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Abstract: Complex fluid–solid systems generally exist in process engineering. The cognition of
complex flow systems depends on numerical and experimental methods. The computational fluid
dynamics–discrete phase method simulation based on coarsening technology has potential applica-
tion prospects in industrial-scale equipment. This review outlines the computational fluid dynamics–
discrete phase method and its application in several typical types of process engineering. In the
process research, more attention is paid to the dense condition and multiphase flow. Furthermore,
the CFD-DPM and its extension method for comprehensive hydrodynamics modeling are introduced.
Subsequently, the current challenges and future trends of the computational fluid dynamics–discrete
phase method are proposed.

Keywords: process engineering; computational fluid dynamics; discrete phase model; multiphase flow

1. Introduction

Fluid–solid systems widely exist in the energy, resources, environment, materials,
pharmaceutical, petroleum, chemical and other pillar industries, accompanied by various
movement, transmission, reaction processes and equipment in the process of fluid-phase
and solid-phase transformation. These related devices include pipeline transportation and
erosion, high-pressure sprayer, pulverizer, separator, mixer and reactor. Through the com-
prehensive modeling of these systems, the complex interaction between multiple phases
can be further described to create better material conversion processes and equipment.

At present, the main methods to solve multiphase flow are the Euler–Euler method and
Euler–Lagrange method. The gas phase and solid phase are regarded as an interpenetrating
continuum in the Euler–Euler two-fluid model (TFM), and the conservation of mass,
momentum and energy can be obtained through an appropriate averaging process. The
constitutive relationship of the solid phase usually uses the Kinetic Theory of Granular
Flow (KTGF) to seal the granular flow [1]. However, due to the continuous description
of the dispersed phase, the discrete characteristics of the solid phase are lost in the TFM
method. This limitation can be overcome by discrete methods, such as the discrete element
method (DEM) or discrete particle method [2,3]. In both methods, the solid particles
adopt the soft-sphere method or hard-sphere method. Detailed particle–particle and
particle–wall collisions can be tracked separately according to Newton’s second law. The
disadvantage lies in the high computational requirements of the DEM method, and its
application is limited to small-scale or pilot basic research. In order to further improve the
computational efficiency and maintain the discrete characteristics of the solid phase, some
novel Euler–Lagrange methods have been developed, including the discrete phase model
(DPM) for sparse condition, dense discrete phase model (DDPM) [4] for dense condition
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and multiphase particle in cell method (MP-PIC) [5,6].The common point of these models is
the use of coarsening technology; that is, the calculation of parcels (particles with the same
attributes) is used to reduce the number of particles involved in the calculation, so as to
significantly speed up the simulation speed, which has great potential application prospects
in the industrial-scale application of reactors. In the computational fluid dynamics–discrete
phase method, the trajectory of particles is obtained by the momentum coupling between
gravity, drag force and phase. Considering the influence of particle collision, a dense
discrete phase model is derived from the discrete phase model. DDPM uses KTGF derived
from a Euler grid to explain the characteristics of particle–particle interaction in dense solid
particle flow, which improves the applicability of the discrete phase method.

As a method for simulating and analyzing complex fluid flows involving discrete
phases such as solid particles or bubbles, CFD-DPM helps in process optimization and
design, product quality control, safety and risk assessment, and energy efficiency improve-
ment. The aim of this review is to outline and summarize the application of CFD-DPM
methods in process engineering separately, and to comprehensively evaluate and outline
their application in different processes. Further, the CFD-DPM methods are discussed,
and future directions are proposed to expand the prospects of CFD-DPM methods in
interdisciplinary complex process engineering problems.

2. Method Overview
2.1. Governing Equations
2.1.1. Fluid Phase

In the computational fluid dynamics–discrete phase method, the fluid phase is consid-
ered as a continuous medium, and the volume average Navier–Stokes (VANS) equation
is used to control the fluid phase motion [7,8]. These governing equations are commonly
referred to as continuity and momentum conservation equations:

∂ϵ f

∂t
+∇·

(
ϵ f u f

)
= 0 (1)
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(

ϵ f ρ f u f

)
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+∇·
(
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)
= −∇p + Sp +∇·τ + ϵ f ρ f g (2)

where ϵ f denotes the void fraction, ρ f denotes fluid density, u f denotes the average velocity
of the fluid unit, p denotes pressure shared by two phases, τ denotes the viscous stress
tensor and Sp denotes a source term generated by the interaction between particles and
volumetric fluid.

2.1.2. Particle Phase

Particles are regarded as discrete phases, and the Lagrange method is adopted in
particle motion control. The momentum balance equation is as follows:

dup

dt
= −∇p

ρp
+ FD

(
u f − up

)
+

(
ρp − ρ f

)
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g − ∇·=τs

ρp
+ aother (3)

where up is particle velocity, ρp is particle density,
=
τs is solid stress tensor caused by

particle–particle interaction predicted by KTGF, FD(u f − up) is particle acceleration caused

by resistance, −∇p
ρp

represents the acceleration of particles due to pressure gradient and
aother is the acceleration caused by an external force, including virtual mass force, saffman
force, electrostatic force, etc. The solid stress tensor and resistance coefficient are calculated
in the Euler coordinate system. Because the collision between particles is considered, this
governing equation is also called DDPM. When the volume fraction of solid particles is less
than 10%, the last two terms of Equation (3) can be ignored, and it becomes the discrete
phase model, which is suitable for dilute conditions.
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2.1.3. Coupling

In the coupling calculation, the analysis of fluid and particle governing equations is
included in the program of the discrete phase model. Before solving the equation, the void
fraction is calculated according to the particle position and element geometry of the finite
volume grid, and then the particle momentum equation is solved. The source term caused
by the volume fluid particle interaction is the key to solve the coupling. The source term is
calculated and stored in the user-defined memory to avoid additional loops, because the
user-defined source function is invoked by the solver at the cell level. Then, the governing
equation of the fluid is solved, and the collision dynamics is calculated. After updating the
fluid region, the next time step is entered. On this basis, Wu et al. completed a reasonable
calculation of the discrete phase model in dense conditions by improving the UDF and
proposed a multifaceted numerical strategy to achieve high computational efficiency and
mass conservation [9–11] (Figure 1).
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Figure 1. Flowchart of CFD-DPM coupling technology [9–11].

