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Abstract: With the escalating demand for automation in chemical laboratories, multi-robot
systems are assuming an increasingly prominent role in chemical laboratories, particularly
in the task of transporting reagents and experimental materials. In this paper, we propose a
multi-robot path planning approach based on the combination of the A* algorithm and the
dynamic window algorithm (DWA) for optimizing the efficiency of reagent transportation
in chemical laboratories. In environments like chemical laboratories, dynamic obstacles
(such as people and equipment) and transportation tasks that demand precise control
render traditional path planning algorithms challenging. To address these issues, in this
paper, we incorporate the cost information from the current point to the goal point into
the evaluation function of the traditional A* algorithm to enhance the search efficiency
and add the safety distance to extract the critical points of the paths, which are utilized as
the temporary goal points of the DWA algorithm. In the DWA algorithm, a stop-and-wait
mechanism and a replanning strategy are added, and a direction factor is included in
the evaluation function to guarantee that the robots can adjust their paths promptly in
the presence of dynamic obstacles or interference from other robots to evade potential
conflicts or traps, thereby reaching the goal point smoothly. Additionally, regarding the
multi-robot path conflict problem, this paper adopts a dynamic prioritization method,
which dynamically adjusts the motion priority among robots in accordance with real-time
environmental changes, reducing the occurrence of path conflicts. The experimental results
highlight that this approach effectively tackles the path planning challenge in multi-robot
collaborative transportation tasks within chemical laboratories, significantly enhancing
transportation efficiency and ensuring the safe operation of the robots.

Keywords: A* algorithm; DWA algorithm; multi-robot path planning

1. Introduction

With the swift advancement of robotics, multi-robot systems (MRS) are increasingly
being employed in complex and dynamic settings [1]. In environments such as chem-
ical laboratories, the conventional task of transporting reagents is typically carried out
manually, which is not only labor-intensive but also poses safety risks, especially when
dealing with hazardous chemicals. With the proliferation of automation technology, the
utilization of robots to undertake the transportation of reagents and materials instead of
manual labor not only enhances efficiency but also effectively mitigates the occurrence of
human operational errors and safety incidents. Chemical laboratories frequently encounter
complex environmental circumstances of confined spaces, dynamic obstacles, and fixed
obstacles, which pose challenges for robot path planning. To ensure that the robots can
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complete the transportation tasks safely and promptly, how to strike an effective balance
between global path planning and local obstacle avoidance becomes a key issue in multi-
robot path planning. Common robot path planning algorithms encompass global path
planning [2] and local path planning [3]. Global path planning algorithms include the
Dijkstra algorithm [4], the A* algorithm [5,6], and the ant colony algorithm [7,8], et cetera,
and local paths incorporate the dynamic window method [9,10], the artificial potential field
approach [11,12], and the time elastic band (TEB) method [13,14].

In the domain of path planning, numerous scholars have carried out profound and
extensive research. The A* algorithm is the prevalent global path planning algorithm;
however, the paths it generates exhibit poor smoothness and might engender a considerable
number of redundant computations. Juntao Yan [15] et al. guaranteed the feasibility of
the path by incorporating a turning factor into the heuristic function and optimizing the
search neighborhood. Yawen Dong [16] broadened the search scope and established a
dual-layer position-guided information evaluation function, thereby achieving a smoother
path. Through integrating the obstacle rate coefficient into the evaluation function of the A*
algorithm, an adaptive cost function is constructed, and by enhancing the search approach,
the search efficiency and path safety are enhanced [17]. When a robot applies the dynamic
window approach for path planning in navigation tasks, it may become stuck in a local
optimum solution and be incapable of finding the optimal path. Xu Chi [17] integrated A*
with DWA, leveraging the global path planning capabilities of the A* algorithm and the
local obstacle avoidance capacity of DWA, thereby overcoming the limitations of a single
approach and improving the robot’s ability to navigate through complex environments.
A flexible dynamic window technique employing a fuzzy controller for optimizing the
dynamic obstacle avoidance of mobile robots was put forward, which allows the robot
to move towards the target as rapidly as possible [18]. Through the introduction of a
designed risk function into the evaluation function of the standard DWA (dynamic window
approach), the probability of a collision between dynamic obstacles and the robot can be
assessed, allowing the robot to effectively evade faster obstacles [19]. Regarding multi-robot
path planning. Zhang C [20] initially employed the RRT* algorithm to acquire the shortest
path and subsequently utilized an advanced particle swarm optimization algorithm to
obtain the time schedules for multiple robots, effectively resolving conflicts. Daojin Yao [21]
proposed a hierarchical distributed multi-AGV path planning algorithm, improving the
combination of the A* and DWA algorithms and introducing a cooperative planning
strategy to reduce the probability of conflicts between mobile robots. A multi-robot dual-
layer planning algorithm featuring an improved A* algorithm and a conflict resolution
strategy was put forward. In the first layer, the improved A* algorithm was used to obtain
the initial path for a single robot. In the second layer, a time dimension was introduced
to anticipate robot conflicts [22]. A safe A* algorithm was developed with a technique
for identifying key path points to guarantee smooth trajectory following, and real-time
obstacle avoidance was achieved through adaptive window-based motion planning [23].
The paper [24] presents a new path planning strategy combining an optimized A* algorithm
for global path planning, adaptive navigation and obstacle avoidance for local planning,
and a collision recognition and task prioritization strategy for coordinating multiple robots.

