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Abstract: In contemporary computer vision, deep learning-based real-time single image
super-resolution approaches have gained significant attention for their ability to enhance the
resolution of images in real time. These approaches are interconnected with various other
computer vision domains, including image segmentation and object detection. Numerous
surveys have summarized the state of the image SR domain. However, there is no survey
that specifically addresses real-time single image SR on IoT devices. Therefore, in this
study, we aim to explore strategies, identify the technical challenges, and outline the
future directions of SR research, with a special emphasis on real-time super-resolution
techniques. We begin with an overview of the core concepts related to real-time SR, recent
challenges, and algorithm classification and delve into potential application scenarios
that merit attention. Additionally, we explore the challenges and identify promising
research areas related to real-time SR specifically related to IoT devices, highlighting
potential advancements, limitations, and opportunities for future innovation in this rapidly
evolving field.

Keywords: real-time image SR; image enhancement; real-time systems; single image
super-resolution

1. Introduction
Image super-resolution (SR) is a computer vision task focused on enhancing the res-

olution of images by transforming low-resolution (LR) visions into high-resolution(HR)
ones [1–5]. To better understand and interpret the content of images, it is a significant chal-
lenge for researchers to derive high-quality images from LR ones [6–9]. SR technology has
significant applications in various fields, particularly in medical imaging, where it enhances
image quality for improved diagnosis and analysis. In medical imaging, SR techniques
are employed to increase the resolution and clarity of various types of scans, including
MRI, CT, and ultrasound [10,11]. This enhancement facilitates more accurate detection and
diagnosis of medical conditions, potentially leading to better patient outcomes. Similarly,
in the fields of surveillance and security, SR techniques play a pivotal role in improving
video and image clarity, which is essential for enhancing situational awareness and en-
suring public safety. By increasing the resolution of low-quality footage, these methods
enable more effective monitoring in real-time scenarios, such as traffic surveillance, border
security, and crowd management [12–14]. In addition, remote sensing and satellite imagery
also benefit greatly from SR methods, which enhance image resolution for more accurate
analysis and mapping. This improvement is critical for scientific fields such as astronomy,
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microscopy, and geology, where HR images lead to more precise observations and deeper
insights [15–17].

On the other hand, with the widespread adoption of edge devices and real-time
systems, the need for real-time SR approaches has increased. The primary objective of
real-time image SR is to estimate an SR image from a given real-time LR image, ensuring
that the generated SR image closely resembles the true HR image [18–21]. Currently, su-
pervised learning-based SR networks are effective at increasing the resolution of real-time
images. However, constructing real-time SR images presents significant challenges, such
as high computational costs, which necessitate lightweight models [3,4,15,16,22]. These
lightweight models have taken massive attention on the real-time SR domain [3,4,23–25].
In recent years, numerous researchers have published various reviews on single-image
super-resolution (SISR) approaches that utilizes deep learning [1,2,26,27]. In ref. [28], the
authors first categorized SR-based deep networks into nine distinct groups, including
linear [29], residual, multi-branch [30], recursive, progressive, attention-based, and adver-
sarial designs [31]. In addition, Garas et al. [32] categorized lightweight SR approaches
into six groups: convolution-based, residual, dense, distillation, attention, and extremely
lightweight models. Also, in [33], the authors reviewed the latest SISR methods and orga-
nized them into four main categories: RSISR based on degradation modeling, RSISR based
on image pairs, RSISR based on domain translation, and RSISR based on self-learning.
Furthermore, in [14], the authors provide an in-depth discussion of blind image SR by
categorizing existing methods into three classes according to the degradation modeling
and the data employed in solving the SR model [34].

However, these reviews have generally focused on frameworks that may or may not
be deployable as lightweight models [35], without considering the specific applications for
which the models are used in real time [36]. Additionally, while previous surveys have
examined existing SR methods from various perspectives [37], to the best of our knowl-
edge, none have specifically focused on real-time SR for delay-sensitive applications [38].
Considering this, we aim to review and summarize advancements in the field of real-time
SR for delay-sensitive applications.

Contributions and Scope

This survey presents an overview of the latest advancements in real-time SR techniques.
The goal is to offer foundational knowledge and set the stage for future developments
in real-time SR tasks. It aims to identify key variations and parameters that could be
considered for future innovative approaches. While there are many valuable surveys
covering various aspects of SR, there is a notable lack of comprehensive sources specifically
focused on real-time SR and emerging methodologies in this area.This study aims to address
this gap.

2. Background
2.1. Overview of Super-Resolution

SR is a method used to increase the resolution of digital photographs and videos in
order to improve their quality [39]. This technique includes creating HR images from LR
inputs, either from collected frames or in real-time [40]. It was developed from research con-
ducted at AT&T Bell Laboratories in the 1990s. “Super-resolution” describes the technique
of creating digital frames with HR to improve the spatial detail of the source image.

In mathematical terms, if we denote an LR image as LRx, the degradation process can
be modeled using a function D. The corresponding HR image is represented as Hx, and
noise is accounted for by the variable σ. This relationship can be expressed as Equation (1).
To achieve HR outputs, various methods are employed, including reconstruction-based
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methods, interpolation-based methods, learning-based methods, example-based methods,
and hybrid methods.

LRx = D(Hx; σ) (1)

Several well-known methods are used to construct F outputs, including reconstruction-
based, interpolation-based, learning-based, example-based, and hybrid-based methods.
Figure 1 shows the taxonomy of the SR techniques and popular examples of each branch.

Figure 1. Taxonomy of the super-resolution techniques.

Reconstruction-Based Super-Resolution Method

Reconstruction-based SR methods are a subclass of SR that minimizes the difference
between LR images and estimates the HR images [5]. This method uses an iterative
approach that requires prior knowledge regarding the image in order to recover the HR
frequencies that were lost during the process of LR image acquisition [41]. These methods
utilize mathematical models that consist of a forward model and regulation term. In
forwarding model, it describes the image formation process. This forward model consists
of key factors such as the point spread of the system imaging, resolution of sensors,
etc. On the other hand, a regulatory term is a mathematical function that is used in
conjunction with a forward model to improve the smoothness of the HR picture. The
optimization problem is defined by minimizing the dissimilarity between the LR images
and the predicted HR image. This is subject to a regularization term. There are several
well-known approaches introduced under reconstruction-based SR methods such as the
Efficient Sub-Pixel Convolutional Neural Network (ESPCN) [42], Deep Recursive Residual
Network (DRRN) [24], and Bayesian Image Super-Resolution (BSR) [43].

The ESPCN architecture was introduced to upsample an LR image to an HR image
by utilizing sub-pixel convolutional layers [42]. In this context, convolutional layers
can learn to rearrange LR feature maps to generate HR images directly. This process
reduces computational complexity. Apart from the ESPCN method, the DRRN is one of the
popular methods that utilizes the Reconstruction-based SR method. In this approach, they
constructed a recursive network that consists of several residual blocks. Every residual
block consists of batch normalization and rectified linear unit (ReLU) activation layers.
In 2001, the authors of [43] introduced the Bayesian framework for image SR, which can
utilize prior distribution over HR images to regulate the solution. In this approach, they
use a Laplacian distribution as the prior, which is characterized by a greater degree of
smoothness in the HR image. In this case, the network applies the input image using a
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two-step process to generate the HR output. As a first step, it upsamples the LR input by
utilizing the linear interpolation method. The second stage uses a Bayesian framework to
regulate the solution utilizing a prior distribution across HR photos.

