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Abstract: Low Earth orbit (LEO) satellite networks are characterized by rapid topological changes,
numerous network nodes and varying states of node resource constraints, which have resulted in
traditional routing algorithms no longer being suitable for LEO satellite network routing. Therefore,
this paper proposes an inductive learning architecture based on Graph Sample and Aggregate
(GraphSAGE), which can significantly reduce the number of topology nodes to be trained, thereby
reducing the computational complexity of the nodes. Then deep reinforcement learning (DRL) is
employed for the continuous learning optimization of routing algorithms, and its generalization
is improved by selecting GraphSAGE to construct the DRL agent. In the proposed graph neural-
network-based routing optimization algorithm for LEO satellite networks, each Deep Q-Network
(DQN) agent independently generates the hidden states of the nodes through the GraphSAGE model
and uses them as inputs to the DRL model to make routing decisions. After a simulation and
comparison, the proposed algorithm not only improves the overall network throughput, but also
reduces the average end-to-end delay. The average throughput of the proposed algorithm increases by
29.47% and 18.42% compared to that of Dijkstra and the DQN, respectively. The average end-to-end
delay is reduced by 39.76% and 15.29%, respectively, and can also adapt to changing topologies.

Keywords: LEO satellite; routing; graph neural network; DQN

1. Introduction

In recent years, the development of LEO satellite networks has attracted more and
more attention, and LEO network constellations are being actively built around the world,
including OneWeb, Telsat and Starlink. Compared with the geosynchronous Earth orbit
(GEO) satellite network system, the satellites in the LEO satellite communication system are
located in low Earth orbit, resulting in lower levels of transmission latency, better channel
conditions and higher transmission rates, which will greatly enhance the user experience.
However, these satellites are always in high-speed motion relative to the ground, so the
number of satellites deployed will be much larger than the number of GEO satellites if
global coverage is required using LEO satellites. With the increase in the number of satellites
and the high-speed movement of satellites, the LEO satellite network structure will also
become extremely complex. In order to achieve low levels of latency and a high-throughput
performance in the case of a complex network structure, an efficient routing algorithm for
LEO satellite networks becomes very important.

The complex LEO network structure poses great challenges for routing algorithms.
The high-speed movement of satellites and the large number of satellites have led to the
instability of satellite network topology and the inability to make accurate predictions
in advance.

There is not much current work on routing algorithms based on LEO satellite net-
works, as most studies focus on self-organizing networks. Ref. [1] has used a combination of
graph neural networks and deep learning for LEO routing algorithms, but the graph neural
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network algorithm (GNN) does not take into account the computational complexity caused
by the large number of nodes in the LEO satellite network and the changing topology
when using algorithms. In LEO satellite networks, due to their large number of nodes,
we need to consider how to perform distributed training on large graph data and need
to be able to learn about nodes that have not appeared before. P. Zuo et al. [2] relies
only on deep learning to consider the design of routing algorithms. However, they do
not address the challenge of adapting to the dynamic topology of LEO satellite networks.
Many scholars have studied routing algorithms for self-organized networks and refer to the
routing algorithms for LEO satellite networks, but they do not consider the characteristics of
LEO satellite nodes, potential unpredictable topological changes, and instances of limited
computational resources. Most of them take into account the state of the nodes while
finding the shortest paths. As in [3], only the congestion state of the nodes and the channel
quality are considered using deep learning. Ref. [4] introduces a graph neural network
for the design of a routing algorithm using deep learning, but its convergence method
only considers the characteristics of wireless sensor network nodes. The literature does not
consider that if the computing resources of the nodes are limited, it is difficult to complete
the whole topology computation. Ref. [5] uses a deep learning approach to design routing
algorithms for wireless self-organizing networks, mainly considering the effect of QoS.
However, this study also fails to consider the effect of rapid topological changes. Ref. [6]
applies a deep learning approach to the design of routing algorithms for ad hoc networks,
mainly considering end-to-end delay. Again, this study does not consider the effect of
rapid topological changes.

In summary, it is necessary to design a routing algorithm that can use distributed
training to reduce the number of training nodes and computational complexity and can
continuously learn to optimize the paths for the node state and link state.

