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Abstract: Falls are defined by the World Health Organization (WHO) as incidents in
which an individual unintentionally falls to the ground or a lower level. Falls represent a
serious public health issue, ranking as the second leading cause of death from unintentional
injuries, following traffic accidents. While fall prevention is crucial, prompt intervention
after a fall is equally necessary. Delayed responses can result in severe complications,
reduced recovery potential, and a negative impact on quality of life. This study focuses
on detecting fall situations using image-based methods. The fall images utilized in this
research were created by combining three open-source datasets to enhance generalization
and adaptability across diverse scenarios. Because falls must be detected promptly, the
YOLO (You Only Look Once) network, known for its effectiveness in real-time detection,
was applied. To better capture the complex body structures and interactions with the floor
during a fall, two key techniques were integrated. First, a global attention module (GAM)
based on the Convolutional Block Attention Module (CBAM) was employed to improve
detection performance. Second, a Transformer-based Swin Transformer module was added
to effectively learn global spatial information and enable a more detailed analysis of body
movements. This study prioritized minimizing missed fall detections (false negatives, FN)
as the key performance metric, since undetected falls pose greater risks than false detections.
The proposed Fall Detection YOLO (FD-YOLO) network, developed by integrating the Swin
Transformer and GAM into YOLOv9, achieved a high mAP@0.5 score of 0.982 and recorded
only 134 missed fall incidents, demonstrating optimal performance. When implemented in
environments equipped with standard camera systems, the proposed FD-YOLO network is
expected to enable real-time fall detection and prompt post-fall responses. This technology
has the potential to significantly improve public health and safety by preventing fall-related
injuries and facilitating rapid interventions.

Keywords: falls; artificial intelligence; computer vision; attention block; deep learning

1. Introduction
Fall accidents, as defined by the World Health Organization (WHO), occur when

an individual unintentionally moves to the ground or a lower level. These incidents are
recognized as significant public health issues rather than isolated accidental events. Glob-
ally, falls result in over 684,000 fatalities annually, ranking as the second leading cause
of unintentional injury-related deaths after road traffic accidents [1]. They account for
more than 90% of all hip fractures, with nearly 20% of affected individuals succumbing
to related complications within a year [2]. These figures highlight the fatal risks posed
by falls, particularly to the elderly, and the substantial medical burden they impose on
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healthcare systems. Annually, approximately one-third of individuals aged 65 years and
older experience a fall, accounting for more than 50% of hospital admissions for unin-
tentional injuries in this demographic [1,3]. These data underscore the extensive societal
burden. It is anticipated that the incidence of falls will increase alongside the global aging
trend. By 2050, the population aged 65 and older is projected to reach approximately
2 billion, constituting approximately 22% of the global population; consequently, injury
and mortality rates associated with falls are expected to rise significantly in aging societies,
underscoring the pressing need for preventative technological interventions.

Moreover, the rise in single-person households has reduced the likelihood of receiving
immediate assistance after a fall, particularly among older adults. This delay can lead
to the “long-lie” phenomenon, where individuals remain immobilized for over an hour,
significantly increasing secondary risks such as pressure ulcers, dehydration, hypothermia,
and mortality. Thus, there is an escalating demand for accurate fall detection systems
capable of facilitating timely interventions [2].

Early fall detection systems predominantly utilized wearable sensors, such as ac-
celerometers and gyroscopes, integrated into personal emergency response systems
(PERSs) [4–6]. These sensors effectively monitored body movements but had critical
limitations, including the need for precise placement on the body, which could shift during
movement, compromising accuracy. To address these challenges, recent advancements
focus on integrating sensor data with artificial intelligence (AI) to improve calibration and
analysis [7–9]. AI offers the potential to significantly improve fall detection accuracy by
compensating for sensor data imperfections and learning movement patterns to obtain
more reliable fall detection. Current studies aim to enhance the accuracy of sensor-based
fall detection through advanced data preprocessing and algorithm optimization while
striving to develop cost-effective equipment.