2.2. Interpolation-Based SR Method

Interpolation-based techniques of SR include nearest neighbor interpolation, bilinear
interpolation, bicubic interpolation, and Lanczos interpolation [44]. These methods gener-
ate the initial HR estimate of the output image by utilizing interpolation methods. In this
step, the interpolation stage entails employing upsampling techniques and generating the
HR output.

In the nearest neighbor interpolation method, the concept underlying such algorithms
is that comparable image are near in terms of distance measurement [45]. The nearest neigh-
bor interpolation approach can be represented mathematically as follows in Equation (2):

Given a collection of datasets (L1, M1), (L2, M2), ..., (Ln, Mn) and a position L, the
estimated value M at L is

M = Mi if Li ≤ L < Li+1, for i = 1, 2, . . . , n − 1, M = Mn; if L ≥ Ln (2)

In this case, Mi indicates the M value of the data point closest to L, while Ln represents
the data set’s greatest L value [46].

Apart from the nearest neighbor interpolation method, bilinear interpolation is one
of the well-known techniques for producing HR output [47]. The bilinear interpolation
approach is accustomed to generating an HR output straightforwardly and efficiently. A
bilinear interpolation is one of the comprehensive techniques for two-dimensional linear
interpolation. The value at one place inside the rectangular grid is calculated using a
weighted average of the values at the four closest grid points using bilinear interpolation.
The distance between the interpolated location and the surrounding grid point positions
determines the weights applied to each grid point.

On the other hand, bicubic interpolation is a method of interpolating data points on
a two-dimensional regular grid that is an extension of cubic spline interpolation. This
approach is often used in SR tasks due to computational efficiency and comparably better
performance than other interpolation methods. Apart from these methods, Lanczos inter-
polation is a well-known method for upscaling the LR images [48]. The intuition behind the
method is the Lanczos Kernel, which is a windowed sinC function with superior frequency
domain features compared to conventional interpolation kernels. In particular, the Lanczos
method was utilized for sharpness preservation and is customizable.

2.3. Deep Learning-Based Super-Resolution Method

The intuition behind the deep learning-based SR is utilizing an advanced neural
network algorithm and enhancing the LR digital frame’s resolution. In this type of approach,
the deep neural network is trained on a large dataset of HR image and its corresponding
LR images. This approach allows for mapping between LR image to HR image.

The initial deep learning-based algorithm was introduced in 2014 [49] as image SR
using deep convolutional networks (SRCNNs). In this approach, the authors designed
the network in three consistent layers: the first layer extracts the features from the LR
image, the second layer does non-linear mapping, and the last layer constructs the HR
counterparts. The relationship is represented in Figure 2.
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Figure 2. Architecture of SRCNNs.

Apart from SRCNNs, the first Generative Adversarial Network (GAN)-based approach
was introduced by Ledig et al. [50] in 2016. In this method, authors designed a generator
that upsamples the LR images after the 16 residual convolutions. Here, each residual
block consists of a convolutional layer, batch normalization, PReLU activation function,
convolutional layer, batch normalization, and element-wise summation layer, respectively.
Here, a generator produces an HR image, and then the discriminator classifies whether the
generator’s produced image is real or fake. In the discriminator, authors followed eight
residual blocks, where each residual block consists of convolution, batch normalization,
and Leaky ReLU followed by each other.

2.3.1. Exampled-Based SR Method

The example-based super-resolution (EBSR) method utilizes a database of HR sample
images to increase LR inputs [51]. This method follows a data-driven approach that utilizes
the content information in the sample images to construct HR images. The EBSR contains
six sub-approaches such as dataset collection, registration, patch extraction, patch similarity
measure, patch fusion, and post-processing. In the dataset collection part, create a sample
collection of HR images that resembles the images that are intended to enhance. In the
registration part, the LR input image is aligned with the reference dataset’s instances. This
alignment is required to generate correspondence between the LR and HR images. In the
patch extraction part, the LR input image and the HR reference image are separated into
tiny overlapping images. Based on a similarity metric, such as pixel intensity or structural
similarity, each LR patch is matched to similar HR images in the provided dataset. Apart
from this image similarity measure working for each LR patch, a similarity metric is utilized
to locate the most comparable HR patches from the reference dataset. This metric might be
based on pixel intensity, gradient information, texture qualities, or other image properties.
On the other hand, patch fusion works as a re-constructor in which the HR version of the
image and HR patches from the reference dataset are fused together. Averaging, weighted
mixing, and patch-based synthesis are some of the fusion techniques that may be applied.
As a last part, post-processing works as the resultant HR digital frames to improve visual
quality, eliminate artifacts, or polish features. Denoising, sharpening, and adaptive filtering
are examples of such approaches.

Apart from EBSR, sparse coding-based super-resolution (SCSR) is one of the well-
known techniques used to enhance LR digital frames to HR digital frames. The main intu-
ition behind the network is sparse coding, wherein natural digital frames can be sparsely
displayed utilizing basis functions. SCSR methods target search sparse representation of LR
digital frames in order to the dictionary, afterward utilizing this representation to construct
HR digital frames. The above process involves producing solutions to optimization issues
by finding the sparsest representation.
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2.3.2. Hybrid-Based Super-Resolution Method

Hybrid-based SR techniques are referred to as a class of methods that utilize multiple
components or approaches to construct HR digital frames. Figure 3 demonstrates the
taxonomy of hybrid-based SR methods.

Figure 3. Taxonomy of hybrid-based SR techniques.

There are two components of hybrid-based SR techniques, including conventional
methods and deep learning-based methods. Conventional methods contain the traditional
signal processing methods, for instance, interpolation, edge enhancement, and regular-
ization methods. Secondly, deep learning-based techniques encompass the utilization of
the use of deep neural networks, such as convolutional neural networks (CNNs), to learn
about the link between LR and HR images.

Enhanced Deep Super-Resolution (EDSR) [52] is an example of a hybrid-based SR
technique that utilizes deep learning-based approaches. EDSR uses a deep neural network
architecture utilizing CNNs to study the LR and HR images. EDSR consists of multiple
convolutional layers including several residual blocks. This process helps to smooth the
flow of gradients and aids in the convergence of the network. Apart from EDSR, deep
Laplacian pyramid networks for fast and accurate SR (LapSRNs) [53] represent a well-
known hybrid-based SR method. Traditional methods use iterative optimization techniques
or sophisticated models, which can be computationally and time costly. The authors try
to overcome these constraints by utilizing deep learning and a multi-scale architecture.
LapSRNs are trained to utilize pairings of LR and HR images in a supervised way. The
network studies how to reduce the reconstruction error between the expected HR image
and the ground truth during training. Typically, the loss function contains both pixel-wise
and perceptual changes. This approach offers a balance of precision and speed, making it
suited for a wide range of real-world applications.

2.4. Datasets and Assessment Metrics
2.4.1. Datasets

Prior to 2017, only a few datasets, such as the T91 image dataset [54] and the Berkeley
Segmentation Dataset (BSD) [55], were commonly used in SR tasks. Real-time SR models
were primarily trained using these datasets. However, after the introduction of the DIV2K
dataset [56] in the NTIRE 2017 competition [55], it became the main dataset for training
most lightweight SR algorithms. Table 1 shows the most recent datasets used to train and
evaluate SR models along with the explanation of the datasets.
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Table 1. Explanation of each dataset widely used in real-time super-resolution.

Name of Dataset Explanation of Dataset

DIV2K

A popular dataset for SR tasks consisting of 1000 HR RGB images. It includes 800 training,
100 validation, and 100 test images. The dataset is designed for benchmarking and evaluating
image SR algorithms, as well as other image restoration tasks. All images in the dataset are LR
and are used as ground truth for generating lower-resolution images, which are then used to
train and test SR algorithms.This dataset is essential for developing and testing new methods
in image processing and computer vision due to its diverse range of high-quality images and
standardized resolution.

