
WVE-UDI algorithm is able to balance the recognition effect among different IoT devices to
some extent when integrating the clustering capabilities of multiple clustering algorithms;
(2) Both the Agglomerative and Birch algorithms are unable to recognize Insteon Camera
devices when Belkin Wemo Switch devices and Insteon Camera devices exist in the open
environment. However, the WVE-UDI algorithm is able to achieve 100% accurate recogni-
tion of Insteon Camera devices, which is mainly attributed to the fact that the WVE-UDI
algorithm successfully integrates the Gaussian Mixture algorithm’s ability to recognize
Insteon Camera devices, which significantly improves the final recognition results; (3)
When both Canary Camera devices and Insteon Camera devices are present in the open en-
vironment, the Birch algorithm still fails to recognize the Insteon Camera devices, while the
Canary Camera devices are recognized with 90% accuracy. Meanwhile, the remaining two
single clustering algorithms perform opposite to the Birch algorithm, with low recognition
accuracy for Canary Camera devices but high recognition accuracy for Insteon Camera
devices. On the one hand, this is due to the fact that both Canary Camera devices and
Insteon Camera devices are video cameras, and there are similarities in their data features,
which leads to the single clustering algorithms facing difficulties in distinguishing between
the two; on the other hand, the data features of the Insteon Camera devices may not be fully
matched with the clustering patterns relied on by the Birch algorithm, which further affects
the recognition effect of the algorithm. However, through the integration of the WVE-UDI
algorithm, the recognition accuracy of the Canary Camera device reaches 78%, and the
recognition accuracy of the Insteon Camera device jumps from 0% to 100%, successfully
realizing the effective recognition of two unknown IoT devices. This proves the advantage
of the WVE-UDI algorithm in integrating the recognition capability of multiple clustering
algorithms, and achieves better recognition effect in the open environment where two
unknown IoT devices coexist.

(3) The results of the ablation comparison experiments in the presence of three un-
known IoT devices in an open environment are shown in Figure 16.

As can be seen in Figure 16, in the open environment where the three unknown IoT
devices coexist, the WVE-UDI algorithm performs relatively well overall and is able to
achieve high recognition results, as follows: (1) By comparing the Agglomerative algorithm
and the WVE-UDI algorithm, it is found that the recognition effect is significantly improved
by using the clustering integration, and although the recognition accuracy of the recognition
accuracy of Belkin Wemo Switch devices decreased by 8.3 percentage points, the accuracy
of Canary Camera devices increased from 72% to 76%, the accuracy of Insteon Camera
devices especially increased from 0% to 100%, and the overall performance was effectively
improved; (2) By comparing the Birch algorithm and the WVE- UDI algorithm, it is found
that the Birch algorithm not only has a very low recognition accuracy of 10% for the
Canary Camera device, but also still fails to recognize the Insteon Camera device, which
once again shows that the clustering pattern relied on by the Birch algorithm does not
match the data characteristics of the camera as a class of device exactly, resulting in its

Appl. Sci. 2025, 15, 5274 30 of 34

limited recognition capability. However, with the integration of the WVE-UDI algorithm,
the recognition accuracies of the Canary Camera device and the Insteon Camera device
are improved by 66 percentage points and 100 percentage points, respectively; (3) By
comparing the GaussianMixture algorithm with the WVE-UDI algorithm, it is found that
the recognition accuracies of the three types of IoT devices are enhanced, with the Belkin
Wemo Switch device accuracy increased by 0.1 percentage points and Canary Camera
device accuracy increased by 4 percentage points, and the WVE-UDI algorithm maintains
the same level of recognition as the Insteon Camera device since the GaussianMixture
algorithm has already achieved 100% accuracy; (4) A global comparison of the three single
clustering algorithms and the WVE-UDI algorithm reveals that the Belkin Wemo Switch
device’s recognition accuracy decreased by 8.3 percentage points, the Canary Camera device
improved by 66 percentage points, and the Insteon Camera device’s accuracy improved
by 100 percentage points; although the Belkin Wemo Switch device dropped slightly, the
remaining IoT devices saw a substantial improvement in recognition accuracy. This small
sacrifice for a significant improvement in the recognition rate of the other IoT devices is
clearly worthwhile. This shows that the WVE-UDI algorithm is able to effectively integrate
the clustering capabilities of multiple single clustering algorithms to improve the overall
recognition effect.

