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Abstract: The absence of analytical expressions in current codes for evaluating the critical moment
for lateral–torsional buckling of cold‑formed beams with omega‑shaped sections presents a funda‑
mental challenge when assessing their resistance to global buckling. In response to this challenge, a
comparative study was conducted to explore various approaches for calculating the critical moment.
This involved both analytical and numerical analyses, using different methods available in codes
and computational tools. The analytical analysis followed the Effective Width Method, employing
the expression proposed in ENV 1993‑1‑1:1992, which is commonly used for evaluating the criti‑
cal lateral–torsional moment of hot‑rolled profiles. Numerical analyses were then performed using
the ABAQUS v6.13, GBTUL v2.0, and CUFSM v5.05 software packages. The ABAQUS model, val‑
idated with results obtained from an experimental campaign, serves as the reference model. Upon
assessing the bending moment resistances according to European, Brazilian, and American stan‑
dards, consistency was found among these standards. However, it became evident that using the
analytical expression proposed for hot‑rolled profiles is inadequate for evaluating the critical lateral–
torsional moment of CFS omega‑shaped profiles. Conversely, the agreement between the ABAQUS,
GBTUL, and CUFSM results suggests their utility as reliable tools for estimating the elastic critical
lateral–torsional buckling moment.

Keywords: CFS omega‑shaped beams behavior; global buckling of CFS; critical lateral–torsional
buckling moment; experimental analysis; numerical analysis; ABAQUS; GBTUL; CUFSM

1. Introduction
In steel constructions, the use of Cold‑Formed Steel (CFS) profiles in beams is a well‑

established and widely adopted practice. CFS profiles offer numerous advantages, includ‑
ing a high strength‑to‑weight ratio, versatility in manufacturing across a diverse range of
cross‑sectional shapes, reduced material consumption, and straightforward on‑site instal‑
lation. These characteristics collectively make CFS a popular and sustainable choice for
various construction applications.

CFS beams feature a variety of cross‑sectional shapes, with the most common being
the channel section, Z section, and hat section. The latter is particularly noteworthy due
to its ability to achieve larger clear spans compared to other sections. Additionally, by
bending the flanges and the depth of the section, it is possible to significantly enhance its
stiffness. A specific type of the hat section is the omega‑shaped section, which incorporates
multiple bends, enabling even larger structural spans and reduced vertical displacements.

CFS members have been extensively investigated due to their inherent slenderness,
featuring thin‑walled open or closed cross‑sections. This characteristic makes them highly
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susceptible to various instability phenomena, including local (L), distortional (D), shear (S),
and global (G) flexural or flexural–torsional buckling, as well as couplings between them
(e.g., L–D, L–G, D–G, or L–D–Gmode coupling/interaction). These instability phenomena
significantly impact the overall structural response and ultimate strength of CFS mem‑
bers, justifying their inclusion in CFS specifications. Consequently, CFS members have
played a crucial role in the development and widespread adoption of the Direct Strength
Method (DSM) [1].

Traditionally, thin‑walled steel members were designed against local buckling using
the Effective Width Method (EWM), an approach still embedded in current versions of
certain codes, such as Eurocode 3 [2,3]. However, the evolution of increasingly complex
cross‑sectional shapes, coupled with the recognition of distortional buckling as a potential
failure mode for cold‑formed thin‑walled members with lipped cross‑sections, paved the
way for the development of the DSM. In response to unsuccessful attempts to efficiently
predict distortional failures using methods based on an “effective cross‑section”, a more
rational approach was sought. This research effort led to the standardization of the DSM,
initially in North America [4], and almost simultaneously included in the Australian/New
Zealand Standard [5]. A few years later, the DSM approach was also incorporated into the
Brazilian standards for CFS structures [6].

Numerous researchers have made substantial contributions to the development of
the DSM. More recently, Martins et al. [7] reported on the buckling and failure of cold‑
formed steel simply supported beams under uniform bending, considering three cross‑
section shapes: (i) lipped channels bending about the major axis, (ii) zed‑sections under
tilt bending, causing uniform flange compression, and (iii) hat‑sections subjected to either
major‑axis or minor‑axis bending. This study revealed that the current DSM design curve
fails to adequately predict the failure moments of some analyzed beams. To address this,
the authors proposednovelDSMstrength curves, offering better predictions of all available
numerical failure moments. In a subsequent study, Martins et al. [8] introduced two DSM
design approaches to account for local–distortional (L–D) buckling modes interactions for
cold‑formed hat‑sections, demonstrating that the DSM is current suitable for evaluating
the buckling modes of this type of section.

Additionally, several recent studies have been conducted to experimentally assess
instability modes in steel elements subjected to bending loads. Nguyen et al. [9] and Pi‑
otrowski et al. [10] numerically investigated the elastic critical lateral–torsional buckling of
steel beams under bending loads using the finite element software ABAQUS. Dib, Ramos,
and Vieira [11] analyzed the structural behavior of cold‑formed steel hat‑section beams
under non‑uniform bending, using GBTUL and ABAQUS. De’nan et al. [12,13] numer‑
ically evaluated the buckling behavior of hat‑shaped sections with holes along the sec‑
tion. Ma, Rasmussen, and Zhang [14] and Dar et al. [15] conducted four‑point bending
tests on cold‑formed steel beams with different innovative cross‑sectional shapes to assess
their potential instability modes. Furthermore, Tikate and Sonar [16] presented an exten‑
sive review of recent advancements in the design and analysis of cold‑formed steel (CFS)
under bending, highlighting the benefits of including intermediate reinforcements at the
flange/web junction.