In terms of coupling mode, when the influence of sufficiently sparse particles on
turbulence can be ignored, the interaction between particles and turbulence is called one-
way coupling. This means that, in this case, the particle dispersion depends on the state
of turbulence, but since the particle concentration is negligible, the momentum transfer
from particle to turbulence has little effect on the flow. When the momentum transfer
of particles is large enough to change the turbulent structure, this interaction is called
two-way coupling. The exchange of mass, momentum and velocity information occurs
between the particle phase and the fluid phase. On the basis of two-way coupling, particle
collision occurs due to the increase in particle load. It is necessary to further consider
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the collision between particles, which is called four-way coupling [12]. In the numerical
method, the one-way coupling is solved via the steady-state method, and the particle
trajectory completely follows the turbulence, which is convenient to calculate. The two-way
coupling is solved in transient mode, and the solvers of CFD and DPM run in parallel,
which can significantly reduce the simulation time. However, particles larger than CFD
cells cannot be processed. Due to ignoring the effect of particles on turbulence, one-way
coupling is sometimes easily distorted. The accuracy of two-way coupling is often higher
than that of one-way coupling [13]. The above two methods can only be used in diluted
conditions. For dense conditions, the simulation technology of four-way coupling is
also realized by parallel computing. Considering the complexity of particle turbulence
and particle–particle interaction, four-way coupling needs a more accurate and efficient
numerical strategy [14,15].

In the continuous method of two phases, the discrete phase model in computational
fluid dynamics is typically used for dilute suspensions or sprays where the volume fraction
of the dispersed phase is relatively low, typically up to about 10–15%. At higher volume
fractions, the continuous phase is still treated as a fluid with its own set of conservation
equations (for mass, momentum and energy), while the dispersed phase is now treated as
a continuous medium rather than as individual particles. The transition from a DPM to a
continuous method for the dispersed phase often involves the use of models such as the
Eulerian–Eulerian approach, where both phases are treated as interpenetrating continua, or
the Eulerian–Lagrangian approach, which combines the continuous treatment of the fluid
phase with a discrete representation of the particle phase using a population balance model
(PBM) or a similar technique.

3. Application
3.1. Transportation

As a technology of transporting solid materials through the flow of fluid in closed
pipes, transportation plays an important role in the solid processing industry. The key to
reducing transportation loss is to explore the law of internal flow in the pipeline and carry
out transportation design, control and optimization. The CFD-DPM/DDPM method has
been applied to evaluate the performance of dilute/dense phase transportation process.

In the transportation of the gas–solid dilute phase, DPM which used to predict particle
motion ignores the collision between particles and regards particles as massless particles,
so it can barely be used for fine particles [16,17] and cannot be used for large particles
(diameter > 5 mm) [18]. When the volume fraction is less than 10% and the particles are
small enough, DPM can calculate the following characteristics of particles in the fluid.
In dense phase transportation, real particles invariably have various sizes and particle
collision. DDPM is capable of considering the polydispersity of particles with the help
of a size distribution model (Rosin–Rammler model). Based on the study of particle
polydispersity in the transportation of drilling cuttings in annular bends [19], it was found
that ignoring the size difference in the system may lead to overestimation of the particle
deposition trend and overall pressure drop, resulting in inaccurate predictions. Wojciech
et al. used Euler–Euler, DEM and DDPM methods to simulate particle transport in a
small-scale circulating fluidized bed (CFB) and compared the results. It showed that
DDPM can be used to measure the change in the particle size distribution (PSD) and the
interaction between particles in dilute and dense areas, and can then be used to predict
particle transport in a fluidized bed. Meanwhile, the chemical interaction between the two
phases should also be considered as a factor [20].

For solid–liquid two-phase flow transportation, DPM is able to simulate millions of
particles suspended in turbulence and effectively consider particle deposition. As shown
in Figure 2, Nawei et al. studied the transport of passive pollutants injected from time
periodic sources in free surface channel flow by combining with the fluid volume model
(VOF) method [21]. It is considered that the CFD-DPM method can capture the physical
characteristics of sediment movement [21]. However, in a complex turbulent environment,
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the discrete phase method is merely effective in fine particles with the following superior
characteristics, while the motion of large particles still displays strong randomness [22].
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Due to the convenient calculation method of the computational fluid dynamics–
discrete phase method, it has enormous potential in the application of long-distance large-
scale transportation processes. However, the study of particle fretting mechanics in the
process is a short board of the discrete phase method. Multi-dimensional modeling and
experimental validation could enhance the accuracy and applicability of the model. What’s
more, the transportation calculation of non-spherical particles is also a limitation due to
the existence of a large number of irregular particles in modern industrial transportation.
Therefore, the computational fluid dynamics–discrete phase method is more suitable for
macro transportation to explore the overall law of multiphase flow.

3.2. Erosion

In the process of pipeline transportation, the solid particles contained in the fluid will
wear down the pipeline due to repeated collision. Therefore, erosion prediction and process
protection are particularly significant. The simulation of the erosion process based on
CFD-DPM is a low-cost and effective method [23]. The modeling process mainly includes
three steps: flow modeling, particle tracking and associating particle impact information
with erosion damage. The existing erosion models mostly rely on theoretical or empirical
methods and mainly consider the role of solid particles [24].