Figure 16. Comparison results of recognition accuracy of three unknown IoT devices.

In order to further analyze the specifics of the WVE-UDI algorithm integration in detail,
the recognition confusion matrix of the WVE-UDI algorithm in the coexistence environment
of the three unknown IoT devices is plotted, as shown in Figure 17, where each square
denotes the recognition accuracy for each IoT device, and a darker color denotes a higher
recognition accuracy.

Appl. Sci. 2025, 15, 5274 31 of 34

Figure 17. Confusion matrix for identification of three unknown IoT devices.

As can be seen in Figure 17, the WVE-UDI algorithm is able to achieve 100% accuracy
for the Insteon Camera device, with no misidentification as other IoT devices, and the best
recognition effect; for the Canary Camera device, there is a 10% misidentification rate to
judge it as the Belkin Wemo Switch device, while there is a 14% misidentification rate to
judge it as Insteon Camera device. On the one hand, this is because Canary Camera devices
and Insteon Camera devices belong to the same camera category, and they have some
similarities in some features, which makes the algorithm confused in the recognition; on
the other hand, the WVE-UDI algorithm is a fusion of the clustering ability of three single
clustering algorithms, but since all three algorithms have a poor recognition accuracy for
Canary Camera devices, the recognition accuracy of all three algorithms is not high, result-
ing in a limited improvement of the WVE-UDI algorithm for Canary Camera devices after
integration, which shows that, to a certain extent, the WVE-UDI algorithm is still limited
by the influence of the correct recognition results in the single clustering algorithms; for the
Belkin Wemo Switch device, there exists a misrecognition rate of 2% judging it as a Canary
Camera device, and another 8% misidentification rate judges it as Insteon Camera device,
but its correct identification rate reaches 90%, with relatively good identification results.

4.9. CSCL-WVE-UDI Method Validity Experiment

In order to validate the effectiveness of the CSCL-WVE-UDI method, experiments and
analyses are conducted on the classic UNSW dataset for a scenario in which three unknown
IoT devices coexist, and Precision, Recall, and F1 values are used to assess their recognition
performance. The choice of three unknown IoT devices for testing in this experiment stems
both from literature [7] that randomly selects three IoT devices from the UNSW dataset, and
because three unknown IoT devices are sufficient to evaluate the performance of recognition

Appl. Sci. 2025, 15, 5274 32 of 34

method [7], which balances the experimental complexity with the demonstration of the
recognition results. The results of this experiment are shown in Figure 18.

Figure 18. Experiments on the validity of the CSCL-WVE-UDI approach.

As can be seen from Figure 18, the CSCL-WVE-UDI method is more effective in
recognizing the three unknown IoT devices, but there are also less-than-ideal recognition
results, which are as follows: (1) for the Belkin Wemo Switch device, the Precision rate,
Recall rate, and F1 value remain the same, and all of them reach 89.6% recognition, which
indicates that the CSCL-WVE- UDI method is able to handle the recognition task of this
unknown IoT device stably and effectively; (2) For the Canary Camera device, the CSCL-
WVE-UDI method exhibits a high Precision rate and a low Recall rate, which is further
shown by combining with the confusion matrix in Figure 17, which is due to the fact that
only 2% of the Belkin Wemo Switch device is misidentified as the Canary Camera devices,
making the false positive rate (FP) relatively low, but 24% of the Canary Camera devices are
misidentified as the other two devices, resulting in an increase in the false negative rate (FN).
Therefore, although the CSCL-WVE-UDI method shows a high Precision rate in recognizing
Canary Camera devices, it fails to correctly identify all the Canary Camera devices, pulling
down the Recall rate, but the F1 value still reaches 85.4%, which indicates that the CSCL-
WVE-UDI method has a better overall performance and is capable of recognizing in all the
Canary Camera devices to a certain extent the contradiction between Precision rate and
Recall rate; (3) For Insteon Camera devices, the CSCL-WVE-UDI method has a higher Recall
rate of 100%, but the Precision rate is 81.4%, which is relatively low, due to the fact that 8%
of the Belkin Wemo Switch devices and 14% of the Canary Camera devices are misidentified
as Insteon Camera devices, resulting in an increase in the false positive rate (FP) for this
device. However, the CSCL-WVE-UDI method succeeded in correctly identifying all
Insteon Camera devices, resulting in a false negative example rate (FN) of 0. Therefore, the
Recall rate reached 100% and its F1 value reached 89.7%. In summary, the CSCL-WVE-UDI
method shows good performance in recognizing three unknown IoT device coexistence
scenarios, which validates the effectiveness of the CSCL-WVE-UDI method.