The buckling behavior of cold‑formed hat‑shaped sections under bending has been
experimentally investigated by Manikandan et al. [17] and Aktepe et al. [18]. However,
despite the recent surge in popularity of CFS omega‑shaped beams, the buckling behavior
of these hat‑section types, characterized by additional stiffeners along the section, has not
yet been reported in any study, revealing a significant gap in the available scientific knowl‑
edge. The main goal of this study is to contribute to filling this gap, aiming to enhance
the understanding of the structural behavior of CFS omega‑shaped beams. Specifically,
the focus is on evaluating the global buckling phenomenon as it represents a prominent
failure mode in thin‑walled elements with large spans.

The primary objective of this study is to investigate the behavior of omega‑shaped sec‑
tions, specifically focusing on the global buckling phenomena. The assessment of bending
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moment resistance to global buckling is made using the European [2], Brazilian [6], and
North American [4] standards.

In the context of the European [2] provisions, the evaluation of global moment re‑
sistance relies on the effective elastic section modulus, determined using the method of
effective widths, and a buckling resistance factor. This factor is a function of the normal‑
ized slenderness, which, in turn, depends on the critical elastic lateral–torsional buckling
moment. Notably, the European code lacks an equation to estimate the critical moment for
CFS members. As a common practice, engineers often resort to using the expression from
ENV 1993‑1‑1:1992 [19], recommended for evaluating the critical lateral–torsional moment
of hot‑rolled profiles.

The Brazilian [6] and North American [4] standards adopt the DSM. This method
involves calculating the critical elastic local, distortional, and global buckling moments
through an elastic buckling analysis, typically conducted using CUFSM [20–22]. The char‑
acteristic resistant bendingmoment is then determined as the smallest value calculated for
global, local, and distortional buckling. If the profile does not exhibit local and distortional
bucklingmodes in the analysis, the respective resistance corresponds to global buckling re‑
sistance, which is, again, directly related to the critical lateral–torsional moment.

Therefore, assessing the bendingmoment resistance to global buckling in CFS omega‑
shaped profiles depends on evaluating their critical moments. To achieve this, we con‑
ducted a comprehensive comparative study involving numerical analyses, using different
computational tools, namely ABAQUS [23], GBTUL [24], and CUFSM v5.05 [15], and the
analytical expression proposed in ENV 1993‑1‑1:1992 [19]. The ABAQUS model served as
our reference, validated against results obtained from an experimental campaign. Addi‑
tionally, this campaign enabled us to compare the profiles’ sectional resistance with the
values derived from the European [2], Brazilian [6], and North American [4] standards.

2. Normative Procedures for Assessing Buckling Safety
2.1. EN 1993‑1‑3:2006 (EC3)

TheEuropean standardEN1993‑1‑3:2006 [2] recommends the EffectiveWidthMethod
(EWM) for the assessment of buckling in cold‑formed profiles for global, local, and distor‑
tional modes. This method is often considered highly conceptual and less practical, partic‑
ularly for profiles characterized by numerous bends.

The general procedure for buckling verification according to EC3 [2] involves the fol‑
lowing steps: (1) calculating the critical elastic buckling stress and identifying the suscepti‑
ble buckling modes for various half‑wavelengths up to the real length of the bar; (2) deter‑
mining the effective width of the curved zones of the cross‑section based on the minimum
local buckling stress; (3) calculating the reduced thickness of end stiffeners, intermediate
stiffeners, or other parts of the cross‑section subjected to distortional buckling based on the
minimumdistortional buckling stress; and (4) calculating the global buckling resistance for
the real length of the bar based on the effective cross‑sectional area.

Mb,Rd = χLTWe f f ,y
fy

γM1
(1)

where We f f ,y is the effective elastic section modulus, calculated according to the EWM for
local and distortional buckling, and γM1 is the reduction coefficient for the steel profile
strength, following EN 1993‑1‑1:2009 [25].

The buckling resistance coefficient, χLT , is a function of the normalized slenderness, λFLT :

λFLT =

√
Wy fy

Mcr
(2)

The normalized slenderness, in turn, depends on the value of the critical elastic lateral–
torsional buckling moment. In the context of hot‑rolled profiles with I or H sections, it is
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commonpractice to adopt the equation for calculating the critical lateral–torsionalmoment
presented in the European pre‑standard ENV 1993‑1‑1:1992 [19].

Mcr,LT = C1
π2EIz

L2


[(

k
kw

)
Iw

Iz
+

(kL)2GIt

π2EIz
+

(
C2zg − C3zj

)2
]0.5

−
(
C2zg − C3zj

) (3)

whereC1, C2, andC3 are factors depending on the loading and boundary conditions and Iz,
Iw, and It, are, respectively, the moment of inertia about the z‑z axis, the warping inertia of
the section, and the torsional inertia. The coefficients k and kw are associatedwith rotational
restraints at supports, while zg is the distance from the point of load application to the
shear center, and zj is the factor representing profile asymmetry. In Equation (3), boundary
conditions are altered by varying the value of the coefficient k. To account for section
warping, kw is considered to be 1.0, and if the rotation is desired to be fixed, kw is adopted
as 0.5.

2.2. ABNT NBR 14762:2010
Annex C of ABNT NBR 14762:2010 [6] introduced a method for the design of cold‑

formed steel profiles subjected to simple bending, known as the Direct Strength Method
(DSM). Thismethod serves as an alternative to the EffectiveWidthMethod (EWM), and the
prescriptions included in Annex C of this standard can be applied to calculate the resistant
bending moment of the profile (M Rd).

The critical elastic local bucklingmoment (Ml), distortional bucklingmoment (Mdist),
and global buckling moment (M e) should be calculated through an elastic buckling anal‑
ysis, typically performed using computational tools, such as CUFSM [20], ABAQUS [23],
and GBTUL [24]. If the profile does not exhibit one of the three buckling modes in the
analysis, there is no need to consider the corresponding resistance.