In two-phase flow erosion, scholars mainly focus on the effects of fluid parameters,
particle characteristics, pipeline structure and operation on erosion. In a great quantity
of studies (numerical simulation or experiment) in the past few decades, the accurate
influence of almost all effective parameters (such as material, particle velocity, incident
angle, fluid phase viscosity, density, etc.) on pipeline mass loss is now very clear [25–29].
However, particle–fluid, particle–particle and particle–wall interactions are not included in
the influencing factors of erosion. In the numerical study of partial erosion and wear of 90◦

elbow by CFD-DPM, it was found that in addition to the drag force between particles and
fluid, the saffman force is also an important force affecting particle motion. Furthermore,
in the curved part, the secondary collision between the particles and wall in circular and
square pipes led to the difference in the wear phenomenon between particles with different
particle sizes [30]. Due to the multiple repetitiveness of interparticle forces, the DDPM
used may not fully capture the intricacies of particle–particle interactions, particularly
at higher solid concentrations. Pouraria et al. compared DPM (one-way coupling) and
DDPM (four-way coupling) on simulating the effect of particle load on erosion. According
to the erosion rate under a high particle load, DDPM can calculate the critical particle
load compared with DPM (Figure 3), which is in better agreement with the experimental
data [31]. The reasonable optimization of the pipeline structure plays a positive role
in reducing erosion. Due to a great deal of parameters in the pipeline structure, Wang
et al. constructed the objective function with the throttle valve bonnet length, the bonnet
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external radius and the chamber inner radius as variables and the mass loss as a dependent
variable. Combined with the response surface method and genetic algorithm, the valve
body structure was optimized. The average erosion mass loss was 30.2% lower than the
original cavity size [32]. In addition to the direct optimization of the structure, adding ribs at
the elbow to reduce the one-time collision of particles can also effectively reduce the overall
erosion of the pipeline, but the ribs themselves are also eroded [33]. It is certain that the
application of CFD-DPM/DDPM in two-phase flow erosion prediction and protection has
matured. The optimization design based on CFD erosion simulation may not fully account
for the dynamic changes in operations, potentially limiting the practical applicability of
the findings.
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Compared with the erosion of two-phase flow, the erosion modeling of multiphase
flow is more complex because more phases are involved in the erosion process. Zhu et al.
studied and compared the effects of gas–solid two-phase flow and gas–solid–liquid three-
phase flow on erosion and displacement by using the combined model of fluid–structure
interaction (FSI), CFD and DPM [34]. By setting up a control group, it was found that
a change in the discrete phase content has little impact on pipeline displacement, but
the concentration has a notable effect on erosion. Droplets of the same size have less
momentum, resulting in droplets that have less effect on erosion than sand. The numerical
analysis of mitigating elbow erosion with a rib may not capture the long-term effects of
erosion and the performance of mitigation strategies over time. In addition, the complexity
of multiphase flow erosion is that the change in the content of different phases can lead to
changes in bulk properties. Zhu et al. studied the particle erosion caused by gas–liquid–
solid three-phase flow in the process of flushing an oil tank with nitrogen [35]. In the
process of oil loss, the gas–liquid–solid three-phase flow gradually changes into gas–solid
two-phase flow, and the gas–solid erosion is more serious than the three-phase flow due to
the high gas velocity. Not only solid particles but also fluids have an effect on the pipeline
losses. Therefore, the erosion theory and prediction of more common multiphase flow need
to be further developed.

CFD-DPM has become a pivotal technique for analyzing erosion processes, offering a
sophisticated and detailed understanding of particle-laden flow dynamics and the resulting
wear on materials. Its strength lies in its ability to simulate complex multiphase interactions,
providing insights that would be difficult to obtain through experimental methods alone. It
allows for the prediction of erosion patterns under various conditions, which is crucial for
the design and optimization of equipment in industries such as oil and gas. However, the
technique also faces challenges, including high computational costs and the need for simpli-
fications in modeling complex real-world scenarios. Despite these limitations, the current
status of CFD-DPM sees it widely applied in the field, with continuous advancements being
made to improve its accuracy and applicability. Future development is expected to focus on
enhancing computational efficiency, integrating machine learning for model optimization
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and developing real-time monitoring capabilities to predict and mitigate erosion, thereby
further increasing the reliability and longevity of industrial equipment.

3.3. Spray

As a typical gas–liquid two-phase flow, the spray process is of great importance in
many projects, such as drying, cooling, spraying and dedusting. During the spray process,
the liquid is ejected through the high-pressure system with fine particles, forming a mixture
of tiny particles suspended in the gas. Spray is also used as an early step in multiphase
chemical reaction flow, including spray combustion, gasification and pyrolysis, and its
characteristics are of great significance for later behavior.

In the numerical simulation of the spray process, CFD-DPM is used to explore the
flow law of the gas–liquid mixing flow field as well as the performance evaluation and
optimization of the pressure system [36–38]. Zhu et al. simulated the drift and deposition
behavior of droplets during UAV spraying. The effects of spray height, nozzle pressure and
airflow velocity on droplet drift distance and deposition concentration were predicted, and
a correlation model was constructed [39]. Ishak et al. studied the fuel injector cavitations
process and analyzed the effect of the nozzle spray shape towards the spray characteristic
of hybrid biofuel blends [40]. The CFD simulation of UAV chemical application may not
fully capture the atmospheric conditions and other environmental factors that can affect
chemical dispersion. The cavitation area, droplet size, spray cone angle, spray width and
spray tip penetration were compared with circular and elliptical nozzle shapes. This has
important positive significance for spray combustion behavior. The numerical analysis
of nozzle flow and spray characteristics may not consider all the chemical properties and
combustion dynamics of diesel and biofuel blends. Moreover, some scholars determined
the airflow pattern using the Euler method and traced liquid particle distribution through
DPM to determine the optimal spray conditions [41].