Appl. Sci. 2025, 15, 5274 33 of 34

5. Conclusions
This study developed a method for identifying unknown IoT devices based on CSCL-

Siamese networks and a WVE. First, to ensure that the model is trained with a rich set
of contrastive training data, the PNSP algorithm was presented, which combines data
visualization techniques with a permutation pairing strategy to generate all positive–
negative sample pairs while eliminating redundant ones. The decision boundary exhibited
bias due to an insufficient number of positive sample pairs. To address this, we improved
the classical contrastive loss function and trained the sample data using a CSCL-Siamese
network. This process enabled the creation of an embedded vector database for known IoT
devices. We used this database to filter out embedding vectors of unknown IoT devices
by performing pairwise comparisons. Finally, by integrating cost-sensitive weighting
factors with a voting ensemble strategy, a UDI algorithm based on a WVE was proposed,
which leverages the clustering capabilities of multiple unsupervised clustering algorithms
to complete the identification of unknown IoT devices. By identifying three randomly
selected unknown IoT devices, the effectiveness of the proposed method was validated.
However, this study also has some limitations: First, the Siamese network can only process a
single fingerprint feature due to only grayscale images being utilized to construct the device
fingerprints. Combining image data with other fingerprint features to form a new, unified
IoT device fingerprint can be considered in future studies. Second, the proposed CSCL-
Siamese network requires considerable known IoT devices for training before unknown
device identification can proceed. Thus, methods for identifying unknown devices that do
not rely on data from known IoT devices will be our next studies.

Author Contributions: Conceptualization, J.Q., W.Z. and X.L.; methodology, W.Z.; software, X.L.;
validation, X.L. and W.Z.; formal analysis, J.Q.; investigation, W.Z.; resources, Z.L.; data curation,
X.L.; writing—original draft preparation, X.L.; writing—review and editing, W.Z.; visualization, W.Z.;
supervision, J.Q.; project administration, X.L.; funding acquisition, Z.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Smart Manufacturing New Model Application Project Ministry
of Industry and Information Technology (No.ZH-XZ-18004), the Fundamental Research Funds for
the Ministry of Education (No.JUSRP 211A41), the Fundamental Research Funds for the Central
Universities (No.JUSRP42003), and the 111 Project (No.B2018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data suporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sasaki, Y. A survey on IoT big data analytic systems: Current and future. IEEE Internet Things J. 2021, 9, 1024–1036. [CrossRef]
2. Luo, S.; He, R.; La, B. Research on Security Protection Technology for IoT Devices. Netw. Secur. Technol. Appl. 2023, 12, 24–26.

[CrossRef]
3. Aksoy, A.; Gunes, M.H. Automated iot device identification using network traffic. In Proceedings of the ICC 2019-2019 IEEE

International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [CrossRef]
4. Zhang, S.; Xiao, K.; Yu, J.; Liu, X.; Wang, W. Accurate IoT Device Identification based on A Few Network Traffic. In Proceedings

of the 2023 IEEE/ACM 31st International Symposium on Quality of Service, Orlando, FL, USA, 19–21 June 2023; pp. 1–10.
[CrossRef]