Nonetheless, a fundamental limitation of these systems was the need to attach external
sensors to the body. Although this method might be effective for high-risk individuals such
as those predisposed to frequent falls, it had notable limitations when attempting to detect
sudden fall incidents in the general population. Moreover, although sensor-based systems
can detect falls, they relied on wireless communication to alert others, which introduced
additional challenges [10]. For instance, if the communication network malfunctions or
if the user was alone during a fall, timely intervention could not occur. Furthermore, in
countries such as South Korea, the transmission of bodily data over the Internet could
violate privacy protection laws, complicating the possibility of a rapid response. To solve
these problems, researchers have increasingly used smartphones as an alternative. This
approach involved transmitting sensor data to a smartphone, where AI processed the
information and sent alerts externally if necessary [11]. Although this method addressed
some of the communication challenges associated with traditional systems, it did not resolve
the issue of physically attaching sensors to the body. Consequently, there was an increasing
need to develop novel technological approaches to address the limitations inherent in
sensor-based systems. To overcome the limitations of sensor-based fall detection systems,
research on contactless vision-based fall detection had been actively pursued. The rapid
advancements in computer vision had significantly enhanced the accuracy and applicability
of such systems. Past computer vision techniques for fall detection had been grounded
in mathematical models that captured and analyzed body movements and the spatial
relationship between the body and its environment. These approaches included methods
for analyzing changes in body posture [11,12], tracking head position [13], and using three-
dimensional (3D) technology to assess vertical body distribution [14]. However, despite
their potential, these methods failed to capture specific fall movements or exhibit reduced
accuracy under certain environmental conditions. To address these limitations, researchers
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had explored the use of Kinect cameras, which could provide depth information to detect
falls more accurately [15]. The depth-sensing capability of the Kinect camera offered the
advantage of improved detection of interactions between the body and the environment,
enhancing the precision of fall detection. Nonetheless, this approach presented practical
challenges, such as the need for additional hardware installation, high costs, and limitations
in the range of accurate depth measurement, which made real-world applications difficult.

Similar to the trajectory of sensor-based fall detection research, vision-based studies
that increasingly incorporated AI algorithms in the vision base were developed to miti-
gate these limitations and improve accuracy. These algorithms analyzed complex body
movements with enhanced precision, and deep learning techniques demonstrated strong
capabilities for processing unstructured data effectively. However, most AI algorithms for
vision-based fall detection were developed for cloud-based platforms [16,17] or integrated
into embedded systems [18,19]. Although cloud-based systems provided high computa-
tional power and accuracy, they also incurred additional costs and introduced challenges
such as transmission delays and significant concerns regarding data privacy. Conversely,
leveraging existing closed-circuit television (CCTV) systems that were already widely de-
ployed for crime prevention and monitoring presented a practical alternative. By utilizing
these systems, the need for new hardware installation was mitigated, thereby expanding
the potential applicability of AI vision-based fall detection systems in real-world environ-
ments. This approach substantially reduced costs and simplified implementation while
still allowing for the integration of advanced AI techniques to improve detection accuracy.

This study aims to develop an AI network that can be implemented in CCTV systems,
which are more cost-effective alternatives to cloud-based platforms, while enhancing
fall detection performance. By leveraging advanced neural network techniques, such
as attention blocks, this study seeks to address the limitations of existing sensor and
vision methods, enabling more accurate and real-time fall detection and transmission. The
proposed system not only detects falls in real time but also immediately transmits alerts
of fall incidents via CCTV networks, facilitating rapid responses in emergency situations.
Consequently, this approach is expected to contribute significantly to reducing fall injuries
and protecting life and safety through timely intervention. Furthermore, the development
of AI technological advancements will serve as a critical tool for mitigating the risks
associated with falls, particularly in the context of an aging society. By improving both
the accuracy and efficiency of fall detection, this system has the potential to play a pivotal
role in ensuring individual health and safety, promoting swift responses, and ultimately
enhancing the quality of life of vulnerable populations.

The primary contributions of the proposed model in this study are delineated
as follows:

• Development of an Optimized Object Detection Network [20]: Through a compre-
hensive evaluation of various object detection networks, the study identified and
optimized a network tailored specifically for the fall detection dataset. This opti-
mization process led to the development of an efficient and high-performing object
detection framework.

• Incorporation of the Swin Transformer for Enhanced Feature Representation [21]: The
proposed model integrates the Swin Transformer module, which leverages global
contextual information, to effectively capture and reinforce critical human positional
features. This enhancement addresses the limitations of existing approaches, signifi-
cantly reducing detection failures associated with fall events.

• Integration of an Attention Mechanism for Performance Enhancement: To further
augment the model’s effectiveness, an attention module was incorporated into the
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architecture. This addition resulted in superior performance compared to conventional
object detection frameworks, underscoring the efficacy of the proposed approach.

The structure of this manuscript is organized as follows. Section 2 provides a detailed
review of the relevant literature and background on deep learning-based object detection
methodologies. Section 3 describes the composition and characteristics of the fall detection
dataset utilized in this study. Section 4 elaborates on the architectural details of the object
detection networks employed, including the proposed modules. Section 5 outlines the ex-
perimental methodology, performance metrics, and a comparative analysis of the proposed
model against baseline approaches. Section 6 discusses the experimental findings and their
implications, while Section 6 concludes the study by summarizing its contributions and
proposing directions for future research.