Although the existing literature has extensively explored robot path planning, par-
ticularly focusing on obstacle avoidance strategies, our research emphasizes the issue of
the “path deadlock” in dynamic environments. Specifically, it addresses how to re-plan
the path in real time when unknown obstacles block the original route. While most stud-
ies focus on obstacle avoidance, research on path re-planning remains relatively limited.
To tackle this challenge, we propose an innovative path re-planning method tailored to
the specific application scenario of chemical laboratories. This method incorporates a
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parking—-waiting strategy and a multi-robot priority scheduling mechanism, effectively
resolving the issues of path blockage and motion conflicts within multi-robot systems while
successfully handling path obstructions in dynamic environments. Regarding the improve-
ment and analysis of the aforementioned algorithms, a novel multi-robot path planning
method is proposed, combining the A* algorithm and the dynamic window approach
(DWA). Within the A* algorithm, we adopted a dynamic evaluation function that adapts
based on distance cost weighting. This modification enhanced the algorithm’s efficiency in
complex environments and enabled the dynamic adjustment of the weights in response
to diverse environmental variations, thereby augmenting the flexibility and robustness of
the path planning. Furthermore, a redundant node deletion strategy was introduced to
further optimize the efficiency of path calculation, avoiding unnecessary computations and
path redundancies and enhancing the overall planning performance. In the section of the
dynamic window method, we expanded the evaluation function to incorporate an adaptive
adjustment mechanism for the heading angle. This tactic dynamically modifies the robot’s
heading angle, enabling the path planning to adapt more precisely to various driving
environments and minimizing the trajectory deviation caused by unreasonable heading,
thereby enhancing the precision and motion efficiency of navigation. To further enhance
the adaptability of the algorithm, this study also put forward a parking-and-waiting strat-
egy, which can promptly halt and wait when encountering unforeseen obstacles, thereby
evading unnecessary collision risks; meanwhile, the path replanning strategy guarantees
that if an infeasible path emerges during the robot’s execution, a new feasible path can be
rapidly identified, preventing prolonged system stagnation. In the context of multi-robot
path planning, we introduced a dynamic priority strategy for addressing the obstacle
avoidance issue among robots. This strategy effectively precludes conflicts and deadlocks
among robots and guarantees that multiple robots can collaborate in shared spaces without
colliding or delaying tasks. By dynamically regulating the priorities between robots, we
can ensuring that multiple robots can complete tasks efficiently and stably in complex and
dynamically evolving environments. In conclusion, this approach significantly enhances
the safety, efficiency, and adaptability of multi-robot path planning through innovative
optimizations in various modules.