The characteristic resistant bending moment (MRk) is taken as the smallest value cal‑
culated for global, local, and distortional buckling (MRe, MRl , MRdist), respectively. The
calculated resistant bending moment (M Rd) is given by MRk

γ , where γ is a partial safety
factor that equals to 1.10. The equations for determining the value of the resistant bending
moment to buckling are presented below.

2.2.1. Global Buckling

MRe = W fy ( f or λ0 ≤ 0.6) (4)

MRe = 1.1(1 − 0.278λ2
0)W fy ( f or 0.6 < λ0 ≤ 1.336) (5)

MRe =
W fy

λ2
0

( f or λ0 ≥ 1.336) (6)

with

λ0 =

√
W · fy

Me
(7)

where MRe is the resistant bending moment to global buckling, λ0 is the reduced slender‑
ness ratio related to the global buckling mode,W is the elastic section modulus about the
bending axis, fy is the yield strength of the steel, and Me is the critical elastic bending
moment for global buckling.

To determine the design resistance moment for global buckling, it is necessary to con‑
sider the distribution of bending moments along the laterally restrained segment. To this
end, one should multiply the resistant bending moment to global buckling (MRe) by the
modification factor for non‑uniform bending moment diagram (Cb), given by:

Cb =
12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC
Rm ≤ 3.0 (8)
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where Mmax is the value of the maximum bending moment acting on the unbraced length;
MA is the value of the bending moment acting at a quarter of the unbraced length, mea‑
sured from the left end; MB is the absolute value of the bending moment acting at the cen‑
tral section of the unbraced length; MC is the absolute value of the bending moment acting
at three‑quarters of the unbraced length, measured from the left end; and Rm is a parameter
that takes into account the asymmetry of the cross‑sectional shape, equal to 0.5+ 2

(
Iyc/Iy

)
for sections with one symmetry axis, subject to bending about a non‑symmetry axis and ex‑
periencing reverse curvature, and is equal to 1.0 in all other cases, where Iyc is the moment
of inertia of the compressed flange about the symmetry axis.

To obtain the exact value of Me, since the numerical analysis of elastic stability pro‑
vides an approximate result, it is recommended to use the following equation for cold‑
formed profiles with monosymmetric sections, derived for loading applied at the position
of the torsion center and subject to bending about an axis perpendicular to the symmetry
axis (Annex E—ABNT NBR 14762:2010 [6]):

Me =
CsNex

Cm

[
j + Cs

√
j2 + r2

0

(
Nez

Nex

)]
(9)

where Cs = +1 if the bending moment causes compression in the section part with a
negative x‑coordinate, i.e., on the same side as the torsion center; Cs = −1 if the moment
causes tension in the section part with a negative x‑coordinate, i.e., on the same side as
the torsion center; Cm is the parameter depending on loading conditions; r0 is the polar
radius of gyration of the gross section about the torsion center; and j pertains to the factor
representing the mono‑symmetry of the profile. Nex, Ney, and Nez correspond to the axial
forces of elastic global buckling due to bending about the x‑x major axis, y‑y minor axis,
and z‑z torsional axis, respectively:

Nex =
πEIx

(KxLx)
2 Ney =

πEIy(
KyLy

)2 Nez =
1
r2

0

[
π2ECw

(KzLz)
2 + GJ

]
(10)

In these expressions above, Cw is the warping constant of the section; E is the longi‑
tudinal modulus of elasticity; G is the transverse modulus of elasticity; J is the torsional
constant of the section; Ix is the moment of inertia about the x‑x major axis; Iy is the mo‑
ment of inertia about the y‑y minor axis; KxLx is the effective length of global buckling due
to bending about the x‑x major axis; KyLy is the effective length of global buckling due to
bending about the y‑y minor axis; and KzLz is the effective length of global buckling due
to torsion about the z‑z torsional axis.

2.2.2. Local Buckling

MRl = MRe ( f or λl ≤ 0.776 ) (11)

MRl =

(
1 − 0.15

λl
0.8

)
MRe

λl
0.8 ( f or λl > 0.776) (12)

with

λl =

√
W · fy

Ml
(13)

where MRl is the resistant bendingmoment to local buckling; λl is the reduced slenderness
ratio related to the local buckling mode; and Ml is the critical elastic bending moment for
local buckling.

2.2.3. Distortional Buckling

MRdist = W fy ( f or λdist ≤ 0.673) (14)
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MRl =

(
1 − 0.22

λdist

)
W fy

λdist
( f or λdist > 0.673) (15)

with

λdist =

√
W · fy

Mdist
(16)

where MRdist is the resistant bending moment to distortional buckling; λdist is the reduced
slenderness ratio related to the distortional buckling mode; and Mdist is the bending mo‑
ment for distortional buckling in the elastic regime.

2.3. AISI S200:2016
Similar to the Brazilian standard ABNTNBR 14762:2010 [6], Annex F of the American

specification AISI S200:2016 [4] employs the Direct Strength Method (DSM) to assess the
safety of cold‑formed steel profiles under simple bending. The formulation presented in [4]
closely resembles that in [6], except for the treatment of the inelastic reserve of strength. In
the American specification, this reserve is linked to global, local, and distortional buckling.
In contrast, both the European and Brazilian specifications associate the inelastic reserve
solely with the local buckling mode.