The intelligent routing algorithm based on deep learning is an algorithm that utilizes
deep learning techniques to make decisions on routing in a network. It automates the
selection of appropriate routing paths for the efficient transmission of network traffic by
learning the data flow patterns and laws in the network. In the intelligent routing algorithm
based on deep learning, the model first needs to be trained with a large amount of data,
which include the network topological information, traffic load conditions, congestion
information to learn patterns and laws of the network. Then, the trained deep learning
model is utilized to make routing decisions.

Compared with traditional routing algorithms, intelligent routing algorithms based
on deep learning are able to monitor network traffic in real time and improve the overall
network performance [7]. However, when the network topology changes, it needs to readjust
the training labels to output the correct paths, so the traditional deep learning scheme cannot
guarantee the correctness of the output paths. Moreover, the traditional deep learning scheme
is not scalable. Even though the model is trained with the readjusted input data when the
input network topology changes, this may cause a high processing latency.

As an important branch of machine learning, DRL [8,9] differs from supervised and
unsupervised learning and involves learning interactively with the environment. Unlike
traditional reinforcement learning methods, DRL uses deep neural networks (DNNs)
instead of tables and expresses policies with function approximations. In this way, DRL
avoids the dimensionality problem that traditional tabular reinforcement learning faces
when dealing with complex real-world problems.

Although trained DRL agents can significantly improve the routing optimization
problem, they cannot work effectively in unknown network topologies. By analyzing the
structure of DRL agents, the reason for this phenomenon can be found. In the case of
a classical DQN, the inputs and dimensions of the model are determined by the actual
network size (e.g., the size of the network topology). After the training is finished, the
dimensions of the model inputs and outputs are fixed. Therefore, when facing networks
of different sizes, the model is likely to receive inputs with anomalous dimension sizes.
Although we can change the input dimensions by cutting or padding, it will destroy
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the potential topological information in the matrix. In addition, computer networks are
essentially graphs, and existing methods that use neural networks to process state matrices
are unable to learn the information in graph structures, which limits the performance of DRL
in new networks. In conclusion, although DRL performs well in routing optimization, it
cannot perform relational reasoning or graph structure generalizations to operate effectively
in new network environments.

A GNN is a neural network structure that can effectively deal with irregular topological
information [10–12]. The basic principle of a GNN is to express and infer the nodes’
characteristics through their local information and the relationship between neighboring
nodes. Each node has an initial feature vector, which can be updated and improved through
information interactions and aggregation with neighboring nodes. A GNN can be used
to obtain global graph characterization and prediction results through multiple rounds of
information transfers and feature updates. A graph convolutional neural network (GCN)
is better able to characterize network structures and features, which can automatically
extract the hidden and complex information patterns in a graph using a graph convolution
operator. However, the GCN’s shortcoming is that it only acquires the hidden features of
all of the nodes and does not have the ability to scale.

The GraphSAGE [13] model is an inductive learning architecture that uses information
from the current node and neighboring nodes to form feature vectors by aggregation.
GraphSAGE is able to represent feature vectors for any node through an aggregation
function so that it has the ability to generalize, which is different from direct push learning.
Therefore, in this paper we chose GraphSAGE to build the DRL agent to improve its
generalization. And each DQN agent independently generates the hidden states of the
nodes through the GraphSAGE model and uses them as inputs to the DRL model to make
routing decisions.

In this paper, the GNN-DRL algorithm is proposed to adapt to dynamic LEO networks
with frequent topological changes and to solve the network congestion problem, which not
only improves the overall network throughput but also reduces the average end-to-end
delay compared with the traditional routing algorithm. To solve the fluency problem of
the network topology changing and reduce the computational complexity of the nodes,
the graph neural networks are used to learn the relationships between the graph elements
in the network topology as well as the node composition rules. Then deep reinforcement
learning algorithms are used to make routing decisions. To reduce the computational
complexity of the nodes, GraphSAGE reduces the number of topology nodes to be trained.