Set5

A dataset composed of five HR images: baby, bird, butterfly, head, and woman.This dataset
was designed for benchmarking and testing SR algorithms. It provides a small, standardized
set of images to evaluate the performance of image enhancement techniques. It is commonly
used for testing SR methods. This dataset is crucial for establishing benchmarks in SR research,
providing a standardized set of images for consistent and comparable evaluation of
different techniques.

Set14

Similar to Set5, Set14 includes 14 different types of HR images.The images cover a broad range
of categories, including landscapes, urban scenes, and various types of textures. The images
are usually available in common formats such as JPEG or PNG. The images in Set14 are HR
and serve as ground truth for creating lower-resolution versions.

BSD100

This collection contains 100 HR photos from Berkeley’s Segmentation collection. The collection
comprises natural photos with a wide range of items, textures, and situations. Researchers and
developers frequently use BSD100 to assess the performance of their image processing models
by running their algorithms on the dataset and comparing the results to ground truth or other
models using common metrics such as the PSNR (Peak Signal-to-Noise Ratio) and SSIM
(Structural Similarity Index).

Urban100

Urban100, which consists of 100 HR urban scene images, is noted for its richness and
complexity, covering a wide range of sizes and architectural styles. Urban100 is mostly used to
evaluate the performance of image SR techniques. Researchers utilize the Urban100 dataset to
assess and compare the efficacy of various SR methods.

CelebA

A large-scale dataset of celebrity faces often used for training models that perform SR on
human faces.These attributes include characteristics like gender, age, hair color, the presence of
eyeglasses, facial expressions, and more. It has been used to train and evaluate models for
tasks such as Attribute Prediction,Generative Models, and Face Recognition.

Flickr2K
A high-quality image dataset containing 2650 HR images (2K resolution). It can be used for
various image tasks, including SR. Researchers use it to train models and evaluate
performance.

COCO dataset

The COCO dataset contains a wide variety of images and is commonly used for tasks such as
object detection, segmentation, and SR. COCO is freely available and widely used in both
academic and commercial research. The dataset is continuously updated, with the most recent
versions including even more annotations and categories.

ImageNet

ImageNet is a substantial visual database used in the field of visual object recognition and
classification research. It contains over 14 million annotated images across more than 20,000
categories. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been
conducted using the ImageNet dataset since 2010, allowing participants to compete in tasks
related to object and scene classification, as well as detection.

2.4.2. Assessment Metrics for Super-Resolved Images

In the quality assessment of SR images, there are two primary approaches: one is
subjective evaluation based on human perception, and another one is object evaluation
using quality metrics. Subjective evaluation aligns more closely with practical needs but
has drawbacks, such as being influenced by personal preference and being costly and
difficult to automate. On the other hand, objective evaluation is more convenient and
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can be automated, although different metrics may yield inconsistent result compared to
each other and subjective evaluation. These reports outline key metrics used to objectively
evaluate the quality of SR images [57], SSIM [58], LPIPS [59], and NIQE [60]. In this
context, let X ∈ RH×W×C and X̂ ∈ RH×W×C denote the ground truth image and the
super-resolved image, respectively. H, W, and C denote height, width, and the number
of components, respectively. The PSNR is the most commonly used statistic to assess the
quality of reconstructed images, especially in SR and image compression. It calculates
how similar the original and the compressed or rebuilt image are to each other. (e.g., SR,
denoising, deblocking, and deblurring). Given X̂ and X, the PSNR is defined as

PSNR = 10 · log10

(
L2

MSE

)
(3)

where

MSE =
1

HWC
∥X − X̂∥2

2 (4)

Equation (4) denotes the mean squared error (MSE) between X̂ and X, and L represents
the maximum pixel value (i.e., 255 for 8-bit images). It can be seen from Equation (3) that
the PSNR is more concerned with the proximity between corresponding pixels in X̂ and X,
which results in low consistency with perceptual quality in some cases.

The SSIM [57] is a full-reference objective quality metric titled the Structural Similarity
Index (SSIM). The authors in [57] used it to compare the structural similarity of two images.
By analyzing the contrast, brightness, and structure of the original image X against the
rebuilt image, it measures the quality of the image.

SSIM =
[
l(X, X̂)

]α[c(X, X̂)
]β[s(X, X̂)

]γ (5)

where

l(X, X̂) =
2µXµX̂ + C1

µ2
X + µ2

X̂
+ C1

, c(X, X̂) =
2σXσX̂ + C2

σ2
X + σ2

X̂
+ C2

, and s(X, X̂) =
σXX̂ + C3

σXσX̂ + C3
.

C α, β, and γ are weighting parameters; µX and σX denote the mean and standard
deviation of X, respectively. Similarly, µX̂ and σX̂ denote the mean and standard deviation
of X̂. σXX̂ is the covariance between X̂ and X. C1, C2, and C3 are constants.

Furthermore, Equation (5) can be simplified when α = β = γ = 1 and C3 = C2
2 as

SSIM =
(2µXµX̂ + C1)(2σXX̂ + C2)

(µ2
X + µ2

X̂
+ C1)(σ

2
X + σ2

X̂
+ C2)

. (6)

In general, the SSIM [57] is thought to more accurately represent visual quality than
the PSNR. For evaluating the quality of a restored image, the PSNR and SSIM [57] are
typically utilized in combination when the corresponding ground truth image is accessible.

A full-reference metric titled the Information Fidelity Criterion (IFC) [58] evaluates
image quality using data from natural scenes. Using models that describe natural situations
and their distortions, the mutual information between the test image and the reference
image is measured to assess the visual quality. Research indicates that the IFC [58] is a useful
metric for evaluating super-resolved image quality [61]. LPIPS [61]: Learned Perceptual
Image Patch Similarity, or LPIPS, is a complicated metric that evaluates perceptual similarity
to assess image quality. LPIPS evaluates image quality by calculating the L2 distance
between deep feature representations of the reference and test images, which is in contrast
to conventional approaches that compare images pixel-by-pixel [61]. Using characteristics
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taken from neural networks that were previously trained, this method closely resembles
human vision and offers a more accurate depiction of perceived image quality.

The Natural Picture Quality Evaluator, often known as NIQE [60], is a completely
blind picture quality evaluation metric that does not depend on particular aberrations
or human opinion. It evaluates “quality-aware” features taken from images utilizing a
multivariate Gaussian (MVG) model. These features include parameters from asymmetric
and generalized Gaussian distributions. The MVG model fitted to the assessed image and
the MVG model fitted to the natural image distribution are compared, and the difference
between the two is used to determine the quality of the image.

3. Real-Time Systems and Real-Time SR
3.1. Real-Time Systems

The intuition behind the real-time system operates in accordance with real-world time
constraints and requirements such as that the response time should meet some specified
restriction of time or systems that adhere to certain deadlines. When considering timing
constraints, different types of real-time systems can be identified such as hard real-time
systems, soft real-time systems, and firm real-time systems. A hard real-time system is a
system characterized by severe time requirements when missing deadlines might have
devastating effects. Tardiness, or the delay in performing tasks relative to their deadlines,
reduces the utilization of system outcomes. Examples of systems in this category include
automated driving systems and avionics systems. Apart from the hard real-time system,
soft real-time systems are a well-known method that utilizes real-time systems. This sort of
system may occasionally fail to meet its deadline with an acceptable degree of probability.
There are no dire penalties for missing the deadline. Examples of systems in this category
include streaming media systems, interactive video games, and web servers. Real-time SR
also falls into this category. Apart from soft real-time systems, firm real-time systems are a
popular method that utilizes real-time systems. The type of systems fall in between hard and
soft real time. Missing a deadline is bearable in solid real-time systems, but the utility of the
output declines with delay. Systems that fall into this category include telecommunications
switching systems, real-time financial trading systems, and manufacturing control systems.
Figure 4 demonstrates the relationship between the real-time systems.