3. Experimental Campaign
One of the main objectives of the experimental campaign was to produce data to vali‑

date theABAQUSfinite elementmodel. Two types of testswere conducted on a set of three
omega‑shaped section profiles: (i) tests involving the application of load in the downward
direction, allowing for the estimation of positive sectional moment values, and (ii) tests
involving the application of load in the downward direction on inverted profiles, aimed at
evaluating negative sectional moment values. For each test, the key results to be retained
include the load and displacement observed and failure modes.

3.1. Geometric and Material Properties
The profiles under investigation belong to a family of commercial profiles with an

omega section, comprising six different heights, eachwith three or four distinct thicknesses.
The selection aimed to include the smallest profile (depth of 70mm), the largest one (depth
of 300 mm), and an intermediate one (depth of 170 mm). In terms of thickness, a consis‑
tent logic was applied: the smallest thickness (1.5 mm) for the 70‑mm profile, the largest
thickness (2.5 mm) for the 300‑mm profile, and an intermediate thickness (2.0 mm) for the
170‑mm profile.

Table 1 provides the geometric characteristics of the selected profiles, while Table 2
presents the material properties evaluated based on tensile coupon tests.

Table 1. Geometric properties of the selected profiles.

Profile
Section

Weight Height, h Width, b Length, L Thickness

Effective, teff Nominal, tnom
(kg/m) (mm) (mm) (m) (mm) (mm)

70 × 1.5 2.90 70 138 4.20 1.5 1.46
170 × 2.0 7.75 170 234 4.20 2.0 1.96
300 × 2.5 14.47 300 269 8.30 2.5 2.46

Table 2. Material properties.

Profile Section Yielding Stress, f y
(MPa)

Ultimate Stress, fu
(MPa)

Maximum Strain, ε
(%)

70 × 1.5 340 455 27.5
170 × 2.0 330 453 31.6
300 × 2.5 374 476 29.0
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The modulus of elasticity considered was 210 GPa, and the material density was
7850 kg/m3.

3.2. Test Setup
The experimental tests followed the requirements outlined in Annex A.3 of EN 1993‑

1‑3:2006 [2]. Consequently, the omega profiles 70 × 1.5 and 170 × 2.0 underwent testing
using Layout 1, whilst the omega profiles 300 × 2.5 were subjected to testing according to
Layout 2.

Layout 1 has a free span of 4.0 m, and the beam is simply supported at both ends. The
profile is loaded at four points, as illustrated in Figure 1. The load transfer from the actuator
is carried out through an IPE 100 beam supported by two metal plates with dimensions of
46 cm × 10 cm × 2 cm each. Each of these plates discharges onto two metal plates with
dimensions of 15 cm × 10 cm × 1 cm, placed on neoprene bands, through rollers. LVDTs
(extensometers) were positioned at mid‑span and at the ends of the constant moment span,
which has a length of 800 mm (corresponding to 20% of the total span between supports),
as indicated in Figure 1a.
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upward load application with continuous lateral and punctual bracings, and (d) detail of the load
scheme, depicting the actuator, loading beam and plates, and neoprene bands located between the
load plates and the profile.
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Layout 2 has a free span of 8.0 m, and the beam is also simply supported at both ends.
Loading is applied at six points. The load transfer from the actuator is facilitated through
an IPE 250 profile, supporting two metal plates with dimensions of 60 cm × 10 cm × 2 cm
each. Each plate discharges onto three plates with dimensions of 15 cm × 10 cm × 1 cm,
positioned on neoprene bands, through rollers. LVDTs (extensometers) were positioned
at mid‑span and at the ends of the constant moment span, which has a length of 2200 mm
(corresponding to 27.5% of the total span between supports), as indicated in Figure 2a. All
the tests were carried out by displacement control at a constant speed of 0.04 mm/s.
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Figure 2. Test setup with an 8‑m simply supported span: (a) schematic representation of Layout 2,
(b) photograph of the test layout, and (c) detail of the loading scheme.

The profiles underwent testing in both downward and upward directions. To sim‑
ulate upward loading, it was necessary to apply an ascending load on the continuous el‑
ement, corresponding to loading the profiles in an inverted position. Lateral bracing, as
shown in Figure 1c,d, was essential in the inverted position to prevent profile instability. In
Figure 1c, continuous and punctual bracing can be observed. Punctual bracing was imple‑
mented in four and five locations for the 170 × 2.0 and 70 × 1.5 profiles, respectively. For
the medium profile, punctual bracing was applied at the supports and immediately after
the occurrence of the maximummoment as it was not possible to restrain at the location of
the maximum span moment where the loading plates are located. The smaller profile had
the same punctual bracing as the medium profile, with an additional brace at mid‑span.
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Due to the geometrical characteristics of Layout 2 (see Figure 2b,c), it was not fea‑
sible to continuously brace the profile in an inverted position to simulate loading in an
upward direction. Consequently, tests involving only downward loads were conducted
with this layout.

3.3. Experimental Results
Figures 3 and 4 illustrate the load–displacement curves recorded during the tests per‑

formed using Layout 1, applying both downward and upward loads, to profiles 70 × 1.5
and 170 × 2.0, respectively.
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Figure 5 illustrates the load–displacement curves recorded during the tests conducted
on the 300 × 2.5 profile under a downward load.
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The observations from Figures 3 and 4 indicate that, generally, the two experimental
tests show consistent results in terms of observed loads and displacements when applying
downward loads. However, when simulating upward loading, the results do not closely
match due to the instability of the profiles when placed in the inverted position, neces‑
sitating continuous bracing. The drops in load observed in Figure 3b resulted from the
70 × 1.5 profile adjusting itself to the bracing system during loading. This phenomenon
was not observed in the 170 × 2.0 profile (Figure 4b), likely because of its larger section
and more effective bracing.