The remainder of this paper is structured as follows: The algorithmic model is pre-
sented in Section 2. Section 3 describes the progress of the feature extraction with Graph-
SAGE. Section 4 describes the routing policy for the DQN agent. The evaluation results are
shown in Section 5. Section 6 concludes this paper.

2. System Model

According to the dynamic characteristics of low-orbit satellite network topology, in this
paper, we design the GNN-DRL algorithm, which is based on the following assumptions:

1. According to the interval of t0, the time is divided into n time periods (t1, t2, t3. . . tn),
and the physical topology of the constellation remains unchanged in the time period
between two adjacent moments;

2. It is assumed that the propagation delay between the two satellites in different orbits
is almost the same as that in the same orbit.

Authors of studies in the literature [14] believe that the selection of the location and
number of ground stations is a key issue for low-orbit satellite networks, which directly
affects their construction. It is mentioned that one of the criteria for determining the
location of ground stations is the number of satellites (e.g., m) that a ground station can
connect to. So, for the algorithm model designed in this paper, the ground station will
also be an important factor to be considered. The agent of the algorithm proposed in this
paper is placed on the ground station, which is responsible for sending the final execution



Appl. Sci. 2024, 14, 3840 4 of 17

action (routing final decision) to m satellites. The network composed by m satellites that
is managed by each ground station is called the regional network in this paper. Different
regional networks are connected by selecting an inter-satellite link with stable (as in, the
same orbital plane) and small load between regional networks to form the final LEO
satellite network.

Firstly, the problem of dynamic topological changes in low-orbit satellite networks has
two parts: topological changes caused by satellite node movement and topological changes
caused by satellite state or link changes. Then, solving the routing problem of topological
changes caused by the movement of satellite nodes is equivalent to solving the routing
problem of a fixed topology at different times (t1, t2, t3. . . tn) through the above assumptions.
In the time period in which the topology is unchanged, the routing problem with link state
and satellite node state changes is equivalent to a routing problem of a hierarchical network
with a fixed topology, but link state and node state may change through the strategy of
network classification according to the ground station. In order to make the problem
easier to solve, hierarchical networks with the characteristics of fixed topology but possible
changes in link state and node state are considered as equivalent to NSFNET networks
with the same characteristics.

The LEO satellite network can be represented as a graph G = (V, E) during t0 period,
where V and E denote the set of LEO satellite nodes and edges between them. Then the
routing problem of the LEO satellite network can be defined as follows: given G = (V, E),
the source node src, the destination node dst and the traffic flow demand bw, find a set
of paths in order to forward the data from the source to the destination. And when the
inter-satellite link changes, E will show the changes in the links. The goal is to minimize the
network end-to-end delay while increasing the network throughput, whether the network
topology is changing or not.

It is found that its future state only depends on the current state by analyzing the LEO
satellite network routing problem, which is a typical Markov decision process. Therefore,
all node states can be directly input into DRL to seek the maximum reward to find the
optimal path. But DRL cannot learn topological information when dealing with routing
optimization problem. Once one or more nodes fail for some reason, the network topology
will change. The routing algorithms based on DRL do not work well when the network
topology changes. This is because DRL algorithms mainly focus on the state information of
individual network nodes and ignore the impact of selecting the routing for the individual
node on the whole network topology. The DRL algorithms also do not consider the network
as a whole, so they cannot utilize the global graph of the network state to dynamically adapt
to changes in the network. Therefore, in order to better optimize routing, it is necessary to
consider network topological information and node state information comprehensively and
analyze the network as a whole to dynamically adapt to changes in the network. Therefore,
this paper proposes the GNN-DRL algorithm, which is a network routing optimization
architecture based on graph neural networks and deep reinforcement learning. First of all,
the graph neural networks are used to learn the relationships between graph elements in the
network topology as well as the node composition rules. Then deep reinforcement learning
algorithms are used to make routing decisions. The input state of DRL agent is expected to
include not only the current node state and link state, but also the overall network state
of the node according to the dynamic characteristics of LEO satellite network. Then we
need to aggregate network information through an aggregation algorithm. However, due
to the large number of nodes in LEO satellite network, if the common GCN is used, it
will need a large number of calculations and cannot complete inductive representation
learning. So, this paper uses GraphSAGE to aggregate the attributes of the node itself and
its limited number of neighbors. The algorithm model diagram is shown in Figure 1, and
the algorithm has following processes:
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Step1: For the current topology from tn to tn + t0, a graph neural network is utilized
to learn the network topological information and perform information extraction, through
which the network state is represented.