2. Related Works
Recent advancements in deep learning have led to significant progress in algorithms

applied to various computer vision tasks, including image classification, image segmenta-
tion, and object detection. Object detection involves both the recognition of object categories
and the precise localization of these objects within an image. As foundational components
of AI-driven computer vision systems, deep learning-based object detection algorithms
have attracted substantial research attention. Broadly, these algorithms can be categorized
into transformer-based and convolutional neural network (CNN)-based approaches, based
on their underlying architectural principles. Transformer-based object detection models,
such as the Detection Transformer (DETR) [22], exemplify the capabilities of transformers
in visual tasks. Despite their promising performance, these models are often constrained by
high computational complexity, substantial memory requirements, and extended training
durations, rendering them less feasible for deployment in industrial applications with
stringent efficiency requirements. Conversely, CNN-based object detection methods are
well-established and are typically divided into two-stage and one-stage frameworks. Two-
stage approaches, including Region-based Convolutional Neural Networks (R-CNN) [23],
Mask R-CNN [24], and Faster R-CNN [25], are renowned for their high detection accuracy.
These methods employ a sequential process, where candidate regions are first proposed,
and then boundary box regression and object classification are performed using CNNs.
While these algorithms have demonstrated effectiveness in complex detection scenarios,
their intricate architectures and extended inference times pose limitations for real-time
applications, such as fall detection systems, where a rapid response is critical. Following
this, Fast R-CNN employed a multi-task loss function, enabling simultaneous optimiza-
tion of classification and localization tasks, but still suffered from latency issues. Faster
R-CNN further refined the process by introducing a Region Proposal Network (RPN) that
shared convolutional features between the detection and proposal stages, streamlining the
pipeline. However, the architectural complexity of two-stage models remains a challenge.
One-stage object detection algorithms, such as the Single Shot Detector (SSD) [26] and the
You Only Look Once (YOLO) series [27], adopt a more efficient paradigm. These models
perform direct classification and localization on feature maps derived from input images,
circumventing the need for separate region proposal steps. SSD achieves multi-scale object
detection by leveraging feature layers of varying depths, balancing speed and accuracy
comparable to Faster R-CNN, although it struggles with the detection of small objects. In
contrast, the YOLO framework eliminates region proposal entirely, predicting bounding
boxes and object categories concurrently across the entire image [27]. While YOLO outper-
forms many state-of-the-art algorithms in computational efficiency, its detection accuracy
is slightly lower than that of two-stage models like Fast R-CNN. Given their reduced
computational demands, one-stage algorithms are better suited for real-time applications,
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particularly in scenarios requiring rapid processing and lightweight model architectures.
Over the years, the YOLO series has emerged as a benchmark for state-of-the-art object
detection, finding widespread application in industrial and practical contexts.

3. Materials and Methods
In this study, the data were constructed using three fall datasets [28–30], and the YOLO

artificial intelligence network was applied for detection. Notably, recent advancements in
the YOLO series have achieved significant improvements in detection accuracy, making
these algorithms fast, efficient, highly accurate, deployable, and user-friendly. The contin-
uous evolution of the YOLO series, which has now reached YOLOv11, has incorporated
various enhancements, leading to substantial upgrades in network performance, further
solidifying the suitability of YOLO for real-time applications.

3.1. Datasets

In this study, three open-source fall detection datasets were used to accurately model
fall scenarios. This approach was adopted to prevent the model from becoming biased
toward specific environments, addressing the potential issue of overreliance on a particular
dataset. By integrating these distinct datasets, collected under various conditions and
environments, the model was trained to detect fall scenarios in a more generalized manner.

All datasets were labeled dichotomously, distinguishing between the normal and
fall states. However, given that the primary objective of this study was to improve fall
detection accuracy, we determined that training the model on normal-state images would
not contribute significantly to this goal. Consequently, to minimize potential training errors
and optimize model performance, the labeling structure was modified to focus exclusively
on a single class, that is, falls. This restructuring aims to enhance the capacity of the model
to identify fall incidents with greater precision and reduce misclassification rates, thereby
improving the overall detection accuracy.

This study utilized a total of 17,661 images, of which 10,596 were allocated for training,
3532 for validation, and the remaining 3533 for final accuracy evaluation. The details
are presented in Table 1. The Roboflow dataset [28] the included 10,793 images, Kaggle
dataset [29] contained 485 images and the CAUCAFall dataset [30] comprised 6383 images.
Figure 1 illustrates examples from these datasets. This division of datasets ensures a
balanced approach to model development, enabling robust training, thorough validation,
and accurate evaluation of model performance across diverse scenarios.

Table 1. Datasets.