In addition, a technology for the long-distance transmission of a droplet air supply
system is called air-assisted spray. This technique pays more attention to the interaction
between the flow field and droplets and the dynamic behavior of droplets. Bing et al.
studied the motion law of droplet flow under the airflow action of long-range air-blast
sprayers [42]. The research provides valuable insights into the droplet flow characteristics
and deposition patterns within an airflow field, which is crucial for applications such
as agricultural sprays and indoor air quality management. The study by Bing et al. [42]
may have limitations in accurately capturing the full range of droplet behaviors in real-
world conditions due to the simplifications made in the simulation models. Through
the establishment of a monitoring section and bilateral coupling calculation in a three-
dimensional flow field, the liquid flow data and deposition results were obtained. It
was found that the load of the droplet group interferes with the formation of the airflow
field. The numerical simulations conducted by Xu et al [43]. may face challenges in
precisely predicting the molten breakup behaviors due to the complex interplay of surface
tension, viscosity and aerodynamic forces. This study may also be limited by the range of
atomization parameters explored. Due to the secondary fragmentation of droplets, a longer
transport distance will be formed after the formation of smaller particles.

In general, the computational fluid dynamics–discrete phase method had a later start
with few existing applications. Its strength lies in its capability to handle complex geome-
tries and multiphase interactions, which is crucial for optimizing spray systems in various
industries, such as agriculture, material processing and combustion engineering. However,
the technique also faces challenges, particularly in terms of computational intensity, which
can be significant when simulating a large number of droplets or complex spray configu-
rations. Additionally, the accuracy of CFD-DPM simulations is highly dependent on the
quality of input parameters, which can be difficult to determine experimentally. Despite
these challenges, advancements in computational power and algorithmic improvements
are enhancing the applicability of CFD-DPM. Future developments are expected to focus
on refining the models for better accuracy, integrating machine learning techniques for
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optimization and expanding the use of CFD-DPM to real-time system monitoring and
control. This will further improve the efficiency and effectiveness of spray processes across
a wide range of applications.

3.4. Comminution

As one of the most important processes for treating particles, comminution technology
widely exists in engineering fields, such as pharmacy, food, agriculture and chemistry.
Through the joint action between the high-speed rotating rotor and the static stator, the
pulverizer can rapidly reduce the particle size under dry conditions, which is invariably
accompanied by the action of fluid. In the whole process of particle collision or fragmenta-
tion, the fluid phase will guide the particle movement and provide kinetic energy. For the
comminution process of particles, further analysis needs to be carried out in combination
with the fluid phase.

In the simulation of a comminution process by CFD-DPM, more attention is paid to
particle tracking and particle–wall interaction. For instance, in the impact crusher [44–46],
the particle and flow behavior after the collision of high-speed particles accelerated by air
flow with stator and wall were studied, which explained the mechanism of the particle
impacting the wall to a certain extent. However, there are two problems that must be solved:
On the one hand, the input of a large number of particles will inevitably produce collision.
Ignoring the collision between particles may have a great impact on the accuracy of the
simulation results of the comminution process. On the other hand, because the particles in
the discrete phase method are rigid bodies and breakage cannot be directly simulated, it is
necessary to collect the data of particle collision and carry out post-processing to further
simulate fragmentation.

In dealing with particle collision and fragmentation, DEM using the soft-sphere
model is more mature, which can simulate particle breakage and attrition by forming a
particle by bonding a finite number of children particles or constructing a fragmentation
function [47,48]. Aiming at the problem that the DPM cannot deal with breakage, Takeuchi
et al. proposed a new particle breakage model based on the simulation of particle motion
by CFD-DPM [49]. If the impact stress is larger than the particle strength, the particle is
broken and replaced with smaller fragments, and its effectiveness is verified (Figure 4).
However, there is still a high amount of calculation.
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Although there are methods that can solve the problems of particle collision and
fragmentation in the comminution process, such as building a breakage model for post-
processing and DDPM, CFD-DPM is more suitable for particle tracking. The DEM method
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has been further developed in terms of more microscopic interior or surface behavior. DPM
and related methods have a lot of room for development.

3.5. Separation

Using the differences in physical and chemical properties of each component in the
mixture, the process of distributing each component to different spatial regions is called
separation. Typical applications include the cyclone separator [50–53], hydrocyclone [54,55],
classifier [56–58], filter [59–62] and dust collector [63,64]. In the separation process, CFD-
DPM is used to obtain the fluid and particle behavior in the internal space, so as to further
study the separation performance [65–67].