For the 300× 2.5 profile, only downward loadswere applied. The difference observed
between the two test results is because, in Test 2, the profile was locally braced at the zero‑
moment span, resulting in a small increase in load compared to Test 1.

The next set of figures illustrates the failure modes observed during the experimental
tests. Figures 6 and 7 depict the failuremodes observed for both load application scenarios,
for the 70 × 1.5 and 170 × 2.0 profiles. Meanwhile, Figure 8 illustrates the failure mode
observed for the 300 × 2.5 profile under the application of a downward load.
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3.4. Comparison with Design Codes
The failure modes observed during the tests conducted on the 70 × 1.5, 170 × 2.0,

and 300× 2.5 profiles under downward loads are local failures, occurring near or in zones
where the loads are applied, as illustrated in Figures 6a, 7a and 8. However, when up‑
ward loads are applied, the 70 × 1.5 and 170 × 2.0 profiles primarily exhibit distortional
failure modes.

The maximum loads obtained during the experimental tests are compared to the an‑
ticipated loads when applying both the Effective Width Method (EWM) and the Direct
Strength Method (DSM), as indicated, respectively, by the European [2], Brazilian [6] and
North American [4] standards.

The Effective Width Method (EWM) involves calculating the effective properties of
the cross‑section, considering the reduction of resistance due to local and distortional buck‑
lingmodes. The global resistantmoment is computed using effective properties influenced
by a buckling resistance factor, which, in turn, depends on the critical lateral– torsional
moment value. On the other hand, the application of the Direct Strength Method (DSM)
involves calculating the critical elastic local, distortional, and global buckling moments
through an elastic buckling analysis, conducted using CUFSM. The characteristic resistant
bending moment is determined as the smallest value calculated for global, local, and dis‑
tortional buckling.

In the case of downward load application, the observed failure modes are mainly lo‑
cal, occurring near or in zones where the loads are applied. Therefore, for the purpose
of sectional resistance evaluation and prediction of the maximum loads, the global buck‑
ling phenomena can be ignored. The comparison of the maximum recorded loads and
expected loads, as illustrated in Table 3, confirms that both the EWM and DSM provide
consistent results since the analytical expected loads closely align with the recorded exper‑
imental loads.

Table 3. Maximum recorded loads and expected loads according to different design codes.

Profile Section Recorded Loads
(kN)

Expected Loads
Using EWM [2]

(kN)

Expected Loads
Using DSM [4,6]

(kN)

70 × 1.5—Test 1 3.20
3.12 3.3670 × 1.5—Test 2 3.21

170 × 2.0—Test 1 18.13
17.15 17.75170 × 2.0—Test 2 17.68

300 × 2.5—Test 1 26.83
28.90 32.22300 × 2.5—Test 2 27.51

Additionally, it was observed that the expected load values calculated with the EWM
for the profiles 70 × 1.5 and 170 × 2.0 are slightly lower than the recorded load values, in‑
dicating that the European standard provides conservative estimates of bending resistance.
DSM yields slightly higher expected loads compared to the EWM, although the maximum
observed difference between these methods is 10%, and this pertains to the 300× 2.5 profiles.

4. Numerical Models
4.1. Developed Models

Three numerical models were developed to evaluate the critical elastic moment for
lateral–torsional buckling of the omega‑shaped sections tested during the experimental
campaign. The selected programs for conducting the analyses were ABAQUS, a software
employing the Finite Element Method, GBTUL, which implements the Generalized Beam
Theory for analyzing buckling phenomena in bending, torsion, and overall buckling, and
CUFSM (Constrained and Unconstrained Finite Strip Method), a software for evaluating
buckling modes based on the Finite Strip Method (FSM). The validation of the ABAQUS
model was conducted using the results obtained from the experimental campaign because,
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being a finite element software, it is considered to be the most accurate representation of
the real behavior of the tested profiles.

4.2. Development and Validation of the ABAQUS Model
The omega‑shape profiles were simulated using a shell model, using the SR8 reduced

integration finite element type available in ABAQUS, representing the mid‑surface of the
profile’s geometry. The length of the profile was generated by applying the extrusion com‑
mand. The holes that exist along the profiles, whether circular or oval‑shaped, were also
included in themodel. In thematerial characterization, yield, and ultimate stresses, aswell
as the ultimate strain of thematerial, were considered. The simulation of thematerial’s non‑
linear behavior used stress–strain curves defined by the Ramberg‑Osgood model [26]. All
the other components that were used in the model were simulated with solid parts made
to replicate the laboratory setup (Figure 9). The material for these parts was assumed to be
linear elastic. The modeling of the loading and boundary conditions for the two layouts
used in the experimental campaign is detailed in [27].
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Figure 9. Parts used in the models: (a) profile section 300 × 2.5, (b) contact plate with the profile,
and (c) support cylinder.

The contact between the neoprene bands that were placed between the omega profiles
and the other test setup partswasmodeled usingGeneral Contactwith a friction coefficient
of 0.35, representing the friction between steel and rubber. Initially, the friction coefficient
specified in the American standard ANSI AISC 360‑22 [28], set at 0.30, was used, which
represents the friction coefficient for steel surfaces free of oil, grease, or painting. Subse‑
quently, the value established in the Brazilian standard ABNT NBR 8800:2008 [29] for the
same steel surfaces, set at 0.35, was adopted. The use of this latter value resulted in greater
consistency between the numerical results and those obtained experimentally.