Dataset Total Numbers Train Validation Test

Roboflow 10,793 6493 2150 2150
Kaggle 485 291 97 97

CAUCAFall 6383 3812 1285 1286
total 17,661 10,596 3532 3533

3.2. YOLOv9

In this study, we used the YOLO network, which is a widely recognized AI object
detection framework, for fall detection. Detecting falls in real time is crucial; however, it is
equally important to accurately identify the location and number of falls to ensure timely
responses. Therefore, we selected the YOLO network, which is known for its advantages
in both object localization and real-time processing. After optimizing various versions of
the YOLO network, each of which demonstrated continuous performance improvements
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on other open-source datasets, we trained the network on our fall detection dataset to
determine the best-performing version.
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We hypothesized that, although a particular network may exhibit strong general
performance, its effectiveness could vary depending on the characteristics of the dataset,
leading to the expectation that a specific YOLO version would be optimally suited for
fall detection. Consequently, we tested all available versions from the earliest to the most
recent iterations and selected the network that yielded the highest performance. In this
comprehensive evaluation, YOLOv9 delivered the best results. This superior performance
can be largely attributed to the integration of the auxiliary stage into its intermediate layers,
which helps prevent information loss as it propagates through the network, thus enhancing
the test data performance [31]. Additionally, the inclusion of the Repeated Normalized
Cross-Stage Partial (RepNCSP) structure, a refinement of the cross-stage partial bottleneck
with two convolutions (C2f) structure introduced in YOLOv8, further contributed to im-
proved fall detection accuracy, suggesting that these architectural innovations played a role
in optimizing fall detection in our study.

3.3. Attention Module

To enhance the performance of AI algorithms, detection capabilities are often im-
proved by increasing the network depth, integrating multi-scale feature fusion, and adding
detection branches. However, increasing the network depth inherently expands the model
size, which poses a limitation for methods in which real-time detection is essential. Conse-
quently, techniques such as attention blocks, which exploit the characteristics of feature
maps, have been employed to improve accuracy without increasing the number of layers.
This approach significantly enhances the performance while requiring fewer computational
resources compared with traditional deep networks.
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Detecting falls from images requires distinguishing between falling, sitting, and walk-
ing. However, the human body’s structure makes it difficult to clearly differentiate these
actions. For example, bending over can appear similar to falling. In fall scenarios, key
body parts like the nose, shoulders, elbows, and ankles are crucial for distinguishing ac-
tions [32]. Falls also involve interaction with the floor, making the body’s center of gravity
and its angle with the floor important factors [33,34]. This information reflects global spatial
interactions in videos. In this study, it is crucial to preserve and extract these global features.

A notable technique for improving performance is the convolutional block attention
module (CBAM) [35]. CBAM enhances the ability of the model to focus on features by
combining channel attention and spatial attention mechanisms. This allows the network to
emphasize the most important regions of the input image, effectively improving the detec-
tion accuracy without the need for a more complex network architecture. The first step in
the CBAM is the channel attention mechanism, which enables the object detection network
to learn the relative importance of each channel. By assigning adaptive weights to indi-
vidual channels, the model emphasizes feature maps that are for object recognition, while
diminishing less relevant or redundant information. This selective emphasis improves the
overall performance of the model by focusing its resources on the most informative data.
The second step involves the spatial attention mechanism, which accentuates the positional
information of specific regions within the image. This mechanism allows the network
to analyze the spatial layout of an image, highlighting regions that are crucial for object
detection. By focusing on the spatial arrangement, the model can more accurately detect
objects of varying sizes or positions, especially in complex scenarios where distinguishing
between objects and the background is challenging. The spatial attention mechanism en-
hances the ability of the model to learn detailed positional information, thereby improving
object localization and recognition, particularly in cases of significant variability in object
placement or appearance.

By prioritizing the processing of more important and relevant information, this ap-
proach reduces the likelihood of missed or falsely detected objects and enhances the
detection and recognition accuracy by effectively focusing on specific objects. This selective
focus is particularly beneficial in challenging scenarios involving diverse backgrounds,
small objects, or intricate patterns where traditional detection methods may struggle to
distinguish between objects and the surrounding environment [36]. A schematic of this
approach is shown in Figure 2.
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Falls occur in various forms, and effectively extracting global information from images
is crucial for emphasizing the relevant features for accurate detection. In some fall scenarios,
parts of the body may be occluded by objects in the image, leading to a potential loss of key
fall-related features as the layers process the image. To address this limitation, we seek to
improve detection accuracy by incorporating a global attention block (GAB) that enhances
the existing CBAM structure by adding a global computation mechanism [37]. Similar
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to the CBAM, the GAB accounts for both channel and spatial information. However, the
GAB goes a step further by considering interactions across the entire feature map when
calculating the relationships between different positions, thereby applying both channel
and spatial attention on a global scale. This global perspective allows the model to capture
more comprehensive contextual information, improving its ability to detect falls, even in
cases where critical parts of the body are partially occluded or when fall-related features
are dispersed across the image.