In the conventional study of particle separation using the fluid phase, CFD-DPM
is used for gas–solid or solid–liquid two-phase flow in dilute conditions. In some more
complex flow systems, such as dense conditions and multiphase flow [51,68], considering
the problems of particle collision and liquid phase simulation, DPM needs to be further
combined with other numerical methods. Lim et al. used DDPM to simulate the high
load particle flow in a multistage sheller, and heat transfer was considered [65]. Wang
et al. combined large eddy simulation (LES), VOF and Lagrange discrete phase model
to simulate the multiphase flow in the hydrocyclone, and they input the fluid data into
MATLAB to obtain the pressure distribution and particle path in the transition period of
the hydrocyclone [54] (Figure 5).
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Using an electromagnetic field to control the movement of particles can also effectively
separate particles in two-phase flow [63,69–71]. Due to the influence of an electromag-
netic field on experimental measurement, experimental analysis has considerable difficulty,
which needs to be further combined with numerical simulation. In the process of numerical
simulation, particles are affected by fluid force or electrostatic force. Multi-field coupling
needs to be considered when using CFD-DPM. Khashan et al. used a modified DPM to
predict the capture of magnetic particles in microfluidic systems. The model considers
two-way particle–fluid coupling and can provide strict magnetic prediction without cum-
bersome numerical magnetic field analysis, which has been applied to the magnetic bead
separation process in microfluidic systems [72,73]. Farnoosh et al. developed a simulation
procedure to predict the motion of gas, ions and particles inside a simple parallel-plate
channel containing a single corona wire [69]. The electric field effect is obtained by UDF
programming in the DPM to solve the coupling system of electric field and charge transfer
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equation. The technology of controlling particles using an electric field has been widely
used in dust collectors [74,75].

A reasonable turbulence model has a decisive impact on accurate simulation. The
simple flow can be effectively described by the general Reynolds-averaged Navier–Stokes
equation (RANS). Because the Reynolds stress model (RSM) more strictly considers the
rapid changes of streamline bending, vortex and rotation, especially when there are heavy
vortices and anisotropic turbulence in the air flow system, the RSM model is used more
for the separation machinery containing a vortex [76–78]. The corresponding alternative
model is the renormalization group (RNG) k-ε model [79]. For some unsteady and non-
equilibrium processes, LES will also be used [66].

In order to test and verify the reliability of these numerical models and results, laser
doppler velocimetry (LDV) and particle image velocimetry (PIV) are applied to particle
tracking in two-phase flow. For multiphase flow detection in a non-transparent envi-
ronment, Vakamalla et al. measured the internal flow dynamics by using a dual-planar
high-speed electrical resistance tomograph (ERT),which realized the cross-validation of
multiphase flow numerical prediction [68].

In general, the application of CFD-DPM in the separation process is well established,
and the editable DPM expands the further development of the model in multiple physical
fields. At the same time, combined with other simulation methods, it can effectively analyze
the separation situation in complex flow.

3.6. Mixing

As an important unit operation to ensure the quality of mixed materials, mixing
uses mechanical or hydrodynamic methods to disperse two or more materials to a certain
uniform state. Mixing equipment includes various forms of mixers, stirred tanks and
reactors. The most commonly used method in the mixing process is stirring; that is, the
liquid, gas or solid powder particles are evenly dispersed in the liquid. The simulation of
the mixing process can not only obtain the multiphase movement and distribution in the
container but also have positive significance for the subsequent biochemical behavior.

Due to the complexity of multiphase hybrid simulation, the conventional CFD-DPM
may not be realized. Haddadi et al. combined the population balance equation (PBE)
with the CFD model to evaluate the number density function of droplets in the static
mixer by solving the PBE and further calculate the droplet breakage and coalescence
rate [80] (Figure 6). Farzad et al. presented an Euler–Euler–Lagrange mixture model, which
combines Lagrange DPM and Euler–Euler TFM to simulate liquid–liquid emulsion mixing
behavior in a stirred tank [81]. Satjaritanun et al. used the lattice Boltzmann method (LBM)
to model the three-dimensional computational fluid dynamics in a continuous stirred tank
reactor (CSTR). Through the image analysis technology, the solid–liquid mixing efficiency
was calculated from the numerical results of the DPM. It was found that the fluid velocity
and fluid motion direction played a major role in the mixing characteristics [82]. VOF is
also applied to simulate the liquid surface behavior in two or more immiscible fluids [83,84].
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In addition, in the study of multiphase flow in the mixing process, CFD-DPM pays
more attention to the movement of the dispersed phase, such as the behavior of bubbles,
particles and droplets in the container. Li et al. obtained the local gas holdup and gas
residence time distribution in the stirred tank by CFD-DPM and the tracing bubble method,
and they explored the dispersion and back-mixing effect of bubbles [85,86]. Haddadi et al.
used the shear stress transfer (SST) model to simulate turbulent motion and mainly focused
on the droplet behavior of immiscible liquid in a static mixer, mainly including droplet
size distribution (DSD) and residence time distribution (RTD) [80]. Li et al. described
the size distribution of light particles in a stirred tank through the mixing characteristic
curve, including fluid characteristics, impeller geometric parameters and particle dispersion
characteristics, and the accuracy was verified [83].

For different production processes, the mixing scale has various requirements. For
example, the rapid reaction between two fluids requires not only macroscopic uniformity
but also microscopic rapid mixing. CFD-DPM and its related methods can be effectively
applied to the mixing process and track the distribution of discrete phases, but this is only
for the macro scale.

3.7. Tracking

In industries, such as metallurgy, chemical engineering, and pharmaceuticals, CFD-
DPM is used to track and control the product quality in multiphase flow [87,88]. By
simulating the flow of metal and the movement of inclusions, the production process is
monitored and controlled to improve the consistency and quality of the final product.

Initially, Rueckert et al. and Vakhrushev et al. conducted studies on particle distri-
bution and separation in continuous casting tundishes, refining the numerical models for
predicting the motion of particles [89,90], which is crucial for the optimization of steel
production processes. Furthering this line of research, Zhang et al. focused on the measure-
ment and modeling of molten steel velocity near the surface in continuous casting molds,
providing foundational insights into the transient fluid flow behavior and its impact on
the quality of the cast product [91]. The application of CFD-DPM was then expanded to
include more complex scenarios, such as the simulation of bubble transport during a steam
generator tube rupture accident in a lead-cooled fast reactor, as investigated by Yu et al. [92]
(Figure 7). Yin et al. employed Large Eddy Simulation (LES) combined with DPM to
study transient flow, particle transport and entrapment in slab molds with electromagnetic
braking. This research not only enhances the control over the solidification process but also
contributes to a reduction in defects in the final steel product [93].