The loadingwas applied to accurately replicate the experimental tests. To simulate the
hydraulic actuator used in the experiments, the load was applied at a single point. Subse‑
quently, it was evenly distributed onto the four loading plates using a coupling‑structural‑
uniform restriction (see Figure 10). The contact plateswere steel plateswith the dimensions
of 15 cm × 10 cm × 1 cm, as described in Section 3.2 (Test setup).
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The boundary conditions vary depending on the profile size. For larger sections, it is
necessary tomodel the cylinders to account for local deformation occurring at the supports.
The cylinders modeled to simulate the supports are steel elements with a 2 cm radius and
30 cm length. In the case of smaller profiles, restraints are applied at four points, corre‑
sponding to the contacts with the supports, where vertical displacements (UY) and lateral
displacements (UX) are fixed (Figure 11a). In contrast, the larger profiles interactwith cylin‑
ders through friction, and the cylinders are fixed against all displacements (UX, UY, UZ),
as illustrated in Figure 11b. Additionally, in some tests, lateral displacements needed to



Appl. Sci. 2024, 14, 3857 13 of 21

be restrained to address instability during upward loading. In such cases, lateral displace‑
ments (UX)were fixed at the same locations on the profiles as in the experimental tests. For
the 70 × 1.5 profile, these locations are at the supports, immediately after the occurrence
of the maximum moment (see Figure 3c), where punctual bracing was applied, and at the
mid‑span. In the case of the 170 × 2.0 profile, the locations are the same as for the smaller
profile, except for the mid‑span.
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Figure 11. Boundary conditions: (a) small profiles such as 70 × 1.5 and 170 × 2.0 and (b) larger
profiles such as 300 × 2.5.

Another noteworthy aspect is the meshing process. Given the hole pattern and bends
present in the profile, a refined mesh is necessary. A mesh size of 5 × 5 mm2 was chosen
to ensure reasonable consistency throughout the generated mesh.

The experimental results were collected from various points of the profile. The loading
datawere obtained from thepoint of load application,while thedisplacementsweremeasured
at the points where the LVDTs (Linear Variable Differential Transformers) were located.

The validation of the models for the three analyzed profiles involved a comparison of
the load and displacement values recorded during the tests with those obtained through
numerical simulation. Additionally, the observed failure modes were compared to those
obtained through numerical simulation. Figure 12 presents a comparison of the load and
displacement values obtained experimentally and analytically for the 170 × 2.0 profile.
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profile: (a) downward loading and (b) upward loading.

The analysis of Figure 12 yielded the following observations: in Figure 12a, the vari‑
ation obtained for the force applied by the actuator was −4.07%, while the displacement
was merely −1.45%, thus validating this model. Further validation is evidenced by the
variation in Figure 12b, where the applied force exhibited a −3.4% change, while the dis‑
placement showed a −5.7% variation.

Figures 13 and 14 provide a comparison between the observed failure modes and
those obtained from numerical simulation under downward and upward loading, respec‑
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tively. The numerical model demonstrates a high level of accuracy in capturing the exper‑
imental results.
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Due to their capability to achieve larger clear spans, omega‑shaped profiles are com‑
monly utilized in industrial structures, often with cladding sheets attached. These sheets
stabilize the profiles by being fixed to them. However, this beneficial effect was not con‑
sidered both in the experimental campaign and in the numerical analysis.

4.3. GBTUL Model
The modeling process in GBTUL is straightforward due to its simple and clear inter‑

face. It involves the following steps:
Step 1: Definition of the geometry of the structure, including dimensions, shape, and ma‑
terial properties such as Young’s modulus (210 GPa) and Poisson’s ratio (0.3). All units
are typically specified in the International System of Units (SI), with forces in kilonewtons
(kN) and lengths in meters. Figure 15 shows the geometry input for the 170 × 2.0 profile.
Step 2: Validation of the buckling modes: before proceeding with the analysis, it is es‑
sential to validate the buckling modes of the structure. This involves confirming that all
essential modes are present and that they make sense for the given case. For the three pro‑
files under examination, all the buckling modes were considered in the analysis; however,
the essential modes are the first five modes, which are the (1) axial mode; (2) major axis
bendingmode; (3) minor axis bendingmode; (4) torsional mode; and (5) distortional mode.
Step 3: Application of loads and boundary conditions: within this step the software makes
use of computational methods to analyze the structure under various loads and boundary
conditions. To do so it is necessary to define the following parameters:
(1) The number of partitions/elements (mesh). The evaluation of the appropriate mesh

density is crucial to accurately capture the behavior of the structure. This involves
dividing the structure into smaller elements for numerical analysis. The mesh con‑
sidered for the 170 × 2.0 profile with a length of 4.0 m was 20.
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(2) Support conditions: all the tested profiles were simply supported on both sides.
(3) Define unit loads: the loads applied to the structure are point loads at the locations

indicated in Layout 1 (see Figure 16) for the case of the 70× 1.5 and 170× 2.0 profiles
and in Layout 2 for the case of the 300 × 2.5 profiles.

(4) Lengths to evaluate: the length of interest to simulate the experimental tests is 4.0m.
(5) Number of eigenmodes to be calculated: the number of eigenmodes (bucklingmodes)

depends on the complexity of the structure and the desired level of accuracy. For the
170× 2.0 profiles, the number of eigenmodes calculated was 180.

(6) Observation of results: after performing the numerical analysis, observe the re‑
sults to gain insights into the behavior of the structure under the applied loads and
boundary conditions. The results obtained for the 170 × 2.0 profiles are shown in
Figure 17.
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The analysis of Figure 17 allows us to conclude that the buckling load is 1.18 kN,which
corresponds to a critical elastic buckling moment of 3.77 kN.m, with a major contribution
of the torsional mode (98%).

4.4. CUFSMModel
The CFS omega‑shaped profiles were also numerically simulated using the software

CUFSM v5.05 to determine the critical elastic buckling moments and possible omega sec‑
tion buckling modes. All the sections (70 × 1.5, 170 × 2.0, and 300 × 2.5) were analyzed
for both upward and downward loading cases, but only the simulations performed in the
170 × 2.0 section are described.