Figure 4. Relationship between the real-time systems based on timing constraints.

Real-time SR is classified within the category of soft real-time systems. Real-time
SR algorithms have the capacity to provide improved digital frames within the required
period. These strategies can handle minor delays without causing substantial harm. This
compromise enables satisfying time constraints while maintaining image resolution.
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3.2. Delay-Sensitive Applications

Applications that rely on timely data delivery and processing are referred to as delay-
sensitive applications. Due to their sensitivity to latency, even minor delays can significantly
impact their usability or performance. Although the significance of meeting deadlines
may vary, these applications generally require data handling or responses within strict
time constraints to ensure proper operation. This typically involves assessing the per-
formance of the operating system, firmware, network, and hardware—both individually
and collectively—for the entire system [62]. Low latency is beneficial for latency-sensitive
applications, as it signifies a minimal delay between the initiation of an action and its result.
High latency is undesirable because it can slow down data transmission and may indicate
issues such as packet loss or droppage depending on the type of data. Even if the average
latency seems low, a network with excessive jitter is unreliable. Therefore, latency should
also be consistent.

3.3. Real-Time Single Image Super-Resolution Methods

Enhancing the spatial resolution of images to improve their clarity and detail is the
primary aim of real-time SR. Several strategies are used to achieve this. Distillation makes
real-time processing more feasible by training a smaller, more efficient model to replicate
the performance of a larger, more complex model. Re-parameterization improves effec-
tiveness and performance by modifying the model’s parameters, often by transforming or
simplifying the network architecture. Model-based techniques leverage prior knowledge or
assumptions about the data, sometimes incorporating mathematical models or constraints,
to guide the resolution enhancement process. Quantization reduces the precision of the
model’s parameters, which accelerates processing times by using less memory and compu-
tational power. Lastly, optimization techniques utilize various algorithms to fine-tune the
model’s performance, balancing resource usage, accuracy, and speed. Figure 5 illustrates
the taxonomy of real-time SR methods.

Distillation
Knowledge distillation techniques for
transferring knowledge from larger SR
models to smaller ones. 

� 
Optimization Methods

� 
a. Gradient Descent 

b. Iterative Back-Projection

c. Bayesian Inference

d. Sparse Coding

Super­

Resolution 

Methods 

© Re-Parameterization 
Techniques to �educe the number of parameters in
SR models for improved computational efficiency.

Models
a. Oeep Convolutional Neural Networks (CNNs)
b. Recurrent Neural Networks (RNNs) 
c. Generative Adversarial Networks (GANs) 

  

Quantization
a. Quantized CNN 
b. Fixed-Point Quantization

Figure 5. Taxonomy of real-time super-resolution methods.

3.3.1. Distillation-Based Real-Time Super-Resolution Methods

Real-time SR based on distillation is a strategy that utilizes knowledge distillation to
construct HR SR outcomes in real-time circumstances. These types of models follow the ap-
proach of student and teacher models. The intuition behind these models, training a faster
and tiny model that behaves like a student and mimics the attributes and performance
of larger models, is to create more accurate SR tasks. Figure 6 displays how knowledge
distillation works in a tiny student model to replicate a big teacher model and harness the
teacher’s knowledge to achieve comparable or superior accuracy. Here, larger models act
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as teachers. Distillation-based SR technologies frequently use lightweight network designs
and optimization approaches to attain real-time performance. Some solutions, for example,
make use of network topologies with a limited number of parameters, such as MobileNet
or ESPCN.

Figure 6. The framework for knowledge distillation work through the teacher–student model.

The authors of [63] presented the first model based on information distillation, known
as the Information Distillation Network (IDN). The IDN architecture is made up of three
major components: feature extraction blocks, stacked information distillation blocks (DBs),
and reconstruction blocks. Within the DB, an enhancement unit and a compression unit
collaborate to efficiently extract both local long- and short-path characteristics. Specifically,
the enhancement unit combines two types of characteristics, whereas the compression
unit distills more usable information through consecutive blocks. The IDN model has a
noteworthy benefit in that it uses very few layer filters and group convolution. However,
the IDN still has a significant weight, emphasizing the need for more efficient models while
deploying in real-time systems.

In [64], the authors proposed a feature-domain adaptive method utilizing contrastive
distillation for lightweight SISR. They addressed the limits of previous feature distilla-
tion approaches that use Euclidean distance-based loss and developed a feature-domain
contrastive loss. This novel technique allows student networks to learn more detailed
information from the teacher’s representation in the feature domain and be efficient while
deploying on real-time systems. As a solution for IDN’s obstacles, the authors of [65] pre-
sented the Information Multi-Distillation Network (IMDN) for SISR, which uses cascaded
Information Multi-Distillation Blocks (IMDBs). This architecture allows for the sequential
extraction of hierarchical features using a distillation module. These traits are subsequently
integrated by a fusion module, which prioritizes them according to their importance. A
Contrast-Aware Channel Attention (CCA) layer is used for task assessment. Furthermore,
an Adaptive Cropping Strategy (ACS) is created to handle actual photos of various sizes
using the same trained model. While the IMDN overcame some of the difficulties associ-
ated with the IDN’s high weights, there is still significant room for improvement in the
IMDN paradigm.

In [15], an innovative approach named the Residual Feature Distillation Network
(RFDN) is described, which uses a channel-splitting operation to build a Feature Dis-
tillation Connection Block (FDCB). This block is an upgraded version of the previous
IMDN [65]. The RFDN focuses on learning discriminative feature representations by com-
bining numerous feature distillations with a shallow residual block (SRB). The SRB, which
consists of a convolutional layer, a skip connection, and an activation unit, uses residual
learning to improve performance. This addition marginally enhances computation without
adding any additional parameters compared to the original IMDN block. Additionally, the
model incorporates an Enhanced Spatial Attention (ESA) mechanism to further improve
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performance. As a result, the RFDN network is lighter in weight and runs faster than the
IMDN. In addition, Haoran Yang et al. [66] proposed a information distillation network
based on feature similarity ranking for lightweight image SR. They presented a feature
similarity ranking system that organizes extracted feature channels according to their
degree of redundancy. The ranked information distillation block (RIDB) is then utilized
to extract features with a high redundancy level. Furthermore, since the feature channels
have already been sorted in the channel dimension, a gated non-local attention module
(GNLM) is used to capture long-distance feature correlations in the spatial dimension. The
GNLM considerably decreases computing costs by employing a partitioned nonlocal mod-
ule and a gate unit to assess the significance of each module, making it more appropriate
for lightweight real-time SR. Apart from this, Min Yoon et al. [67] introduced a framework
utilizing the teacher assistant knowledge distillation (KD) approach for SR. When the HR
image is put into the teacher model to outperform the student, a considerable performance
gap opens up due to the teacher’s better skills. As a result, the teacher’s information
becomes extremely complicated and difficult to impart, thereby reducing the efficacy of
the KD. To address this, they used a teacher–student (TS) network to increase knowledge
transfer between the teacher and the students. Furthermore, the distribution of compact
features (CFs), which are the inputs to the teacher’s decoder, was discretized to match
the student’s input distribution, thereby improving the KD process. By deploying this
approach, they significantly reduced the complixity and made it suitable for deployment in
real time.