In the context of vacuum treatment, Pirker et al. explored steel alloy homogenization
during vacuum treatment using both conventional and recurrence CFD methods. The
integration of plant observations with simulation results is a strength, but the study may
be limited by the specific conditions of the treatment process. Future work could involve
broader applications and comparisons with other metallurgical processes [87]. Kou et al.
applied a coupled CFD-DPM approach to simulate multiphase flow in autoclaves [94]. A
potential limitation could be the complexity of the multiphase interactions, which may
require further validation. Cloete et al. and El-Sayed et al. utilized CFD modeling to study
combustion processes in fluidized bed combustors and the behavior of plumes and free
surfaces resulting from sub-sea gas releases, respectively [95,96]. These studies highlight the
method’s role in improving energy efficiency and understanding environmental impacts.
Chen et al. and Cui et al. focused on particle erosion under multiphase bubble flow
conditions, which is critical for designing durable equipment and minimizing maintenance
costs in industrial processes [97,98]. The erosion mechanism under multiphase bubble
flow conditions is primarily due to the impact deformation and micro-cutting effects of
solid particles on the pipe wall. The presence of gas bubbles alters the motion state of the
solid particles and increases their deposition on the bottom of the elbow, leading to severe
erosion. Their research contributes to the understanding of material degradation and the
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development of more robust industrial equipment. However, the universality of simulation
needs to be improved.
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In summary, the progressive application of CFD-DPM in tracking metal inclusions and
bubbles has led to a deeper understanding of multiphase flows, enabling the optimization of
industrial processes, enhancing safety measures and informing the design of more efficient
and environmentally friendly technologies. Its key strength lies in its comprehensive
modeling of particle interactions with the continuous phase. The method’s flexibility in
managing different particle sizes and flow conditions is particularly valuable for optimizing
product quality and process efficiency. However, the high computational cost associated
with simulating numerous particles and the dependency on accurate turbulence models
present challenges that can affect the simulation’s precision.

3.8. Thermochemical Conversion

In addition to pure particles and hydrodynamics, thermochemical processes are also an
important part of fluid–solid systems. Thermochemical modeling is an extremely complex
process, which needs to consider the heat and mass transfer between particles and fluid
phase, the devolatilization of granular materials and the gas phase reaction. The coupling
is carried out through the heat transfer between particles and the source term caused by the
gas phase reaction. Gasification, pyrolysis and combustion are typical representatives [99].

3.8.1. Gasification

The gasification process converts solid fuel into high-value gaseous fuel and chemical
products through a series of homogeneous and heterogeneous reaction routes. Unlike
pyrolysis, gasification requires the participation of gasification agents, including oxygen,
air, carbon dioxide and steam. The main objects of gasification are biomass and coal.
Computational fluid dynamics and its related methods are effective tools for reactor design,
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performance prediction and structure optimization in the gasification process [100–102].
The prediction of the operating performance and mechanism in a gasification reactor is of
great significance to solve energy and environmental problems.

A reasonable modeling method determines the prediction accuracy of the gasification
process since CFD is sometimes not directly applicable. Kumar et al. conducted compu-
tational fluid dynamics modeling for the four regions (drying, pyrolysis, oxidation and
reduction) of the downdraft gasifier, used a step-by-step method to evaluate the gas compo-
sition of volatile decomposition in the gasification process and tested the thermochemical
kinetics and robustness [103]. The study presents a model that accounts for time-limited
wall reactions, which is essential for understanding the performance of entrained flow gasi-
fiers. Klimanek et al. used CFD-DDPM to establish the numerical model of coal gasification
in a circulating fluidized bed. DDPM was used to simulate the flow of the particle phase in
a coal gasification furnace. The coal particles with size distribution were tracked in the fluid
velocity field, and the multidirectional coupling between particle fluid and particle was
considered [104]. Considering the effects of the diffusion rate and kinetic rate to simulate
the char reactions, Gao et al. established an intrinsic reaction rate submodel for biomass
entrained flow gasification. The finite rate/eddy dissipation model was applied to calculate
the homogeneous reaction rates. The heterogeneous reaction rate was calculated by writing
UDF [105]. The intrinsic reaction rate submodel might oversimplify the chemical kinetics
involved in biomass gasification, potentially leading to inaccuracies.

Slagging and fouling are important phenomena associated with ash handling and
discharge in coal combustion and gasification. Improper treatment and discharge of
slagging and fouling will cause safety problems. Chen et al. developed a three-dimensional
slag model using UDF. This model coupled VOF and DPM and considered the dispersion
of particles to describe multiphase flow, which was applied to the slag flow simulation
in three-dimensional pilot-scale facilities [106]. CFD simulation of the slag flow shows
that the performance of slagging entrained flow gasification may be critically affected by
the behavior of char/ash particles as they interact with the slag-covered wall [107–109].
Troiano et al. developed a compartmental model of entrained flow slagging gasifiers
of solid fuels based on CFD-DPM. The model considered the near-wall phenomenon
related to the transfer of coke and ash particles from the main body of the reactor to
the reactor wall. Although the model cannot be used for prediction at this stage, it is of
great positive significance for evaluating the correlation between particle separation and
gasifier performance and considering particle–wall interaction [110]. However, due to the
complexity of the gasification process, it is difficult to ensure high prediction accuracy.
There is still a certain distance between the prediction results of CFD-DPM and the flow
conditions in the real situation.