2. Improvements to the A* Algorithm
2.1. Traditional A* Algorithm

The A* algorithm is a heuristic technique employed to identify the shortest path. The
initial node serves as the starting point, expanding to the surrounding domain and selecting
the node with the lowest cost after evaluation through a heuristic function. With this node,
the expansion continues around, and subsequently, the node with the lowest cost is selected.
The above steps are repeated until the selected node coincides with the goal point. The cost
function employed in the A* algorithm is expressed as follows:

fu) =g(u) +h(u) ©)

Let u represent the current node. The term f (1) denotes the total cost from the starting
point to the goal. Additionally, g(u) indicates the actual cost incurred from the starting
point to the current node, while /(1) estimates the cost from the current node to the goal.
The efficiency and search quality of the A* algorithm largely rely on the selected heuristic
function. Common heuristic functions for the distance functions used in the A* algorithm
include the Manhattan, Euclidean, and Chebyshev functions, which are denoted as follows.
The Euclidean distance yields the paths of the best quality. Therefore, the heuristic function
formula utilized in this paper is the Euclidean distance function. In Equations (2) to (4), Ic
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and Ig represent the x-coordinate and y-coordinate of the starting point, respectively, while
tc and tg represent the x-coordinate and y-coordinate of the endpoint, respectively.

fu) =|lc — te|+|lg — tg| (2)
F(u) = /(e — te)? + (Ig — tg)? ©)
f(u) = |lc —tc| + |Ig — tg| + (V2 —2)min(lc — tc,Ig — tg) (4)

2.2. Improvement to the A* Algorithm

The paths of traditional A* algorithms typically contain numerous redundant nodes,
leading to increased path lengths and prolonged planning times, and in complex envi-
ronments, even passing through obstacles. Hence, improvements to the A* algorithm are
requisite to enhance the search efficiency.

2.2.1. Improvements in the Evaluation Function

The evaluation function of the traditional A* algorithm lacks adaptability to dynamic
changes or the complexity of the environment and is unable to flexibly adjust the search
strategy to cope with different situations, resulting in limited effectiveness in complex
environments. Therefore, the evaluation function is weighted. When the weight coefficient
is large, the A* algorithm will rapidly expand towards the target area, but there is a
possibility of missing the best route. In the case where the weight coefficient is not large, the
method is more likely to find the best path, but its search speed will be reduced. Therefore,
this paper introduces the concept of distance cost into the traditional heuristic function,
enabling the heuristic function to adaptively adjust according to the current relative distance
between the robot and the target. The optimized heuristic function is denoted as:

f(u)=g(u)+In(D/H+ 62) «h(u) o)

The value D represents the distance from the current position to the goal, while H
indicates the distance from the starting point to the current position.

2.2.2. Selection of Critical Points

Traditional A* algorithms frequently generate a considerable quantity of redundant
nodes and avoidable corners in path planning. This not only results in insufficiently
smooth paths and an increase in the path length, but the path may even pass through
obstacles, thereby influencing the motion efficiency and performance of robots in complex
environments. Hence, eliminating these redundant nodes constitutes a critical step in path
optimization. Through path optimization, the robot can move in a smoother and more
efficient manner, thereby enhancing the overall operational performance and environmen-
tal adaptability. This optimization not only alleviates the computational load but also
significantly enhances the robot’s navigational accuracy. The optimized path is presented
in Figure 1.

As shown in Figure 1a, the black line segments represent the robot’s initial path. In
Figure 1b, the blue line represents the path after the first optimization, and in Figure 1c, the
red line represents the path after the second optimization.
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Figure 1. Identification of key points. (a) The A*-derived initial path. (b) The initial path. (c) The
second path.

First, the A* algorithm is employed to generate the initial paths p1, p2...p7 and to
record all the nodes passed on the path, encompassing redundant nodes and turning points.
These nodes represent the planned trajectory of the robot from the origin point to the goal
point. In the next step, each node pi along the path is traversed, and its front and rear
neighboring nodes pi — 1 and pi + 1 are examined. For this purpose, the vector from pi
to pi — 1 and the vector from pi to pi + 1 are computed, and the angle between them is
computed by the dot product and the modulus length of these two vectors 6. Specifically,
the angle between the two vectors 6 can be calculated by the following formula:

cosf — pipi—1 - pipi+1

(6)