CBAM methods often use max or average pooling to extract features, which can
result in capturing only specific features of the human body while losing other important
details. To solve this, the GAM (Global attention mechanism) uses two convolutional layers
to preserve and combine spatial information, reducing the loss of structural details and
improving fall detection accuracy. This needs to be validated with experimental results.
Pooling methods summarize data by averaging or taking the maximum value, which limits
the ability to capture global context but is efficient in terms of parameters. The GAM
removes pooling and uses convolutional layers to maintain information and enhance global
interactions. While removing pooling may lower parameter efficiency, this was addressed
with additional computations. The calculation of the channel attention mechanism is
outlined in Equations (1) and (2):

Mc(F1)= σ(W2 ∗ ReLU(W1 ∗ Pooling(F1))) (1)

F2= Mc(F1)⊗ F1 (2)

σ is a sigmoid activation function. W1 and W2 are the weights matrix. For the input
feature map (F1), the intermediate channel map (F2) is obtained through element-wise multi-
plication between the channel attention map (Mc) and the input feature map (F1). Similarly,
the calculation of the spatial attention mechanism is depicted in Equations (3) and (4):

Ms(F2)= σ(ConV1(ConV2(F2) ))) (3)

F3= Ms(F2)⊗ F2 (4)

For the intermediate channel map (F2), ConV1, ConV2 is convolution operation. The
final feature map (F3) is produced via element-wise multiplication between the spatial
attention map (Ms), and the input feature map (F2).

The distinguishing characteristic of this approach is its ability to compute interac-
tions across all positions on the feature map globally, allowing the model to capture more
comprehensive feature relationships. However, this increased consideration of positional
interactions also leads to heightened computational complexity. To address this, we con-
ducted experiments using both the CBAM and GAB to compare their effectiveness in
improving detection accuracy under these conditions [38]. The overall architecture of the
system is illustrated in Figure 3.
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3.4. Swin Transformer Module

To further optimize the performance and enhance the accuracy of fall detection, we
integrated transformer-based modules into an existing CNN-based model. As previously
noted, the ability to capture global information is particularly crucial in scenarios in which
parts of the body may be occluded by objects, potentially hindering detection accuracy. To
capitalize on the strength of transformers in learning and extracting global information, we
incorporated a modified Swin Transformer module into the YOLO network [39]. By inte-
grating the Swin Transformer, which is designed to efficiently process global dependencies
in visual data, the capability of the model to capture contextual relationships across the
entire image is improved. This modification aims to address the limitations posed by partial
occlusions and improve the ability of the model to detect falls in diverse and complex
environments. The hierarchical design of the Swin Transformer, combined with its ability
to capture both local and global information, allows for enhanced feature representation,
further contributing to overall performance improvements in fall detection.

The Swin Transformer operates by applying self-attention across sliding windows,
which allows it to process the input data by dividing them into patches, which are then ar-
ranged linearly for transformer processing. Initially, self-attention is performed through the
window multihead self-attention (W-MSA) mechanism, which computes the relationships
within patches confined to a specific window. Subsequently, the shift window multihead
self-attention (SW-MSA) mechanism shifts the window boundaries to analyze the relation-
ships between patches located in different windows. These two complementary processes
enable the model to capture the correlations between patches across different regions of the
input image. The calculation formula for self-attention is the same as Equation (5):

Attention(Q, K, V)= SoftMax
(

QKT
√

d
+ B

)
V (5)

Here, Q, K, and V represent the matrix for Query, Key, and Value, respectively, while B
denotes the matrix for relative positional bias. The matrix V corresponds to the value matrix
with attention weights applied, and the similarity between Query and Key is computed

using the formula ( QKT
√

d
). The Shifted Window mechanism facilitates interaction between

adjacent windows by alternating window positions across consecutive blocks. This process
is represented mathematically as in Equation (6) where ẑl is the output of block l, W-MSA
denotes Window-based Multi-head Self-Attention, and LN refers to Layer Normalization.

ẑl= W − MSA
(

LN
(

zl−1
))

+ zl−1 (6)

The Self-Attention in the Shifted Window is calculated as shown in Equation (7), where
SW-MSA indicates Shifted Window-based Multi-head Self-Attention.

zl= SW − MSA
(

LN
(

ẑl
))

+ ẑl (7)

By leveraging this approach for fall detection, the model emphasizes spatial location
information during hierarchical feature extraction. This helps enhance the detection of falls
by considering both local and global dependencies between image patches, even when
parts of the body are occluded or positioned in challenging ways. We anticipate that this
method will yield more effective and accurate fall detection results. The basic structure of
this process is illustrated in Figure 4.
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3.5. FD-YOLO

The dual-head feature of YOLOv9 was employed to mitigate the loss of fall-related
features in scenarios in which falls may be occluded by objects during the feature map
extraction stage. This mechanism ensures that even partially obscured falls are detected.
To preserve this critical functionality, the auxiliary stage, which incorporates a dual-head
structure, is maintained without modification. Additionally, we integrate the Fall Detection
(FD) module along with the global attention module (GAM) and CBAM into the opposite
feature extraction path to further refine the detection performance.

To enhance accuracy while minimizing structural modifications within the network,
the FD module, which modifies the structure of the RepNCSP module, is utilized to replace
the original RepNCSP in YOLOv9, and its structure is illustrated in Figure 5.