The CFD-DPM method, as applied to gasification processes, offers a sophisticated
approach to simulate the complex interactions between the gas and solid phases, enabling
detailed analysis of particle behavior, heat transfer and chemical reactions. Its strengths
lie in its capability to track individual particle trajectories and model the interactions
between particles and the gas flow, which is crucial for understanding and optimizing
gasification efficiency. However, the method also has limitations, such as computational
intensity and the need for accurate models to represent particle–wall interactions and
transient phenomena. The future development of the CFD-DPM method is likely to focus
on enhancing the accuracy of particle models, reducing computational demands and
expanding the method’s applicability to a wider range of gasification conditions, ultimately
aiming to improve the design and operation of gasification systems.

3.8.2. Pyrolysis

Pyrolysis refers to the degradation reaction of fuel in an inert atmosphere or limited
oxygen supply to generate pyrolysis gas, tar and biomass carbon. The pyrolysis gas is
mainly small-molecular gases, such as carbon monoxide, carbon dioxide and hydrogen.
Due to the coupling of multiphase flow and complex chemical reaction in pyrolysis, it is



Appl. Sci. 2024, 14, 3856 14 of 22

difficult to accurately measure multiphase flow in a complex environment. As numerical
simulation is relatively cheap, it has gained more guidelines and research and has become
one of the main methods to study the pyrolysis process at the reactor scale.

The complex particle–fluid behavior in the rapid pyrolysis process is an important
focus for numerical simulation. Joliet et al. used the DPM/DDPM method to describe the
motion of discrete phase particles and developed a pyrolysis reaction model for wood [111].
The model’s accuracy may be dependent on the assumptions made about the pyrolysis
process, and it may not account for all reaction pathways or the influence of environmen-
tal factors. In order to better understand the complex fluid–particle reaction, Yan et al.
conducted cross-scale modeling in coal pyrolysis and established a comprehensive com-
putational fluid dynamics model based on a discrete phase model, especially considering
particle scale physics, such as heat conduction inside particles [112]. The cross-scale mod-
eling approach may face challenges in accurately representing the interactions between
different length scales, potentially leading to discrepancies in the simulation results. More-
over, combined with the improved chemical percolation devolatilization (CPD) model,
the particle heating and decomposition behavior within a millisecond residence time was
described. It was found that particle heating and decomposition are strongly affected by the
temperature grade and residence time of coal particles in the high-temperature zone [113].

In some cases, pyrolysis will be displayed in the form of a certain link in the ther-
mochemical process. For example, the ignition source releases enough energy to trigger
particle pyrolysis before an explosion. Pico et al. developed a simulation based on the
coupled Euler–Lagrange formula, mainly including powder dispersion and pyrolysis/gas
oxidation reaction, to simulate the whole process behavior of a wheat starch/pyrolysis gas
mixture explosion in the sphere [114,115]. It was found that the pyrolysis/gas oxidation
reaction has a comprehensive dissipation effect on turbulence. The pyrolysis process is
also used as a pre-step of the gasification or combustion processor as the input of volatile
gases [103,116].

Since the research on reaction kinetics in the pyrolysis process has not reached the
stage of maturity [117], CFD-DPM has relatively few simulations in the pyrolysis process
and cannot be applied to industrial-scale reactors. However, the more detailed information
of particle size provided by numerical simulation can help us further understand the finer
fluid motion and the complex behavior at the particle level in the pyrolysis process.

3.8.3. Combustion

Combustion is a high-temperature and exothermic oxidation process, which is often
carried out in a combustion reactor. The numerical simulation of the combustion process
is of positive significance to the design and performance evaluation of the combustion
reactor [118–120]. For a better reaction, pyrolysis, gasification and mixing are often used
as the initial steps of combustion. These processes contain a large number of particle and
fluid phases, which have complex changes and interactions in the reaction process.

The focus of combustion process simulation is to carry out comprehensive hydrody-
namic modeling. This complex process includes flow modeling, discrete phase modeling,
combustion and radiation modeling. In the flow and discrete phase modeling, DPM is
used for the heat transfer and transport of particles in the combustion process under sparse
conditions [119,121]. Gao et al. combined the RNG k-ε turbulence model and DPM to
model the thermal spray combustion. The flame flow characteristics, mass fraction of
gas components and particle flight characteristics were calculated [122]. In dense phase
combustion, Adamczyk et al. first applied the mixed Euler Lagrange dense discrete phase
method for the modeling of the combustion process in a three-dimensional circulating
fluidized bed [123]. The particle size distribution of real combustion particles and the
interaction between particles in the dense region were considered. UDF is adopted to
expand the modeling of DDPM in the combustion process by Farid et al. UDF reinjected
particles into the burner, and the pressure drop, circulation rate and mass load control
of the combustor were calculated [124]. Regarding the modeling method of combustion,
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El-Sayed et al. chose the eddy dissipation model (EDM) to simulate the turbulent chemical
interaction during the combustion of sesame and broad bean stalks in the freeboard zone
in a bubbling fluidized bed combustor. The effects of chemical kinetic parameters, solid-
phase parameters, gas-phase parameters and heat flux through walls on the numerical
results were obtained and verified [96]. The EDM method can describe the interaction
between turbulence and chemical reactions. Although the computational cost of the EDM
method is moderate, the main disadvantage is that it reduces the chemical reaction mech-
anism [125]. The EDM method is improved by Magnussen’s eddy dissipation concept
(EDC) model [126]. The model describes the chemical reaction mechanism in more detail.
The chemical reaction occurs on a finer time scale, and the calculation is more accurate,
but it is also very time-consuming. As a novel combustion model, the steady laminar
flamelet model (SFM) assumes that turbulent and non-premixed flames can be simulated
by the collection of several one-dimensional laminar small flames [127,128]. It combines the
advantages of EDM and EDC, allows for the use of detailed chemical reaction mechanisms
and significantly reduces the calculation time. As an important part of comprehensive
computational fluid dynamics modeling, radiation modeling also has several different
models to calculate the absorption characteristics of gas. The exponential wide band model
(EWBM) is sometimes applied [129], but it requires large amounts of calculation. The more
commonly used model is the weighted sum of gray gases model (WSGGM). Combined
with the discrete ordinates (DO) radiation model, results with reasonable accuracy can be
calculated [130].