pipi—1’~’pipi+1‘

If the angle 8 is equal to 0, then pi, pi — 1, and pi + 1 are collinear. In this case, node
pi can be regarded as redundant and can be deleted, and its parent node is modified to
connect both pi — 1 and pi + 1. If the pinch angle is not 0, the linear equations of pipi — 1
and pipi + 1 are established, respectively. The safety distance f is introduced; the value d
denotes the minimum distance between the obstacle point and the straight line. If d <f,
there is an obstacle between the two points, and then the current point is set as the parent
node; otherwise, if there is no obstacle between the two points, the intersection of the two
straight lines is the parent node, and other redundant nodes are deleted. The above steps
are repeated. As shown in Figure 1, in the first optimization, nodes p2, p3, and p6 are
deleted, and plp4 and p5p7 are connected because the line of p4p7 passes through the
obstacle, so p4 is retained. The second optimization extends plp4 and p5p7 to intersect at
point p8, which is the new parent node. The final path is p1p8p7.

3. Dynamic Window Approach

The dynamic window approach (DWA) is a well-established method used for local
path planning. It enables robots to avoid obstacles and move towards a goal in complex
environments by calculating feasible velocities and accelerations in real time.

3.1. Robot Modeling

The dynamic window method forecasts the travel path over a specific time interval
at these velocities by sampling certain combinations of the velocity values in the velocity
space. The paths are evaluated collectively, and the velocity of the highest-ranked path
is chosen to control the robot’s motion. This paper focuses on a differential-speed mobile
robot, with an analysis of its motion model provided in Equation (7).
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Xt =21+ 01 D tcos(6;)
Yi = Yi-1+vp_1 Atsin(6;) @)
0; = 61}71 + wi_1 At

In this equation, v;_; refers to the robot’s linear velocity at time ¢— 1, w;_ refers to
the angular velocity at time t — 1, and x;, y;, and 6; represent the robot’s position at time ¢.
At represents the time difference between t — land t. 6; represents the angle rotated within
time interval At. xy_1, y;—1, and 6;_1 represent the robot’s position at time t — 1.

3.2. Velocity Sampling

As a result of the restrictions in the mobile robot’s hardware and environmental factors,
there exists a range of limits in the speed sampling space of the mobile robot.

1. Linear and angular velocity constraints for robots.
Vs = {(v/ w)‘vmin < 0 < Umax, Wmin S w < wmax} (8)

where v, is the minimum linear velocity, vmax indicates the maximum possible linear
velocity, wmin represents the minimum possible angular velocity, and wmax denotes the
maximum angular velocity.

2. Motor performance effects and acceleration constraints.
Vi = {(v,w)|ve — 0pAt <0 < Ve + DAL, We — WAL < W < we + WAt} )

Here, v, represents the robot’s linear speed, w refers to its angular speed, while v, indi-
cates the maximum linear acceleration, and w, denotes the maximum angular acceleration.

3. Impact of obstacles.

Vo= { o)

v < £/ 2dist(v, w)vp, w < Zdist(v,w)wb} (10)

The maximum linear deceleration is represented by v,, w;, denotes the maximum
angular deceleration, and dist(v, w) indicates the distance from the robot’s current velocity
to the closest obstacle in its path.

By combining the three types of velocity constraints mentioned above, the final velocity
sampling space of the robot exists at the convergence of the three velocity spaces.

V,=V,NnV;NV, (11)

3.3. Evaluation Function

After sampling the velocity space, a kinematic model based on the robot predicts
multiple possible motion trajectories. Subsequently, these trajectories are evaluated, and
the best motion trajectory is selected, and the robot moves forward according to the velocity
of the best trajectory. In order to enable the robot to reach the goal point successfully, an
adaptive heading factor c is introduced, enabling the robot to be directed more precisely to-
wards the target while minimizing the risk of collisions. The evaluation function associated
with the DWA algorithm is as follows:

G(v,w) = o(a * c x heading (v, w) + P * dist(v, w) + 7 * velocity(v, w)) (12)

where heading(v, w) represents the function that evaluates the azimuth, dist(v, w) signifies
the distance to the nearest obstacle on the map at the endpoint of the predicted path, and
Uelocity(v, w) stands for the robot’s current linear velocity. The terms «, 8, ¢, and ¢ are the
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weights for each corresponding factor. As in Equation (13), A is the adjustment coefficient,
fcur denotes the robot’s current heading angle, and 6,5 is the target orientation angle. yqoas
is the vertical coordinate of the robot’s temporary target point in the next time frame, X0,
is the horizontal position of the robot’s provisional target at the next moment, and v, and
vy represent the robot’s sideways displacement.