This modification allows for improved feature retention and accuracy in fall detection.
The final network architecture, illustrated in Figure 6, reflects a comprehensive design
approach aimed at minimizing unpredictable effects while ensuring that all performance
enhancement considerations are fully addressed.
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3.6. Evaluation Metrics

The primary objective of this study was to detect falls accurately using images. Be-
cause undetected falls can prevent timely intervention, we placed particular emphasis
on analyzing the false negative (FN) rate because missed detections can have serious
consequences. Given that the YOLO network is designed for real-time image processing
and can detect falls in video-based scenarios, we assumed that falls would be detected
within the standard 60 frames of video footage. Thus, our goal was to develop a network
capable of maintaining an FN count at or below 60, ensuring reliable fall detection across
various scenarios.

The evaluation of object detection networks commonly involves performance metrics
derived from a confusion matrix, including recall, precision, accuracy, and mean average
precision (mAP). The confusion matrix is used to assess the predictive performance of
a network and consists of four key values: true positive (TP), true negative (TN), false
positive (FP), and FN. These values were used in different combinations to calculate the
performance metrics used in this study.
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The performance metrics evaluated in this study are described below:
Recall, as defined in Equation (8), is the proportion of actual positive cases (falls)

correctly identified by the model. It is a crucial metric in fall detection as it directly relates
to minimizing missed detections (false negatives):

Recall(R) =
TP

TP + FN
(8)

Precision, as shown in Equation (9), represents the proportion of correctly identified
positive cases among all predicted positives. This metric emphasizes the model’s ability to
reduce false positives:

Precision(P) =
TP

TP + FP
(9)

Accuracy, expressed in Equation (10), measures the overall proportion of correctly
classified instances (both positive and negative) among all predictions made by the model:

Accuracy =
TP + TN

TP + FN + FP + TN
(10)

The mean average precision (mAP), defined in Equation (11), evaluates the model’s
performance by averaging the precision scores over all object classes. It is derived by inte-
grating the precision–recall curve for each class and computing the mean across all classes:

Average Precision (AP) =
∫ 1

0
PdR, mAP =

1
N ∑N

i=1 APi (11)

In object detection, Intersection over Union (IoU), as defined in Equation (12), is
another critical metric for performance evaluation:

Intersection over Union (IoU) =
Area o f Overlap
Area o f Union

(12)

IoU measures the accuracy of the predicted object’s location by quantifying the degree
of overlap between the predicted bounding box and the ground truth bounding box.
Specifically, IoU is defined as the ratio of the overlapping area between the predicted and
actual bounding boxes to the total area of their union. This metric provides a precise and
quantitative assessment of how well the predicted bounding box aligns with the actual
object. IoU is widely utilized in object detection tasks to refine model predictions and
evaluate detection accuracy. The overlapping area refers to the portion where the predicted
and actual bounding boxes intersect, whereas the union area represents the total combined
area of both the predicted and actual bounding boxes. The IoU value ranges from 0 to 1,
where an IoU of 1 indicates perfect alignment between the predicted and actual bounding
boxes, and an IoU of 0 indicates no overlap. The IoU is commonly used in conjunction with
mAP to assess the performance of object detection models.

Typically, the mAP is evaluated at different IoU thresholds. For instance, mAP@0.5
refers to the mAP when the IoU threshold is set to 0.5, which means that a prediction is
considered valid only if the IoU between the predicted and actual bounding boxes is 0.5 or
higher. Additionally, mAP@0.5–0.95 calculates the mAP across multiple IoU thresholds,
ranging from 0.5 to 0.95 in increments of 0.05 (i.e., 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95). This method provides a more comprehensive evaluation of the localization accuracy
of a model at various levels of overlap precision.
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3.7. Learning Environment

In this study, the hardware setup included an i9-13900 CPU, 128GB RAM, and an RTX
4090 GPU. The operating system used was Ubuntu 22.04 LTS. The software environment
consisted of Python 3.8, PyTorch 2.4.1, and CUDA 12.1. The hyperparameter configuration
employed in this study was meticulously designed to optimize the training dynamics
and maximize the performance of the proposed network. The model was trained for
300 epochs with a batch size of 16, utilizing an input image resolution of 512 pixels to
balance computational efficiency and feature extraction capabilities.

4. Results
In this study, the primary focus was on detecting the occurrence of falls, rather than

pinpointing their exact location with high precision. Given the need to prioritize identifying
falls over exact localization, mAP@0.5 was selected as the primary evaluation metric,
because it allows for some tolerance in bounding box overlap while still ensuring the
reliable detection of fall events.