In Figure 18, the geometric model of this section is presented, showing the stresses ap‑
plied at the profile’s critical section (in kN.m) for downward and upward loading, respec‑
tively. These stresses were applied assuming that the profile’s upper flange reached the
yield stress of the steel (f y = 330.0 MPa). The lines in blue represent compressive stresses,
while the lines in red represent tensile stresses along the omega section.
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Figure 18. Critical section for the 170× 2.0 profile under (a) downward loading and (b) upward loading.

To perform elastic buckling analysis in CUFSM, several assumptions were made: the
signature curve method was chosen as the solution approach, and the beam support con‑
figurations were defined as simple–simple (S–S) to replicate the experimental setup’s con‑
dition of a simply supported beam. Additionally, the analysis covered half‑wavelengths
ranging from 1.0 mm to 10,000 mm.

Figure 19 illustrates the signature curve of the 170 × 2.0 profile for upward loading.
It is noteworthy that the curve’s minimum points correspond to critical buckling modes.
Moreover, the critical global buckling mode can be directly identified on the curve when
the half‑wavelength equals the beam’s unbraced length, provided it is identified as the
global mode through modal identification analysis. In Figure 19, the critical modes identi‑
fied for the curveminima and the half‑wavelength equal to the unbraced length (4000 mm)
are highlighted, along with the corresponding critical elastic buckling moment, which is
1.46 kN.m.

It is important to note that CUFSMonly allows the consideration of a uniform bending
moment along the length of the profile. For other types of loading, such as non‑uniform
bending moment diagrams, a modification factor needs to be calculated [6], as outlined
in Section 2.2. Consequently, the critical elastic buckling moments obtained with GBTUL
and CUFSM do not align due to this limitation.
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Figure 19. CUFSM analysis results for the CFS 170 × 2.0 omega section under upward loading.

5. Global Buckling Bending Moment Resistance
In this section, the bending moment resistance to the global buckling of the selected

Cold‑Formed Steel (CFS) profiles is assessed according to the European [2], Brazilian [6],
andNorthAmerican [4] standards. Only negativemoment scenarios have been considered.
First, the critical elastic lateral–torsional bucklingmoment using Equation (3), provided by
ENV 1993‑1‑1:1992 [14], is calculated, and then, through the numerical models developed
in ABAQUS, GBTUL, and CUFSM. As mentioned earlier in this paper, Equation (3) is rec‑
ommended for evaluating the critical lateral–torsional moment of hot‑rolled profiles. Due
to the absence of an analytical expression for CFS profiles in the European code, practition‑
ers often resort to using this expression.

Regarding the numerical models, ABAQUS [16] is considered the reference model
since it was validated with the results of the experimental campaign. It should also be
noted that the critical moment obtained through the CUFSM [15] program was used to de‑
termine the resistance moment to global buckling by the Direct Strength Method (DSM),
considering the modification factor Cb from Equation (8). Tables 4–6 show the results as‑
sociated with load cases ψ = 1.0, ψ = 0.5, and ψ = 0.0, as illustrated in Figure 20. The modi‑
fication factor Cb was utilized in correlation with the ψ in these cases. For each profile, the
results for two span lengths were analyzed.



Appl. Sci. 2024, 14, 3857 18 of 21

Table 4. Results of the uplift critical moments for the 70 × 1.5 profile.

Loading
Cases

Profile 70 × 1.5 (L = 1.0 m) Profile 70 × 1.5 (L = 4.0 m)

Mcr
(Equation (3))

Mcr
(GBTUL)

Me
(CUFSM)

Mcr
(ABAQUS)

Mcr
(Equation (3))

Mcr
(GBTUL)

Me
(CUFSM)

Mcr
(ABAQUS)

kN.m kN.m kN.m kN.m kN.m kN.m kN.m kN.m

Ψ = 1.0 91.77 1.71 1.77 1.69 5.74 0.25 0.26 0.24
Ψ = 0.5 120.21 2.26 2.22 2.20 7.80 0.33 0.33 0.32
Ψ = 0.0 162.43 3.19 2.95 3.10 10.15 0.44 0.43 0.43

Note: L is the theoretical span of the beam.

Table 5. Results of the uplift critical moments for the 170 × 2.0 profile.

Loading
Cases

Profile 170 × 2.0 (L = 3.0 m) Profile 170 × 2.0 (L = 6.0 m)

Mcr
(Equation (3))

Mcr
(GBTUL)

Me
(CUFSM)

Mcr
(ABAQUS)

Mcr
(Equation (3))

Mcr
(GBTUL)

Me
(CUFSM)

Mcr
(ABAQUS)

kN.m kN.m kN.m kN.m kN.m kN.m kN.m kN.m

Ψ = 1.0 222.23 2.41 2.25 2.41 55.56 0.86 0.81 0.86
Ψ = 0.5 291.13 3.18 2.81 3.19 73.21 1.13 1.01 1.13
Ψ = 0.0 393.35 4.47 3.75 4.49 98.34 1.56 1.35 1.57

Table 6. Results of the uplift critical moments for the 300 × 2.5 profile.