cC = 1 + /\‘|9des - ecurl (13)
Ocur = arctan(vy , vy ) (14)
Odes = arCtan(ygoult — Yt s Xgoalt — Xt ) (15)

3.4. Improvement of the DWA Algorithm

When the robot and the dynamic obstacle are in close proximity to each other or their
trajectories intersect at the same point at a certain moment, the robot may opt to take a
longer detour in order to avoid the dynamic obstacle, resulting in a deviation from the
original heading. This behavior not only lowers the robot’s path planning accuracy but also
may have an impact on its overall operational efficiency. Therefore, in order to effectively
address this issue, an improved dynamic window method is proposed, which introduces
the concept of a “stop-and-wait state”. In this state, the robot halts its advancement and
gives priority to the passage of moving obstacles, thereby avoiding unnecessary yawing
caused by sharp turns or detours.

The improved algorithm constrains the range detection of the robot by setting distance
and angle thresholds to ensure that the robot can respond in a timely manner when the
obstacle is close and there is a risk of collision. Specifically, the distance threshold d =2 and
the angle threshold 6 = 45° are set as judgment conditions, as shown in Figure 2. When a
moving obstacle enters this detection range, the robot automatically enters the stop-and-
wait state, halts its advancement and waits for the obstacle to pass, thereby reducing the
risk of collision.

Moving
obstacles

Figure 2. Parking-and-waiting strategy.

As shown in Figures 3a,b and 4a,b, the black squares represent known static obsta-
cles, the gray squares represent unknown static obstacles, the yellow squares represent
dynamic obstacles, the blue triangle represents the robot’s starting point, and the blue circle
represents the robot’s endpoint. As shown in Figure 3a, when the robot and the dynamic
obstacle coincide with the path point at a certain moment, the traditional dynamic window
method will deviate from the original heading and go further and further in order to bypass
the dynamic obstacle. However, in the enhanced dynamic window approach shown in



Appl. Sci. 2025, 15, 406 8 of 16

Figure 3b, the robot will halt and wait until the moving obstacle passes, and then the robot
initiates movement.
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(a) Conventional DWA algorithm (b) Improved DWA algorithm

Figure 3. Algorithm comparison.

Due to the limitations of the traditional dynamic window approach (DWA) in handling
complex environments, especially when encountering U-shaped obstacles, the robot often
falls into a local optimal solution, as shown in Figure 4a. For this purpose, this study
designed an improved algorithm that utilizes the current position information of the robot
along with the direction angle and simultaneously combined it with ultrasonic sensors to
identify possible trap regions by predicting the grid nodes in the forward direction of the
robot and detecting whether these nodes are occupied by obstacles.
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(a) Conventional DWA algorithm (b) Improved DWA algorithm

Figure 4. U-shaped environment.

By identifying and circumventing these local optimal solutions, the robot is capable
of replanning its path, as shown in Figure 4b, thereby enhancing the global optimality
and operational efficiency of the overall path planning. The application of this method in
complex dynamic environments demonstrates stronger adaptability, especially in the face
of dense or irregular obstacle environments, which helps to greatly increase the stability
and versatility of the robot’s navigation system.

4. Multi-Robot Collaborative Planning

The primary challenge in multi-robot cooperative planning is to efficiently resolve
path conflicts and ensure effective obstacle avoidance among the robots. Within challenging
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and dynamic environments, robots not only have to accomplish their respective tasks but
also have to adjust their paths in real time to avoid conflicts with other robots or obstacles.

4.1. Types of Conflict

In multi-robot path planning, the principal types of conflicts that occur include node
conflicts, in-phase conflicts, and occupancy conflicts.

4.2. Priority Obstacle Avoidance

In multi-robot path planning, the prioritized obstacle avoidance strategy is a core
approach intended for resolving potential path conflicts, task coordination, and obstacle
avoidance issues in multi-robot systems. The strategy guarantees the efficiency and safety
of the system by assigning distinct priorities to each robot and forming an execution
sequence based on task priorities. During actual execution, the robots determine when to
execute tasks, how to avoid other robots, and how to coordinate their movements efficiently
based on their respective priorities, thereby avoiding or resolving conflicts and ensuring
the smooth operation of the system.