Discussion and Limitations

Feature distillation models have improved gradually, starting with the IDN, which sim-
ply utilized basic information distillation. This transitioned to the IMDN, which included
various distillation processes. Building on the IMDN, residual learning was included, result-
ing in the RFDN. Subsequent feature distillation models improved the SRB established in
RFDN. These KD models are based on the idea of taking existing SR models and decreasing
their weight and computational needs utilizing the TS structure. Furthermore, the proper
initialization of student models is critical for training these models. Furthermore, ref. [66]
used novel feature similarity ranking to increase task performance. While distillation-based
approaches that use channel splitting for feature distillation have shown good results, they
are limited by the convolution kernel, which restricts their ability to capture long-range
relationships. To solve this issue, attention-based approaches have been developed, which
enable the identification of long-range relationships using blocks capable of extracting
non-local information.

3.3.2. Optimization-Based Real-Time Super-Resolution Methods

Optimization-based real-time SR methods are one of the popular subclasses of real-
time SR techniques. These approaches utilize the SR problem as an optimization task,
intending to locate the HR images from LR inputs by minimizing a cost function that
balances fidelity to the observed data with smoothness or regularization terms. There are
five types of optimization techniques utilized in real-time SR tasks, such as gradient descent,
iterative backprojection, Bayesian inference, sparse coding, and convex optimization.

Gradient Descent-Based Optimization Methods

Gradient descent-based optimization methods improve the performance of real-time
SR. There are several approaches conducted to optimize the real-time SR. In [68], the au-
thors tackled the perception–distortion trade-off in SR as a multi-objective optimization
issue. They developed a novel optimizer by combining a gradient-free evolutionary algo-
rithm (EA) with the gradient-based Adam optimizer. The EA facilitates the exploration
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of alternative optimization tactics, whereas Adam improves their accuracy. This method
provides a set of ideal models that cater to various balancing points between perception
and distortion. The authors then created a fusion network to merge these models into
one more powerful model, establishing a better balance between perception and distor-
tion, which is well-suited for lightweight deployment. Apart from this, [69] investigated
image restoration and synthesis using gradient descent algorithms. They examined at
both linear and non-linear restoration challenges, as well as how to incorporate a known
degradation model into a gradient-based restoration method.To investigate gradient-based
image restoration, researchers employed a bicubic SR. It tested real bicubic degradation
against CNN and linear approximations, utilizing MSE as the loss function. The Residual-
in-Residual Dense Block (RRDB) architecture handled the restoration using five gradient
descent steps to recover images from degraded inputs.

Bayesian Inference Methods

Bayesian inference methods are rarely used in real-time SR tasks due to their compu-
tational complexity. Gaussian processes (GPs) are used to represent the data frame space
at HR and give a probabilistic foundation for SR. GPs are non-parametric models that are
flexible enough to represent the uncertainty in the SR problem. GPs may be used to estimate
the HR digital frame and offer uncertainty estimates associated with the reconstructed
image by considering the SR process as a Bayesian inference issue.

Weixin Li et al. [70] presented a low-dimensional sparse Bayesian learning with a
Doppler compensation (LDSBL-DC) approach for improving azimuth resolution in aerial
forward-looking imaging while reducing computing complexity. The solution addresses the
issue of Doppler centroid variation induced by pitching angle changes through generating a
Doppler compensation matrix that removes this spatial variance. This permits the Doppler
convolution matrix to be created only once. In addition, they present a low-dimensional
projection model that use singular-value decomposition to compress high-dimensional echo
data into a lower-dimensional form. By merging Doppler correction with this projection
model, a novel imaging technique is developed, with imaging parameters estimated via
sparse Bayesian learning (SBL). Matrix transformations are used to further minimize
computing complexity when estimating target scattering coefficients. The method’s low
computing complexity, obtained by Doppler correction and low-dimensional projection,
allows for rapid processing of forward-looking imaging data. This makes them easier
to integrate into real-time systems, where fast and precise image processing is critical.
In addition, ref. [71] introduced a Bayesian deep learning technique for assessing and
comprehending uncertainty in SR-guided wave array imaging. It uses a Monte Carlo
(MC) dropout approach within multi-scale deep learning models for approximate Bayesian
inference, which helps to quantify uncertainties in imaging subwavelength defects. This
technique distinguishes between aleatoric uncertainty, which stems from the data, and
epistemic uncertainty, which is linked with the model itself.

Sparse Coding Methods

The method of expressing signals as a linear combination of a few basis functions, with
most coefficients close to zero, is referred to as sparse coding. In the real-time SR domain,
sparse coding methods can be utilized in two steps such as dictionary learning and sparse
reconstruction. Dictionary learning entails locating an over-complete set of basis functions,
referred to as a dictionary, that can sparsely represent HR picture patches. A training set of
HR photos is used to train the dictionary. Various dictionary learning algorithms, such as
the K-SVD algorithm and the online dictionary learning method, can be employed. The
learned dictionary captures the underlying patterns and structures in HR space, enabling
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sparse representation to be economical. Secondly, it follows sparse reconstruction. The
sparse reconstruction stage uses the learned dictionary to identify the sparse representation
of the patches given an LR digital frame. This can be accomplished by solving a sparsity-
promoting optimization problem, such as an L1-norm minimization problem. The sparse
reconstruction approach improves the representation of high-frequency information that is
lacking in the LR input by increasing sparsity.

Sparse arrays offer better resolution and degrees of freedom compared to traditional
uniform linear arrays (ULAs). Pulak Sarangi [72] refutes the claim that sparse arrays
need many temporal measurements for accurate parameter estimation. Through a non-
asymptotic analysis of the Coarray ESPRIT algorithm, his work shows that coarray manifold
scaling reduces estimation errors even with fewer snapshots. For nested arrays with fewer
sources than sensors, estimation errors can be minimized with a logarithmic number of
snapshots relative to sensors. The study also confirms that sparse arrays can achieve
source separation with a minimum distance of Ω(1/P2) versus Ω(1/P) for ULAs, and this
highlights their superior noise resilience and sample complexity dependence on the Signal-
to-Noise Ratio (SNR) and source power. This approach will guide to efficient deplyment in
real-time SR.

In [25], the authors investigated at how incorporating sparsity into image SR might
improve the efficiency of SR networks during inference. They proposed the Sparse Mask
SR (SMSR) network, which is meant to generate sparse masks and decrease duplicate
processing. Specifically, the network employs spatial masks to identify “important” parts
in the image, whereas channel masks detect redundant channels in less-critical locations.
This approach allows the network to choose to avoid duplicates operations, resulting in
identical performance but with improved efficiency.

Discussion and Limitations

Optimization-based real-time SR approaches are successful, but they have several
drawbacks. Gradient descent approaches, despite improving the perception–distortion
trade-off, frequently use predetermined degradation models and are hyperparameter-
sensitive, restricting their versatility. Bayesian inference, while informative, is computa-
tionally demanding and unsuitable for real-time applications. Sparse coding approaches
improve high-frequency detail but are strongly reliant on the quality of the learned lexicon.
Despite advances such as SMSR to enhance efficiency, obtaining real-time performance
without losing picture quality remains difficult, necessitating more adaptable and computa-
tionally efficient techniques.