5. Trad, F.; Hussein, A.; Chehab, A. Using Siamese Neural Networks for Efficient and Accurate IoT Device Identification. In Proceedings
of the 2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 12–15 December 2022;
pp. 1–7. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3131724
http://dx.doi.org/10.3969/j.issn.1009-6833.2023.12.012
http://dx.doi.org/10.1109/ICC.2019.8761559
http://dx.doi.org/10.1109/IWQoS57198.2023.10188721
http://dx.doi.org/10.1109/FMEC57183.2022.10062771

Appl. Sci. 2025, 15, 5274 34 of 34

6. Trad, F.; Hussein, A.; Chehab, A. Assessing the Effectiveness of Siamese Neural Networks to Mitigate Frequent Retraining in IoT
Device Identification Models. In Proceedings of the 2023 International Conference on Platform Technology and Service (PlatCon),
Busan, Republic of Korea, 16–18 August 2023; pp. 47–52. [CrossRef]

7. Yin, S.; Zhang, W.; Feng, Y.; Xiang, Y.; Liu, Y. Automatic IoT device identification: A deep learning based approach using graphic
traffic characteristics. Telecommun. Syst. 2023, 83, 101–114. [CrossRef]

8. Bao, J.; Hamdaoui, B.; Wong, W.K. IoT Device Type Identification Using Hybrid Deep Learning Approach for Increased IoT
Security. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus,
15–19 June 2020; pp. 565–570. [CrossRef]

9. Ross, J. Tshark, 2022. [EB/OL]. Available online: https://tshark.dev/export/ (accessed on 11 April 2024).
10. Kotak, J.; Elovici, Y. IoT Device Identification Using Deep Learning. In 13th International Conference on Computational Intelligence in

Security for Information Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 76–86. [CrossRef]
11. Potter, G.; Guillaume, V.; Pierre. Scapy. 2023. [EB/OL]. Available online: https://scapy.net/ (accessed on 11 April 2024).
12. Damiani, E.; Vimercati, S.; Paraboschi, S.; Samarati, P. An Open Digest-based Technique for Spam Detection. In Proceedings of

ISCA 17th International Conference on Parallel and Distributed Computing Systems, San Francisco, CA, USA, 15–17 September
2004; pp. 559–564.

13. Fuentealba, P.; Chamorro, E.; Santos, J.C. Chapter 5 Understanding and using the electron localization function. Theor. Asp. Chem.
React. 2008, 19, 57–85. [CrossRef]

14. Yin, F.; Li, Y.; Wang, Y.; Dai, J. IoT ETEI: End-to-End IoT Device Identification Method. In Proceedings of the 2021 IEEE Conference
on Dependable and Secure Computing (DSC), Aizuwakamatsu, Japan, 30 January–2 February 2021; pp. 1–8. [CrossRef]

15. Wang, F.; Liu, H. Understanding the behaviour of contrastive loss. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2495–2504.

16. Hu, J.; Wang, J. Prediction of liquefaction of gravelly soils based on a cost-sensitive Bayesian network combined with rough set
weighting. Gondwana Res. 2024, 131, 57–68 . [CrossRef]

17. Majhi, M.; Pal, A.K.; Islam, S.K.H.; Khurram Khan, M. Secure content-based image retrieval using modified Euclidean distance
for encrypted features. Trans. Emerg. Telecommun. Technol. 2021, 32, e4013. [CrossRef]

18. Bamhdi, A.M.; Abrar, I.; Masoodi, F. An ensemble based approach for effective intrusion detection using majority voting.
Telkomnika Telecommun. Comput. Electron. Control. 2021, 19, 664–671. [CrossRef]

19. Tokuda, E.K.; Comin, C.H.; Costa, L.F. Revisiting agglomerative clustering. Phys. A Stat. Mech. Appl. 2022, 585, 126433. [CrossRef]
20. Yin, S.; Li, H.; Liu, D.; Karim, S. Active contour modal based on density-oriented BIRCH clustering method for medical image

segmentation. Multimed. Tools Appl. 2020, 79, 31049–31068. [CrossRef]
21. Shieh, C.S.; Lin, W.W.; Nguyen, T.T.; Chen, C.H.; Horng, M.F.; Miu, D. Detection of unknown ddos attacks with deep learning

and gaussian mixture model. Appl. Sci. 2021, 11, 5213. [CrossRef]
22. ACRIS. IoT Devices Setup Captures, 2017. [EB/OL]. Available online: https://research.aalto.fi/en/datasets/iot-devices-captures