1.  Collision course. As shown in Figure 5a. When two robots are traveling in opposite
directions on a path and there is a possibility of collision at a certain location, the robot
with higher priority will be granted precedence in passing through, and the robot
with lower priority will need to temporarily stop and wait. This typically occurs in
high-conflict areas such as narrow passages or intersections. To prevent a collision,
the lower-priority robot may need to opt for temporarily stopping, backing up, or
taking an alternate path.

S e

(a) Collision course (b) Clash of nodes (c) Path deadlock

Figure 5. Types of conflict.

2. Clash of nodes. As shown in Figure 5b. When multiple robots plan to travel to the
same or adjacent nodes, a competitive state might arise, especially when these robots
plan to reach the same goal location simultaneously in a limited space. To address this
conflict, robots with higher priority will be granted priority to pass through, while
robots with lower priority need to remain in place and wait until the higher-priority
robot completes its task or passes through the node.

3. Path deadlock. As shown in Figure 5c. Deadlocks are a common issue in multi-robot
systems, especially during path planning and execution among robots, which occur
when the robots mutually block each other, making it impossible to proceed. This
typically occurs in path planning that lacks sufficient flexibility. To avoid deadlocks,
the prioritized obstacle avoidance strategy takes the possibility of deadlocks into
account in the planning stage and reduces the mutual interference among robots by
assigning reasonable paths to robots with different priorities.

4. Reprogramming mechanisms. The replanning process is initiated when the system
detects that a low-priority robot is trapped in a prolonged waiting or deadlock state.
At this point, the low-priority robots recalculate their paths in accordance with the
system’s dynamic environment and identify new feasible paths to bypass the conflict
region. The high-priority robots continue to follow the original path to carry out their
tasks without being influenced. This mechanism can effectively prevent a long-term
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stagnation state of the system and ensure that the tasks of the high-priority robots can
be accomplished successfully.

5. Fusion Algorithm

By incorporating the advanced A* algorithm into the enhanced DWA framework, the
robot can maintain the optimization of the global path in dynamic and complex environ-
ments and simultaneously demonstrate the ability to react to changes in the environment
instantaneously. The global path generated by the A* algorithm is divided into segments,
each representing a local goal point through a series of key waypoints, and the processing
of each local goal point is taken over by the DWA algorithm, enabling the robot to avoid
obstacles by predicting and dynamically adjusting its speed and direction to guarantee
that the obstacle avoidance process does not deviate from the global path. In multi-robot
cooperative planning, each robot can also be dynamically assigned a priority, and when the
path is in conflict, the priority mechanism determines which robot goes first, ensuring the
stability and efficiency of the complete system through real-time scheduling and replanning
of the path. The detailed implementation of the fusion algorithm is shown in Figure 6.

Start

.| Robot moves to
current point

Global
path

Map initialization
Parameters initialization

A 4

Create openlist and closelist
Add the starting point to openlist

» Select compute node

Select the next node according to
the evaluation function

!

Update access node

Yes

Delete redundant nodes
Extract key points

/
Identify local target points

Figure 6. Flowchart of the fusion algorithm.
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6. Simulative Experiments and Analysis

6.1. Improved A* Algorithm Simulation Experiment

To evaluate the performance and viability of the modified A* algorithm proposed in
this paper, simulation experiments were executed within the MATLAB 2021b environment.
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The experimental scenarios selected were 20 x 20, 30 x 30, and 50 x 50 grid maps, and the
effectiveness of the enhanced A* algorithm presented in this paper was compared to that of
the classic A* algorithm and algorithms from the literature [25]. In the grid maps, each grid
has a size of 1 m, where black represents obstacles and white indicates traversable areas.
The triangle symbolizes the robot’s initial position, and the circle represents the goal point.
These map scenarios of diverse scales can effectively assess the path planning capabilities
of each algorithm in different complex environments. The simulation results are presented

in Figure 7.