In this study, we evaluated the fall detection performance by integrating various
versions of the YOLO network with transformer-based attention blocks. The experiments
were conducted by measuring a range of performance metrics during the training and
validation phases of the model; the training outcomes are presented in Figure 7. The
experimental results confirmed that the YOLOv9e Swin network demonstrated the highest
performance, significantly enhancing the fall detection accuracy.
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Notably, the integration of transformer-based attention blocks improved the ability
of the network to capture global information, which is a critical factor in detecting fall
incidents, particularly in real-time scenarios. This capability allows the model to identify
falls more effectively even in complex environments or when parts of the body are occluded.
The combination of YOLOv9e and Swin Transformer modules contributes to superior
detection accuracy, highlighting the potential of transformer architectures in advancing fall
detection technology.

4.1. YOLO Attention Block

First, we compared the basic fall detection performance across various versions of
the YOLO network. Each network was trained using the same dataset, with the mAP
values measured during the training phase and the TP, TN, FP, and FN values recorded
during the testing phase. The experimental results revealed that YOLOv9e achieved the
highest TP count and lowest FN count, indicating a superior overall performance in fall
detection. However, because each YOLO version demonstrated varying performance
levels under specific conditions, we sought to further enhance these results by integrating
additional attention blocks into the architecture. In doing so, we aimed to leverage the
strengths of transformer-based attention mechanisms in capturing global features and
refining the detection process. The results of these experiments detailing the performance
improvements with the application of attention blocks are summarized in Table 2.

Table 2. Comparison results by model.

Model mAP@0.5 FN

YOLOv3 0.981 197
YOLOv5 0.965 211
YOLOv6 0.971 236
YOLOv7 0.920 223
YOLOv8 0.968 221
YOLOv9 0.981 194

YOLOv10 0.974 311
YOLOv11 0.978 211

In this study, mAP values above 0.98 were considered equivalent. While detecting fall
objects is important, the main focus was on reducing false negatives (FN), as missing fall
situations poses a greater risk. Undetected falls can delay assistance, making it crucial to
identify falls quickly and respond promptly. To address this, global information enhance-
ment modules were added to reduce FN and improve the detection of fall situations, which
was the key evaluation metric.

4.2. Additional Experiments with Network Attention Blocks

This study aims to reduce FN in fall detection, which occurs when actual falls are
missed. Reducing FNs can help prevent critical situations caused by undetected falls. To
achieve this, the study uses two modules: SWIN and GAM. These modules analyze global
video information to capture limb positions and body structures, even when parts are
obscured during a fall. The study shows these modules improve detection accuracy and
address challenges in identifying falls. The experimental results indicate that the model
utilizing YOLOv9-Swin with the GAB achieved the best performance in terms of mAP@0.5
and FN count. Specifically, this model recorded an mAP@0.5 of 0.982 and an FN count of
134, demonstrating the highest detection accuracy and lowest FN rate for fall detection
across all tested configurations. The detailed results of these experiments are summarized
in Table 3.
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Table 3. The results of experiments.

Swin
Transformer

Global
Attention CBAM mAP@0.5 FN

0.981 194
√ √

0.984 183
√ √

0.982 134

The precision–recall (PR) curve and confusion matrix for this model are illustrated in
Figures 8–10, respectively, which provide a comprehensive view of the precision, recall, and
overall predictive performance of the model. All network speeds were measured as follows:
0.6 ms for preprocessing, 2.1 ms for inference, and 0.4 ms for postprocessing per image.
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5. Discussion
This study aimed to address several challenges encountered by existing vision-based

fall detection methods. Previous research faced limitations in hardware performance, which
hindered the consistent achievement of high detection accuracy and real-time processing
speeds. Rapid transmission of fall events is essential for effective intervention; however,
this critical aspect has not been sufficiently addressed in previous studies. Although
certain approaches improve fall detection accuracy by increasing the network depth or
incorporating attention mechanisms, these efforts are often constrained by CNN-based
attention blocks. Specifically, such blocks have a limited ability to capture global visual
information, which is crucial for handling occlusions and other complex scenarios in which
parts of the body may be obscured. Consequently, previous methods struggled to maintain
detection in situations involving partial visibility or intricate visual environments.

In addition, the widespread availability of CCTV systems confirms that many com-
puters are already in place, connected online, and capable of performing inference. This
availability has led to the exploration of a real-time system that, compared with embed-
ded systems, can provide more accurate fall detection by leveraging global information,
even in cases of occlusions. Furthermore, previous studies often relied on single fall
detection datasets, exposing limitations of the ability of the model to generalize across
diverse environments.

Recently, with the development of models such as the generative pretrained trans-
former (GPT), it has been demonstrated that transformer networks, in addition to CNN-
based networks, can achieve higher accuracy in various tasks. Specifically, in vision tasks,
transformer networks have demonstrated the capability to learn the structural features
of an image’s spatial information, leading to improved detection accuracy. However, it
was also noted that these networks typically require large datasets to reach optimal per-
formance, because they rely on extensive data to effectively capture and process global
spatial information.
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Subsequent research has explored the application of transformer networks to existing
CNN architectures in the form of attention blocks, culminating in the development of the
Swin Transformer. The introduction of Swin Transformer attention significantly enhanced
the ability of the network to capture global information, resulting in improved fall detection
accuracy. The attention block allows the network to focus on key regions of the image,
thereby enabling more effective fall detection, even in scenarios with occlusions or complex
background environments. This approach addresses the limitations of traditional CNN
architectures, which primarily process local information by allowing the network to learn
from the overall image context. Consequently, the combination of a CNN and transformer-
based attention provides a more comprehensive method for identifying falls, particularly
under challenging visual conditions.