Loading
Cases

Profile 300 × 2.5 (L = 4.0 m) Profile 300 × 2.5 (L = 9.0 m)

Mcr
(Equation (3))

Mcr
(GBTUL)

Me
(CUFSM)

Mcr
(ABAQUS)

Mcr
(Equation (3))

Mcr
(GBTUL)

Me
(CUFSM)

Mcr
(ABAQUS)

kN.m kN.m kN.m kN.m kN.m kN.m kN.m kN.m

Ψ = 1.0 576.30 4.56 4.44 3.51 113.84 1.41 1.37 0.97
Ψ = 0.5 754.95 6.01 5.55 4.65 149.85 1.86 1.72 1.28
Ψ = 0.0 1020.05 8.40 7.40 6.54 201.49 2.55 2.29 1.78
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The analysis of Tables 4–6 led to the following observations:
• The critical moment values obtainedwith Equation (3) are significantly overestimated

when compared to those derived from numerical analyses using GBTUL, ABAQUS,
and CUFSM. This overestimation is more pronounced for smaller spans.

• When comparing the results obtained with GBTUL, ABAQUS, and CUFSM, a good
correlation between the three numerical approaches is observed, with ABAQUS gen‑
erally providing lower values of critical moments. An exception is noted for the
intermediate profile (170 × 2.0), where CUFSM leads to slightly lower values than
ABAQUS and GBTUL. Nevertheless, for this profile, the values of ABAQUS and GB‑
TUL are practically coincidental.
Tables 7 and 8 present the bending moment resistance to global buckling obtained for

the 70 × 1.5 and 170 × 2.0 profiles, computed according to the European [2], Brazilian [6],
and North American [4] standards. The values are based on the critical moments obtained
for the higher span lengths (L = 4.0m and L = 6.0m). It is noteworthy that the results for the
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300× 2.5 profiles are not presented due to the normalized slenderness values significantly
exceeding the limits set by the standards.

Table 7. Resistant bending moment to global buckling for the 70 × 1.5 profile.

Profile 70 × 1.5 (L = 4.0 m)

Mb,Rd [2] (kN.m) MRd [4,6] (kN.m)

(Equation (3)) (GBTUL) (CUFSM) (ABAQUS) (GBTUL) (CUFSM) (ABAQUS)

Ψ = 1.0 2.01 0.22 0.23 0.22 0.23 0.26 0.22
Ψ = 0.5 2.13 0.29 0.29 0.28 0.30 0.29 0.29
Ψ = 0.0 2.21 0.38 0.37 0.37 0.40 0.39 0.39

Table 8. Resistant bending moment to global buckling for the 170 × 2.0 profile.

Profile 170 × 2.0 (L = 6.0 m)

Mb,Rd [2] (kN.m) MRd [4,6] (kN.m)

(Equation (3)) (GBTUL) (CUFSM) (ABAQUS) (GBTUL) (CUFSM) (ABAQUS)

Ψ = 1.0 12.13 0.78 0.74 0.78 0.78 0.74 0.78
Ψ = 0.5 12.51 1.01 0.91 1.01 1.03 0.92 1.03
Ψ = 0.0 12.84 1.38 1.20 1.38 1.42 1.23 1.43

The analysis of the tables highlights the dependency of the bending moment resis‑
tance on the critical moment value. The variations observed in the critical moment values
using different approaches are also reflected in the values of the bending moment resis‑
tance to global buckling, regardless of the adopted standard. Nevertheless, the differences
are not as pronounced as those observed for the critical moment results. For example, in
the case of the 170× 2.0 profilewith a 6.0‑m span, the critical moment values obtainedwith
Equation (3) are 62 times higher than the critical moment values obtained with ABAQUS.
However, for the same profile with the same span, the bending moment resistance, calcu‑
lated through Eurocode 3, using Equation (3), is only nine times higher than the bending
moment resistance obtained using ABAQUS.

Regarding the comparison between standards, no relevant differences were found,
particularly when the GBTUL, CUFSM, and ABAQUS software were used.

6. Conclusions
The objective of this study was to assess the bending moment resistance to the global

buckling of Cold‑Formed Steel (CFS) omega‑shaped profiles. Current design codes empha‑
size the importance of the elastic critical lateral–torsional buckling moment in evaluating the
resistance to global buckling, ensuring the safety of steel members. To investigate this param‑
eter’s impact, we conducted a comparative analysis involving numerical simulations with
various computational tools, namely ABAQUS, GBTUL, and CUFSM, as well as the analyti‑
cal expression proposed in ENV 1993‑1‑1:1992 [19]. Our study focused on a selection of cold‑
formed omega‑shaped profiles, chosen based on their height and thickness.

When assessing the sectional bending moment resistances, we observed consistency
among the European, Brazilian, and American standards. However, variations emerged
when evaluating the bending moment resistance to global buckling. These discrepancies
were linked to differences in assessing the critical lateral–torsional moment through vari‑
ous approaches, albeit to a lesser extent. Specifically, the bending moment resistance cal‑
culated according to Eurocode 3, using an analytical expression proposed in the past for
hot‑rolled profiles, exhibited a significant overestimation compared to numerical methods.

Therefore, we draw a key conclusion regarding the inadequacy of using the standard
analytical equation for evaluating the critical lateral–torsional buckling of laminated steel
beamswhen predicting the critical moment of CFS omega‑shaped profiles. The agreement
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between GBTUL, CUFSM, and ABAQUS critical moments suggests their reliability for es‑
timating the elastic critical lateral–torsional buckling moment. Certainly, GBTUL stands
out for its simplicity, ease of application, and capability to incorporate various types of
loading, rendering it a favorable option for evaluating this parameter.

It is important to note that this studydid not account for the beneficial effect of cladding
sheets. These sheets are typically positioned beneath metal purlins to provide points of
lateral restraint. Consequently, the bending moment resistance calculated using GBTUL,
CUFSM, and ABAQUS may underestimate, in some cases, the capacity of CFS omega‑
shaped beams. To gain a comprehensive understanding, further experimental studies
should consider more realistic loading and boundary conditions.
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