Figure 7. Comparison of simulation results for 20 x 20 raster maps. (a) Traditional A* algorithm.
(b) Algorithm from [25]. (c) Algorithm in this paper.

By examining Figures 7a—c, 8a—c and 9a—c and Table 1, it becomes evident that the
traditional A* algorithm had more turning and redundant points compared to the improved
A* algorithm, which generally had fewer points. In this paper, the search efficiency was
enhanced by dynamically adjusting the weight of the heuristic function in the standard A*
algorithm and by carefully selecting key points. This resulted in the ability to find shorter
paths more effectively and complete the search in less time, thus significantly improving
the overall performance. These improvements were demonstrated in maps of various sizes.
The improved A* algorithm presented in this paper achieved a reduction in path length of
6.63% and 0.63%, respectively, relative to the conventional A* algorithm and the algorithm
discussed in the literature [25], respectively, and it reduced the search time by an average
of 56% and 23.8% compared with the traditional A* algorithm and the algorithm from
the literature [25], respectively. Meanwhile, with the increasing complexity and size of
the maps, the corresponding gap between the path lengths and the search times became

increasingly larger.

(@) (b) (©)

Figure 8. Comparison of simulation results for 30 x 30 raster maps. (a) Traditional A* algorithm.
(b) Algorithm from [25]. (c) Algorithm in this paper.
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(b) (0)

Figure 9. Comparison of simulation results for 50 x 50 raster maps. (a) Traditional A* algorithm.
(b) Algorithm from [25]. (c) Algorithm in this paper.

Table 1. Simulation results of three map sizes with different algorithms.

Map Size Algorithm Path Length (m) Time (s)
30.97 0.52
20 x 20 Traditional A* 29.03 0.32
29.02 0.27
48.63 0.99
30 x 30 Algorithm from [25] 45.73 0.58
45.34 0.41
77.08 1.71
50 x 50 Algorithm in this paper 72.62 0.86
72.05 0.63

6.2. Fusion DWA Algorithm Simulation Experiment

In order to assess the performance of the algorithm introduced in this study, experi-
ments were carried out using a 20 m x 20 m grid map. In the experiment, four unidentified
static obstacles were placed on the map, and dynamic obstacles were incorporated to simu-
late a complex dynamic environment for further examination of the algorithm’s obstacle
avoidance capability and path optimization proficiency. Gray squares represent obstacles
that are static and unknown, while yellow squares indicate dynamic obstacles. The blue
triangle represents the robot’s starting point, the blue circle represents the robot’s endpoint,
and the red * represents the local goal points. After conducting numerous tests, the robot’s
parameters are summarized in Table 2 below.

Table 2. Robot motion parameters.

Maximum line velocity 1m/s Maximum angular velocity 20°/s
Maximum linear acceleration 0.2 m/s? Maximum angular acceleration 50°/s
Linear velocity resolution 0.02m/s Angular velocity resolution 1°/s

The results of the simulation experiment are presented in Figure 10. The black grid
denotes the static obstacles that were previously identified, the yellow grid indicates the
dynamic obstacles, and the gray grid represents the unknown static obstacles, mimicking
the circumstance where unknown obstacles emerge on a known map within a chemical
laboratory. When t was the specified time, the trajectories of the robot and the dynamic
obstacle converged at point (6, 7) and drew closer to each other. Figure 10a reveals that the
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traditional fusion algorithm strayed from the initial route to evade the dynamic obstacle but
was trapped in a local optimum and failed to reach the destination. Figure 10b demonstrates
the algorithm proposed in this work. The final statistical results are shown in Table 3.
Through the adoption of the stop-and-wait strategy, replanning strategy, and adaptive
heading strategy, it reached the destination safely.

P
N R N R I

Figure 10. Comparative analysis of fusion algorithms in a dynamic environment. (a) The fusion
algorithm presented in [25]. (b) The integrated algorithm presented in this article.

Table 3. The results obtained from the fusion algorithm.