Furthermore, given the importance of not only detecting falls but also identifying their
precise location, an object detection network is necessary. The YOLO network, which is
recognized for its strength in real-time detection and object localization, was selected as the
most suitable network architecture for this task. The ability of YOLO to efficiently perform
both detection and localization makes it an ideal candidate for accurately identifying
falls and determining their location within a frame, thereby facilitating quicker and more
effective responses in real-time scenarios.

In this study, we selected YOLO-based AI networks with varying depths and compared
their fall detection performance. Early versions of the YOLO network, while offering faster
detection speeds, often suffered from reduced accuracy. To address this issue, we conducted
a comparative analysis of the latest versions of YOLO. The results indicated that YOLOv9e
demonstrated the best balance between speed and accuracy, offering superior performance
compared with earlier versions. This version effectively resolves the trade-off between
detection speed and accuracy, making it the most suitable for real-time fall detection.

The focus of this study was to develop a network that integrates transformer-based
Swin attention with selected YOLO networks, and train this network using a fused fall
detection dataset. Building on prior research, we identified effective methods for incorpo-
rating a Swin Transformer into the YOLO network architecture. Subsequent optimization
efforts involve adjusting the window size specifically for single-class training on the fall
detection dataset and determining the most effective types and positions of attention blocks
within the network. These optimizations resulted in high accuracy during the experimental
trials, demonstrating the potential of the combined YOLO-Swin model for precise and
efficient fall detection.

During the experiments, researchers initially hypothesized that the latest algorithms
would deliver the best performance. However, they found that the most recent network
architectures did not necessarily provide the highest accuracy, and that deeper networks
did not guarantee better fall detection results. Furthermore, the CBAM, which is commonly
regarded as effective in enhancing network performance, unexpectedly led to a decline
in the accuracy of the fall detection dataset. In contrast, when the modified GAM was
applied, this attention block performed better and improved the detection accuracy. These
findings highlight the importance of tailoring network structures and attention mechanisms
specifically to the dataset and task at hand rather than relying solely on the latest or most
complex architectures.

The proposed FD-YOLO network achieved the highest accuracy and lowest FN for
fall detection, demonstrating its strong potential for effectively identifying fall incidents
in real time. This suggests that it is possible to establish a highly efficient fall detection
system without additional hardware installation, even in general CCTV environments.
The adaptability and efficiency of this system make it applicable to a wide range of fields,
including elder-care safety management systems in aging societies, pedestrian protection
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systems in public spaces, and fall prevention systems in hospitals and nursing facilities.
The scalability of the FD-YOLO network makes it a valuable tool for enhancing safety and
intervention in various critical environments.

FD-YOLO, which proposes a fall detection network, is specifically designed to main-
tain high performance not only within a controlled environment but also across diverse
real-world settings. This adaptability allows the network to be seamlessly integrated into
widely deployed CCTV systems, facilitating the continuous monitoring of fall incidents.
Furthermore, the ability of a network to transmit detected events rapidly is expected to be
of significant value in various applications, ensuring timely responses and interventions.
This capability highlights the potential of the FD-YOLO network as an essential tool to
enhance safety and prevent falls in real-world environments.

However, this study is limited by its retrospective nature because AI training and
network optimization were conducted using specific datasets. In the future, we aim to
address this limitation by obtaining data from a variety of environments through multiple
experiments conducted in real-world settings and by acquiring prospective data via Institu-
tional Review Board (IRB) approval. This will allow the development of a more robust and
generalizable fall detection network. In addition, we plan to conduct follow-up research to
assess the practical applicability of the proposed system in real-world scenarios.

We also observed that other studies achieved high performance by using data prepro-
cessing techniques to analyze skeletal structures and incorporating this information into
AI models. As a result, we intend to explore the integration of such methods in network
structures, particularly in environments that do not place excessive strain on computational
resources, to further enhance the performance of our system in future studies.

6. Conclusions
This study made a significant contribution to the advancement of fall detection tech-

nology, with the proposed FD-YOLO network demonstrating substantial potential for
widespread application in real-world scenarios. If future research can further enhance the
network’s performance and validate its effectiveness in diverse real-world environments, a
safer and more efficient fall detection system can be realized. Such a system could play a
crucial role in addressing pressing social issues, particularly in aging societies, by enhancing
safety and ensuring timely interventions for fall-related incidents.
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