(accessed on 11 April 2024).
23. Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT devices in

smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 2019, 18, 1745–1759. [CrossRef]
24. Charyyev, B.; Gunes, M.H. IoT Traffic Flow Identification using Locality Sensitive Hashes. In Proceedings of the ICC 2020–2020 IEEE

International Conference on Communications, Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]
25. Thom, J.; Thom, N.; Sengupta, S.; Hand, E. Smart Recon: Network Traffic Fingerprinting for IoT Device Identification. In

Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV,
USA, 26–29 January 2022; pp. 72–79. [CrossRef]

26. Bruhadeshwar, B.; Maalvika, B.; Jordan, P.; Shirazi, H.; Ray, I.; Ray, I. Behavioral Fingerprinting of IoT Devices; Association for
Computing Machinery—ACM: New York, NY, USA, 2018; pp. 41–50. [CrossRef]

27. Kostas, K.; Just, M.; Lones, M.A. IoTDevID: A Behavior-Based Device Identification Method for the IoT. IEEE Internet Things J.
2022, 9, 23741–23749.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/PlatCon60102.2023.10255208
http://dx.doi.org/10.1007/s11235-023-01009-1
http://dx.doi.org/10.1109/IWCMC48107.2020.9148110
https://tshark.dev/export/
http://dx.doi.org/10.1007/978-3-030-57805-3_8
https://scapy.net/
http://dx.doi.org/10.1016/S1380-7323(07)80006-9
http://dx.doi.org/10.1109/DSC49826.2021.9346251
http://dx.doi.org/10.1016/j.gr.2024.03.003
http://dx.doi.org/10.1002/ett.4013
http://dx.doi.org/10.12928/telkomnika.v19i2.18325
http://dx.doi.org/10.1016/j.physa.2021.126433
http://dx.doi.org/10.1007/s11042-020-09640-9
http://dx.doi.org/10.3390/app11115213
https://research.aalto.fi/en/datasets/iot-devices-captures
http://dx.doi.org/10.1109/TMC.2018.2866249
http://dx.doi.org/10.1109/ICC40277.2020.9148743
http://dx.doi.org/10.1109/CCWC54503.2022.9720739
http://dx.doi.org/10.1145/3266444.3266452

	Introduction
	Literature Review
	CSCL-WVE-UDI: Method for Identifying Unknown IoT Devices
	Logical Architecture of CSCL-WVE-UDI Method
	Data Preprocessing
	Algorithm for Generating Permutation Positive–Negative Sample Pairs (PNSPs)
	Construction of Device Fingerprints Based on Grayscale Images
	Generation of PNSPs
	PNSP Algorithm

	Embedding-Vector Database Generation Based on CSCL-Siamese Network: Embedding-Vector Database Construction (EVDC)-CSCL-Siamese Algorithm
	PNSP Algorithm
	CSCL Function
	CSCL-Siamese Network
	Embedding-Vector Database Generation Based on CSCL-Siamese Network
	EVDC-CSCL-Siamese Algorithm

	WVE-UDI: UDI Algorithm Based on WVE
	Filtering of Embedding Vectors for Unknown IoT Devices
	WVE for UDI
	WVE-UDI Algorithm

	Experimental Results and Analysis
	Experimental Datasets
	Evaluation Indicators
	Experimental Environment and Experimental Parameter Settings
	Experiments on the Efficiency of the CSCL-WVE-UDI Methodology
	Comparative Experiments with PNSP Algorithm
	CSCL-Siamese Network Ablation Experiments
	EVDC-CSCL-Siamese Algorithm Comparison Experiments
	WVE-UDI Algorithm Ablation Experiments
	CSCL-WVE-UDI Method Validity Experiment

	Conclusions
	References