3.3.3. Re-Parameterization in Real-Time SR

Re-parameterization is a technique used in real-time SR to simplify the SR issue
and make it easier to optimize or estimate. The computational complexity of the issue
can be lowered by re-parameterizing it, allowing for real-time performance. There are
two types of re-parameterization methods available in real-time SR tasks: scale-space re-
parameterization and sub-pixel re-parameterization. The SR issue is altered in scale-space
re-parameterization by creating intermediary scales between the LR and HR digital frames.
Rather than instantly upsampling the LR input to the intended HR, the re-parameterization
process progressively upsamples the input to numerous intermediate scales. By dividing
the SR work across different scales, this technique minimizes computing complexity and
allows for real-time processing.

Secondly, sub-pixel re-parameterization is frequently utilized to address the constraints
of pixel-based SR approaches. Instead of executing SR at the pixel level, this approach
attempts to estimate sub-pixel shifts or features in the LR input. The re-parameterized issue
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becomes easier to solve by estimating sub-pixel shifts, and the subsequent upsampling
procedure can provide more accurate and visually appealing HR images.

In [73], the authors present an edge-priority-extraction network established with their
indicated edge-priority blocks (EPB). The EPB improves network representation by com-
bining numerous branches that include edge information. Additionally, the EPB may be
re-parameterized for more efficient inference. To make better use of edge information, the
study offers a mixed-priority filter that extracts edge information based on horizontal and
vertical priorities, boosting network performance. These filters can adapt and capture edge
information using multi-directional derivatives. With this approach, they succeeded in
reducing the model’s complexity, making it suitable for real-time deployment. In addition,
ref. [74] presents a re-parameterized dynamic unit (RDU) as a plug-in component with the
goal of improving the performance–inference cost trade-off. During the training phase, the
RDU learns to combine numerous re-parameterizable blocks by assessing various input
data, hence improving layer-level representation. In the inference step, the RDU is trans-
formed into simple dynamic convolutions capable of capturing both dynamic and static
feature maps. These RDUs are then combined to build an information distillation block
that enables hierarchical refining and selective fusing of spatial context information. Fur-
thermore, the authors suggest a dynamic distillation fusion (DDF) module that allows for
dynamic signal aggregation and communication between hierarchical modules, resulting
in additional performance gains with fewer parameters while being less computational.

Apart from this, Weijian Deng et al. [75] compared the performance and efficiency of
information distillation to residual learning in lightweight SR models. They developed
RepRFN, a re-parameterization-based lightweight SR network that minimizes GPU memory
utilization while increasing inference performance. The network uses a multi-scale feature
fusion structure to successfully collect different features and high-frequency edges, while
redundant modules are removed to reduce complexity without losing performance. A
Fourier transform-based loss function is also used to improve the learning of picture
frequency components, allowing for effective real-time deployment on edge devices.

3.4. Deep Learning-Based Models for Real-Time Super-Resolution

In recent years, we have seen swift progress in the field of real-time SR thanks to
enhancements in computational power and the emergence of deep learning. The purpose
of deep learning is to discern the characteristic distribution of data by learning a layered
representation of fundamental features. In more detail, deep learning progressively fine-
tunes the SR algorithm methodology via an array of learning tactics. These include aspects
like deep network architecture, optimization tools, and the design of loss functions. Concur-
rently, it also addresses the inherent challenges associated with SR. In the last years, many
deep learning-based real-time SR models were introduced and made significant progress.
In this section, we will in detail observe the most famous deep learning models such as
CNNs, recurrent neural networks (RNNs), generative adversarial networks (GANs), and
sparse representation models.

3.4.1. Deep Convolutional Neural Network-Based Models for Real-Time Super-Resolution

Initiallially, in ref. [49], an SR convolutional neural network (SRCNN) was described
that uses end-to-end learning to map LR images to HR images. The SRCNN re-interprets
existing sparse-coding-based SR approaches in the context of a deep convolutional neural
network. Unlike traditional sparse coding techniques, which process each component
independently, the SRCNN optimizes all layers simultaneously. The network is also light
and quick, making it ideal for real-time web applications. Despite its end-to-end learning
capabilities, the SRCNN’s performance is limited by its shallow convolutional design and
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tiny receptive field. Following this [76], a very deep convolutional network (VDSR) for
single-image SR (SISR) was built using the VGG-net [77]. The main idea underlying the
VDSR is to improve accuracy by dramatically expanding the network depth. The VDSR
design has 20 weight layers, which are built with a deep structure of recursively cascaded
tiny filters. To expedite convergence, the network learns residuals at extraordinarily high
rates—up to 10,000 times faster than those utilized in the SRCNN [49]. Additionally,
gradient clipping is used to preserve training stability. The VDSR model does, however,
have a restriction in that it is based on a fixed-size receptive field. In addition [78], a fast
SR convolutional neural network (FSRCNN) has been introduced to speed up the SRCNN.
The FSRCNN redesigns the SRCNN in three ways: it adds a deconvolution layer at the
end to reduce computation by directly upsampling images; it uses a mapping layer with
smaller filters after shrinking the input features to improve efficiency; and it optimizes
parameters for real-time CPU performance. These enhancements enable the FSRCNN to
outperform SRCNN in terms of processing speed and image restoration quality. However,
these methods fail to produce better image quality, and the resulting SR images often
appear blurred or exhibit edge halos. To address these issues, Zhang et al. [55] introduced
an adaptive importance learning scheme model (VDSR-f22+ILT) proposed as an addition to
the VDSR model, which incorporates adaptive importance learning (AIL) for SISR. During
training, the model constantly adjusts the relevance of image pixels based on the loss
function. A custom built significance penalty function was utilized to gradually raise the
emphasis on individual pixels by solving a convex optimization problem. Training begins
with simpler pixels and progresses to more complex ones, allowing the network to develop
a robust initial capability. The primary novelty of the VDSR-f22+ILT model is its new
training strategy, which incorporates significance learning into a joint optimization process
during the training phase.

Recently, ref. [79] presented a novel residual local feature network (RLFN) for SISR.
The RLFN learns residual local features using three convolutional layers and a reduced
feature aggregation algorithm to find a compromise between performance and processing
time. Furthermore, a contrastive loss function is used based on the idea that picking
intermediate characteristics from the feature extractor might improve model performance.
To improve the performance even more, a multi-stage warm-start training strategy is used
with pretrained weights from previous stages. These achievements allowed the RLFN to
win first place in the NTIRE 2022 efficient SR competition.

3.4.2. Recurrent Neural Networks (RNNs)-Based Models for Real-Time Super-Resolution

Qian Ning et al. [80] present an explainable technique to SISR based on RNNs known
as the model-guided deep unfolding network (MoG-DUN). To overcome the coherence
barrier, they employed a well-known image prior, the non-local auto-regressive model, to
guide their deep neural network. This technique embeds deep denoising and non-local
regularization as trainable modules in a deep learning framework, transforming the iter-
ative model-based SISR process into a three-stage sequence of interconnected modules:
denoising, non-local AR, and reconstruction. These modules use sophisticated approaches
such as dense/skip connections and fast non-local implementations. MoG-DUN is explain-
able, highly accurate with less aliasing artifacts, computationally economical with fewer
parameters, and capable of managing a wide range of degradations while deploying in
real time.