Algorithm Path Length (m) Time (s)
Algorithm from [25] —_— —_—
Algorithm in this paper 30.37 146

6.3. Simulation Experiment on Multi-Robot Coordination

To verify the efficacy of the multi-robot cooperative planning algorithm presented
in this paper within complex circumstances, taking into account the time expenditure,
this study carried out a simulation experiment on a 20 x 20 grid map. The experiment
mimicked a situation where three robots performed their individual tasks in the same
environment. The experimental setting encompassed dynamic obstacles and unknown
static ones to heighten the complexity and difficulty of path planning. Each robot was
allocated an independent starting point and destination, and the path needed to be adjusted
dynamically during task execution to prevent conflicts with other robots and obstacles.
The yellow grid indicates dynamic obstacles, the gray grid represents unknown static
obstacles, and the black grid stands for known static obstacles. The simulation outcomes
are presented in Figure 11, where the triangle indicates the starting point of the robot, and
T1, T2, and T3 respectively denote the target points of Robot 1, Robot 2, and Robot 3.

At t = 10, a node conflict emerged between Robot 1 and Robot 2. Since Robot 1 had
already passed through the intersection where the goal point of Robot 2 was located, Robot 1
was automatically assigned a higher priority. Moreover, as Robot 2 had no alternative route
to bypass Robot 1 in the narrow section, Robot 2 stopped and waited. Robot 1 proceeded
along its original path. Once it was safe, Robot 2 resumed its forward movement.

At t = t1, Robot 3 detected the existence of unknown static obstacles on the original
path, while Robot 2 was on the verge of reaching the target point, thus Robot 2 was
automatically assigned a higher priority. At this point, Robot 3 assessed the feasibility of
the current path ahead and determined that proceeding further would lead to an inability
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to bypass the obstacle or collide with Robot 2, resulting in a path deadlock. Consequently,
Robot 3 chose to re-plan the path, and Robot 2 continued its forward movement.
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Figure 11. Multi-robot path planning.

At t = t2, the three robots managed to evade obstacles successfully and reached their
respective target points concurrently via coordinated path planning. This process showcases
the ability of multi-robot systems to collaborate effectively in complex environments.

As depicted in Figure 12a,b, the curves of the velocity and angular velocity of the
robots are presented. When Robot 3 encountered a moving obstacle for the first time, it
opted to halt and wait since the obstacle met the distance threshold and angle threshold;
thus, its linear velocity was zero. Once the obstacle passed, Robot 3 resumed its movement.
Due to the fact that the priority of Robot 2 was higher than that of Robot 3, Robot 3
undertook path replanning, and its linear velocity tended to zero. Robot 2 had a linear
velocity of zero because it needed to avoid Robot 1. In conclusion, this validates that the
algorithm proposed in this paper can effectively address the conflict issue between robots.
The algorithm is capable of generating global paths efficiently in complex environments
and flexibly circumventing dynamic and unknown static obstacles through local path
planning to ensure the safe operation of the robots. The actual trajectories of the multiple
robots in the complex dynamic environment demonstrate the effectiveness and viability of
the proposed algorithm in optimizing paths, improving obstacle avoidance, and facilitating
cooperation in multi-robot systems.
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Figure 12. Robot parameters.
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7. Discussion

To address the issue of path conflicts in multi-robot path planning within complex
dynamic environments. This study introduces an enhanced A* algorithm integrated with
the dynamic window approach for multi-robot path planning, specifically designed to
address the challenges of path planning and conflict resolution for robots transporting
reagents in chemical laboratories. Through enhancements to the traditional A* algorithm,
the search time and redundant nodes were decreased, thereby enhancing the efficiency of
global path planning. The dynamic window approach (DWA) enhances the robot’s real-
time obstacle avoidance capability by incorporating an adaptive heading angle strategy.
This strategy allows the robot to flexibly adjust its heading based on dynamically sensed
obstacles, effectively avoiding collisions and ensuring the safety and efficiency of path
planning. In multi-robot path planning, the addition of a stop-and-wait mechanism can
effectively resolve path conflicts, ensuring coordinated operation in a shared environment.
Furthermore, by introducing a path re-planning strategy, the robot can promptly adjust its
path when blocked by unknown static obstacles or other robots, preventing it from getting
stuck and ensuring the smooth execution of tasks. The combination of these mechanisms
makes the system more adaptable and robust in complex environments.

In the following stage of this work, we will deploy more robots in this environment and
test the algorithm on a robotic platform to validate its performance in real-world scenarios.
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