In conclusion, the method of integrating CFD-DPM, combustion modeling and ra-
diation modeling is successful in simulating the combustion process, which effectively
describe complex multiphase flow, heat and mass transfer and chemical reaction. However,
due to the high requirements of combustion process simulation for spatial and temporal
resolution, further turbulence simulation methods and discrete phase methods are needed
to accurately deal with turbulence modulation, mixing and chemical problems.

4. Challenges and Prospects
4.1. Improved Computing Performance

Although the use of coarsening technology can significantly improve the calculation
efficiency, there is still a gap compared to the calculation requirements on an industrial scale,
especially for long-time simulation, because the simulation usually requires a small time
step and high spatial resolution. At present, there are some solutions, such as the hybrid
Euler–Lagrange method, combining the energy minimization multiscale model (EMMS)
and DDPM [131,132], or the recurrence CFD method to realize long-time simulation by
capturing system characteristics and then extrapolating data at longer intervals [133,134].
But it still depends on improvements in computing performance. In order to reduce
the computing time and improve computing efficiency, the development of a parallel
computing strategy is worthwhile. Some hybrid computing modes combining a graphics
processing unit (GPU) and central processing unit (CPU) [135], and virtual computing
experimental methods [136], have emerged. More performance improvement calculation
methods are needed, which will help to improve the adaptability of the computational fluid
dynamics–discrete phase method to various physical and chemical process simulations.

4.2. Further Numerical Strategies for Multiphase Complex Systems

There is a strong interaction between transport phenomena (momentum, heat and
mass transfer) and chemical reactions in multiphase complex systems. Cross-scale modeling
methods including CFD-DPM/DDPM are effective for describing various complex reaction
flows in a wide range of multiphase reactors. However, the application of the discrete
phase method in computational fluid dynamics is quite limited. In pure physical problems,
some models, including the solidification and melting model, wet steam model and real
gas model based on pressure and density, are not available. In thermochemical modeling,
the Probability Density Function (PDF) model and partial premixed combustion model are
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not available. When using the premixed combustion model, only non-reactive particles can
be included. The extended application of the discrete phase method in multiphase flow is
limited by these problems. Further numerical strategy development is necessary.

4.3. Integration with Machine Learning Algorithm

In fact, in the process of comprehensive modeling using the discrete phase method
of computational fluid dynamics, the fluid–particle flow mainly depends on the solution
to the fluid equation. However, there are serious challenges in fluid analysis based on
these equations. For example, N-S equations considering the momentum conservation of
incompressible fluids include high-dimensional and nonlinear factors. These equations
cannot provide closed-form solutions, and they limit the work of real-time optimization
and control. Machine learning (ML) has achieved some success in solving complex flows.
Problems including reduced order modeling, shape optimization and feedback control can
be regarded as optimization and regression tasks [137]. For example, Mohammadpour
et al. combined CFD-DPM with support vector regression–particle swarm optimization
(SVR-PSO) technology. SVR was used to train the CFD dataset, and PSO was used to
optimize the dataset to maximize the fluid cooling in the microchannel [138]. Similarly,
Yang et al. optimized the structure of a vessel seawater desulphurization scrubber based
on the CFD-DPM and SVM-GA methods [139]. In a word, machine learning capabilities
are developing at an astonishing rate, and fluid mechanics has begun to give full play to
the potential of this powerful method.

5. Conclusions

The current state of computational fluid dynamics–discrete phase method (CFD-DPM)
simulations in process engineering is marked by significant advancements and a growing
range of applications. The method demonstrates its potential in various engineering fields,
including transportation, erosion, spray, comminution, separation, mixing, tracking and
thermochemical conversion. It provides valuable insights into the complex interactions
between fluid and discrete phases, leading to improved process optimization, design,
product quality control, safety and risk assessment, and energy efficiency.

The integration of CFD-DPM with other numerical methods and the development
of novel Euler–Lagrange techniques have enhanced the computational efficiency and
maintained the discrete characteristics of solid phases, making it suitable for industrial-scale
applications. The use of coarsening technology in the simulations has been a key factor in
speeding up the simulation process, which is crucial for handling large-scale equipment and
complex systems. However, there are still challenges to overcome. The high computational
requirements for long-time simulations and the need for more accurate models for complex
multiphase flows are areas that require further development. The current models may not
fully capture the intricacies of certain processes, such as the detailed behavior of particles
in a fluidized bed or the complex reactions in thermochemical processes.

The future of CFD-DPM is promising, with continuous improvements in computing
performance and the emergence of hybrid computing strategies that combine graphics
processing units (GPUs) with central processing units (CPUs). These advancements will
enable more complex simulations with higher spatial and temporal resolution. Additionally,
the integration of machine learning algorithms with CFD-DPM holds great potential for
addressing the challenges of real-time optimization and control, as well as for enhancing
the predictive capabilities of the simulations. While CFD-DPM has made significant strides
in process engineering, there is still room for growth and refinement. The future outlook is
positive, with the potential for even more widespread application and the development
of more sophisticated models that can accurately represent the complex dynamics of
multiphase systems.
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