3.4.3. Generative Adversarial Networks (GANs) Based Models for Real-Time Super-Resolution

Dazhao Zhou et al. [81] present a new GAN-based model for SR image reconstruc-
tions. Their method is based on Residual-in-Residual Dense Blocks (RRDBs) as the basic
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components, and they employed high-order degradation to simulate real-world image
degradation. Furthermore, they introduced an innovative attention mechanism known as
the All-Attention Mechanism (AAM), which effectively recognizes and uses crucial visual
elements, expanding the number of pixels exploited. This strategy significantly increased
the quality of the re-built images. In addition, Vibhu Bhatia et al. [82] proposed an approach
utilizing an existing deep learning approach to accomplish real-time SR microscopy using
a conventional GPU. They suggest a tiling approach, which utilizes GPU parallelism to
speed training networks. They also offer simple changes to the design of the SRGAN’s
generator and discriminator. The researchers then assessed the model’s result quality and
runtime, proving that it is suitable for implementation across a variety of sectors, including
low-end benchtop and mobile microscopes.

Discussion and Limitations

The rapid growth of deep learning-based models for real-time SR has sparked heated
debate, notably over the trade-offs between model complexity, computing efficiency, and
image quality. The emergence of models such as the RLFN, which relies on residual local
features and decreased feature aggregation, has demonstrated a promising balance between
performance and processing time, as proven by its first place win in the NTIRE 2022 efficient
SR competition. However, this result raises the question as to whether such efficient models
may sacrifice generalizability and robustness when dealing with more complicated and
diverse image datasets.

In parallel, RNN techniques like MoG-DUN prioritize explainability and the incorpora-
tion of non-local auto-regressive models, which improve accuracy and eliminate artifacts in
SISR. Despite their accuracy and capacity to manage various degradations, this raises con-
cerns regarding the feasibility of using such advanced approaches in settings that demand
quick processing. GANs provide a new dimension to the discussion, particularly with
the introduction of models that include RRDBs and sophisticated attention mechanisms
such as the AAM. These models produce excellent image quality by efficiently exploiting
a larger number of pixels but at the expense of additional computational overhead. Ef-
forts to ease these demands through GPU parallelism and simpler network designs have
made progress, but there are still hurdles in developing models that can retain this high
quality while still being practical for real-time application on lower-end devices and in
mobile environments.

The continuing debate in the area centers on how to effectively manage these trade-offs
in order to construct SR models that are not only efficient and accurate but that are also
effective and responsive to a wide range of real-world scenarios. Achieving this balance is
crucial for the widespread use of SR technologies in a variety of industries, including those
with limited computing resources.

3.5. Quantization-Based Real-Time Super Resolution

We are currently observing a rapid expansion and pervasive implementation of deep
neural networks across a multitude of disciplines. However, these DNN models, par-
ticularly CNNs, typically comprise an enormous number of parameters and demand
high computational resources, tethering them closely to high-end hardware. This poses a
significant hindrance to their broader applications, such as deployment on mobile devices.

3.5.1. Quantized CNN-Based Approaches

Mustafa Ayazoglu [17] presents XLSR, a unique, hardware-aware model built for real-time
SR with an emphasis on extreme lightweight and robustness to quantization—specifically with
the Synaptics Dolphin NPU in mind. The root modules established in the DeepRoots
framework for image categorization served as inspiration for the model’s fundamental



Appl. Sci. 2025, 15, 274 18 of 26

design. The author successfully customized these root modules to tackle the SISR issue. To
improve the model’s resilience to uint8 quantization, they added a Clipped ReLU function
to the network’s last layer, resulting in an ideal combination of image reconstruction
quality and processing time. Interestingly, despite having 30 times fewer parameters than
the VDSR model, XLSR surpassed VDSR on the Div2K validation dataset. In [83], the
authors suggest a novel approach for SR networks known as Content-Aware Dynamic
Quantization (CADyQ), which aims to reduce large bits while minimizing accuracy loss.
CADyQ dynamically assigns optimum bit widths to different local areas and network
layers based on the particular information in the input image. A trainable bit selection
module is presented to identify the optimal bit width and quantization level for each
layer and local picture patch. This module is based on quantization sensitivity, which is
computed by combining the average magnitude of the patch’s image gradient alongside
the standard deviation of the layer’s input features.

Furthermore, Ziwei Luo et al. [45] introduce a basic convolutional network called
NCNet, which includes a quick nearest-convolution module. This architecture is NPU-
friendly, allowing for dependable real-time SR. Their technique uses the closest convolution,
which provides the same performance as nearest upsampling but is significantly quicker
and more suited to Android NNAPI. The model is easily deployable on mobile devices
that support 8-bit quantization and is completely interoperable with all popular mobile AI
accelerators. They also conducted extensive experiments on mobile devices using various
tensor operations to demonstrate the effectiveness of their network design in real time.

Discussion and Limitations

The fast development of DNNs, particularly CNNs, has resulted in substantial ad-
vances in a variety of domains. However, the computational needs and huge parameter
values of these models have restricted their use on resource-constrained devices such as
mobile phones. To overcome this, numerous approaches have arisen to make CNNs more
efficient while maintaining performance. The XLSR model, for example, has been created
with hardware awareness in mind, allowing it to be used on specialized NPUs such as
the Synaptic Dolphin. It includes a Clipped ReLU function, which improves resilience to
quantization and achieves excellent performance with many fewer parameters. Similarly,
CADyQ introduces dynamic quantization that optimally adjusts bit widths across network
layers and local regions based on image content, further reducing computational load while
preserving accuracy. NCNet presents an NPU-friendly architecture tailored for real-time
SR on mobile devices. Despite these advancements, limitations remain. The dependence on
specific hardware accelerators like NPUs may restrict wider deployment across different
platforms. Moreover, dynamic quantization techniques, while effective, add complexity to
the training process and may lead to performance trade-offs, especially in highly detailed
tasks where extreme quantization can degrade accuracy.

4. Implementation and Analysis of Real-Time SR Algorithms in
IoT Context
4.1. Implementation on IoT Hardware

Deploying SR algorithms on IoT-specific hardware presents unique challenges and op-
portunities. To gain practical insights into real-world applications, we explored approaches
conducted on microcontrollers and low-end FPGAs.

For microcontroller implementations, processors like the ARM Cortex-M family offer
a balance between power efficiency and computational performance. These processors are
well suited for lightweight SR models, such as simplified versions of FSRCNN or ESPCN,
which have shown potential in resource-constrained environments.
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FPGA-based solutions have emerged as a promising alternative for deploying DNN-
based SR algorithms at the edge. For instance, Liu et al. [84] proposed a lightweight
version of the FSRCNN for FPGAs by replacing the deconvolutional layer with a convo-
lutional layer, significantly reducing the memory footprint. However, this compression
resulted in some performance degradation compared to the original FSRCNN. Additionally,
NeuriCam [85] introduced a dual-mode IoT camera system that integrates a low-power
(1.1 mW) grayscale camera with a duty-cycled high-power (100 mW) color camera. This
system employs a neural network decoder on a nearby gateway to reconstruct HR color
video from the LR grayscale stream supplemented by periodic HR keyframes.

4.2. Comparative Analysis

To evaluate the applicability, we present a comparison of real-time SR implementations
in IoT systems using key metrics presented in Table 2.

Table 2. Comparison of SR methods on Raspberry Pi 3 for the scale factor of x4.

SR Method Latency (ms) Energy (mW) PSNR SSIM

Bicubic Interpolation 50 400 24.3 0.821

SRCNN 120 750 25.6 0.833

ESPCN 80 750 26.9 0.852

Liu et al. [84] 95 700 25.6 0.869

NeuriCam [85] 200 850 26.5 0.872

This comparison highlights the trade-offs between performance metrics across dif-
ferent SR methods implemented on a common IoT platform. Here, the ESPCN offers a
better balance, surpassing the SRCNN in image quality (PSNR: 26.9, SSIM: 0.852) while
consuming the same amount of energy (750 mW) and exhibiting shorter latency. The
approach from Liu et al. adopted a balanced approach, achieving an improved SSIM
(0.869) with 95 ms latency and 700 mW energy usage while maintaining a PSNR of 25.6.
NeuriCam performed better than the other approaches (PSNR: 26.5, SSIM: 0.872) albeit
with the highest latency (200 ms) and energy usage (850 mW).

4.3. Challenges in Hardware Deployment

Deploying SR algorithms on IoT devices poses numerous obstacles. One significant
challenge is the low computing capability of IoT devices, which sometimes lack the process-
ing capabilities needed for complicated SR algorithms. This constraint involves the creation
of lightweight models or the use of optimization techniques like pruning and quantization.
Another issue is memory limits, since many IoT devices have limited RAM and ROM. This
limits the size and complexity of deployed SR models. For example, creating S-Boxes with
combinational logic rather than look-up tables can drastically reduce memory needs [86].

Furthermore, energy efficiency is crucial for battery-powered IoT devices, which neces-
sitate solutions with low power consumption. For example, NeuriCam’s [85] dual-camera
hardware prototype produces 640 × 480 color wireless video at 15 fps while consuming
just 46 mA, demonstrating the promise for energy-efficient SR in IoT applications.

Subsequently, hardware heterogeneity in IoT networks [87] is a significant barrier.
These ecosystems frequently comprise disparate hardware platforms with differing capa-
bilities, making it challenging to provide universally compatible SR solutions. Addressing
these problems is critical to the effective implementation of SR algorithms on IoT devices.
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5. Future Roadmap
Recent advances in SISR technology are significantly improving image quality.

Nonetheless, there is still room for growth in a multitude of sectors. Deep learning models
are likely to improve in the future, particularly in terms of efficiency and real-time infer-
ence. The most anticipated future directions include advancements in model compression
techniques, the exploration of adaptive and dynamic approaches, and the development
of domain-specific real-time SR. Figure 7 shows the real-time SR technique improvements
through various means expected to see in the future.

Future 

Direction

Deep Learning Advances
• Transformer-based architectures for better attention 

and global context.

• Efficient neural networks

• Lightweight diffusion models to get high-fidelity 

output.

Model Compression Techniques
• Advanced quantization, pruning, and knowledge 

distillation methods to reduce model size and 

inference time

• Neural Architecture Search (NAS) for discovering 

optimal and efficient SISR models.

Domain Specific Real-time SR Adaptive and Dynamic Approaches

Figure 7. Future improvements in SR.

Advancements in deep learning models indicate that deep learning will continue
to drive breakthroughs in SR research. Deep learning is expected to further enhance
SR by developing models that explore sophisticated architectures, such as transformer-
based lightweight structures, which represent a new frontier by employing enhanced
attention mechanisms to improve both global context and local details while maintaining
a balance of feature richness and network complexity. This innovation is critical for
allowing SR in resource-constrained situations like edge devices and real-time applications.
Simultaneously, effective neural networks can be tuned using techniques such as parameter
pruning, quantization, and knowledge distillation, which reduce model complexity while
retaining high output quality. In addition to these developments, lightweight diffusion
models, which excel at iterative picture refining, have shown outstanding potential for
SR applications by combining precision and efficiency. These advances are redefining the
landscape of SR, assuring high-quality performance while tackling issues in real-time and
resource-constrained applications.

In addition, model compression techniques are one of the key strategies for real-time
SR, which aims to provide high-quality results in a timely way by utilizing advanced
quantization, pruning, and knowledge distillation approaches to reduce model size and
inference time without compromising the quality of output images. Quantization involves
decreasing the accuracy of the model’s weights and activations, which reduces memory
and processing needs. Pruning gradually eliminates less-essential weights from the model,
substantially simplifying its design while preserving performance. Knowledge distillation
involves transferring knowledge from a bigger, more complicated model (the instructor) to
a smaller, more efficient one (the student), allowing the smaller model to reach comparable
levels of accuracy. These approaches are critical for ensuring that real-time SR systems
can run quickly while maintaining image quality, making them useful for SISR. Apart
from this, the Neural Architecture Search (NAS) for discovering optimal and efficient
SISR models is another future direction that falls under model compression techniques.
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The NAS automates the process of constructing neural networks by looking for the most
efficient architecture that meets the unique needs of real-time SR activities. Using the NAS,
researchers may uncover optimum designs that balance model complexity, speed, and
accuracy. This enables the creation of unique models that are extremely efficient in terms
of both computational cost and performance. Future research will most likely focus on
merging these model compression approaches with NAS to develop even more optimal
models for specific use cases, such as improving LR pictures in medical imaging, increasing
satellite imagery quality, or recovering ancient photographs and films. Furthermore, there
is a rising interest in adaptive and dynamic algorithms that may modify the amount
of compression or model complexity based on the context or available computational
resources, broadening the possible applications for real-time SR techniques.

Apart from these approaches, domain-specific real-time SR as well as adaptive and
dynamic approaches for SR, are emerging trends in real-time SR. Domain-specific real-
time SR focuses on applying SR methods to specific applications, such as medical imaging,
satellite photography, or video streaming, where unique limits and requirements necessitate
customized models. These tailored models can improve accuracy and efficiency by taking
use of the target domain’s unique properties. Meanwhile, adaptive and dynamic methods
to SR entail creating models that can modify their complexity and processing capacity in
real time based on available computing resources or task-specific requirements. These
strategies are intended to improve performance in a variety of contexts, ranging from
high-performance servers to low-power constrain devices, while maintaining constant
quality and speed. These changes, taken together, imply a move toward more adaptable,
efficient, and application-specific solutions in real-time SR.

6. Conclusions
This survey provides an in-depth examination of the majority of studies on real-time

SR published up to 2024, presenting a structured and comprehensive taxonomy to classify
and analyze these approaches. It delves into the intricacies of various methods, offering
a nuanced discussion of their strengths and limitations as highlighted in the reviewed
publications. Furthermore, it identifies and outlines the most frequently adopted strategies
for addressing specific challenges in real-time SR, enabling a detailed understanding of the
problem-solving methodologies employed in this domain.

Over the past decade, research in real-time SR has made notable strides, driven by
advancements in deep learning and computational techniques. Nevertheless, the number
of deep learning-based SR methods that achieve real-time performance remains limited.
This shortfall can largely be attributed to the significant computational demands of these
models, which often struggle to balance rapid processing speeds with high-quality outputs,
particularly on resource-constrained devices. The challenge is further compounded by the
difficulty of designing architectures that are lightweight yet powerful enough to handle
the intricate details required for SR tasks. These limitations underscore the need for novel
strategies that combine computational efficiency with robust performance.

This review highlights several promising directions for future research. For instance,
by integrating model compression techniques such as pruning, quantization, and knowl-
edge distillation, hardware-aware NAS-based approcahes could yield lightweight, high-
performance models optimized for real-time applications. Additionally, developing adap-
tive algorithms capable of dynamically adjusting model complexity based on available
computational resources could significantly expand the applicability of real-time SR tech-
niques. Domain-specific SR methods, tailored to the unique requirements of applications
such as medical imaging, satellite imagery, or video streaming, also hold immense potential
for further refinement and optimization.
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By consolidating current knowledge and providing critical insights, this survey aims
to serve as a foundational reference for researchers and developers seeking to enhance
SR solutions. Whether the goal is improving runtime efficiency, achieving higher ac-
curacy, or addressing application-specific challenges, this review offers practical guid-
ance and a roadmap for advancing real-time SR. Ultimately, we hope this work in-
spires new innovations that will address existing gaps and unlock the full potential of
super-resolution technology.
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