Step2: The network state outputted by the graph neural network combined with the
user state is input into the DRL to make routing decisions and update the network state.
And the best decision-making action is selected based on the node user state as well as the
network state to maximize the discounted cumulative rewards. And the policy parameters
θ are updated every γ (t0 = nγ).

2.1. Network Model

The algorithms proposed in this paper not only need to adapt to the dynamic network
with changing network topology, but also need to obtain better network performance and
lower average end-to-end network delay. Therefore, it is necessary to comprehensively
study the network topology as well as the network characteristics of links and nodes. How-
ever, GraphSAGE can only deal with the network topology and the network characteristics
of nodes and cannot analyze the network characteristics of links. To solve this problem, the
graph structure is reconstructed by aggregating link information into nodes.

The specific implementation of this is shown in Algorithm 1 (a reconfiguration map
of data-specific processes). The input is the network topology information, which is rep-
resented by an undirected graph G = (V, E), where V = {vi}i=1:N , E = {(ek, rk, sk)}k=1:L
denote the set of edges and the set of nodes, respectively. The variable ek on each edge
is a one-dimensional vector containing information such as link capacity and delay. The
output is a new graph structure G

(
V′, E′

)
with the features of the edges related to this node

aggregated in v′i.

Algorithm 1. Reconfiguring Graph Data

1: Initializing the network G = (V, E)
2: for k ∈ {1 · · · L} do
3: e′k ← ∅e(ek, rk, sk) //Update Edge Properties
4: end for
5: for i ∈ {1 · · ·N} do
6: Ei =

{(
e′k, rk, sk

)}
rk=i,k=1:L

//Find edges adjacent to node i

7: ei ← ρ(Ei) //Aggregate edge attributes per node
8: v′i ← ∅v(ei, vi) //Update node attributes
9: end for
10 : return G(V′, E′)

The network characteristics of each node are represented by a feature vector
xi(i = 0, 1 · · ·N − 1), xi =

[
qi, v′i

]
, where qi denotes the traffic flow. v′i indicates the aggre-
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gated characteristics of the edges related to this node, including information such as link
capacity and delay.

Then the network feature matrix X of the whole network topology can be expressed
as follows:

X =


x0
x1
...

xN−1

 (1)

2.2. Markov Decision Model

In this subsection, the state space, the action space and the reward function are
defined, respectively.

(1) State space

The network state is defined by link characteristics such as link delay, link capacity
and current link utilization. These characteristics are stored in a fixed size vector filled with
zero padding. At the beginning of a DRL event, a hidden feature vector representation of
all nodes is generated by a graph neural network. When the DRL assigns a traffic demand
to a specific src− dst path (that is, a sequence of links in the network), the network state
changes. And the user state (including the source node src, the destination node dst, and
the traffic demand bw) is added in the current network state. The ultimate goal is to reduce
the average end-to-end delay and increase the network throughput at the end of the event
(i.e., when the DRL agent iterates over all traffic demands).

(2) Action space

The number of possible routing paths corresponding to each traffic demand (that is,
src− dst node pair) leads to a high-dimensional action space, even in small networks. It
makes the routing problem for DRL agents complicated, as it requires estimating which of
the executable actions will result in the smallest end-to-end delay in a long period of time.
In other words, the minimum end-to-end delay can be achieved by finding the optimal
routing path for each traffic demand. Furthermore, actions need to be defined in a way that
is invariant to the alignment of edges and nodes to exploit the ability of GNNs to generalize
over graphs (i.e., only link-level features rather than specific identifiers or labels).

In order to adapt to dynamic networks with frequent topological changes, GNN-DRL
algorithm employs a distributed routing decision mechanism that assigns a routing decision
to each node instead of pre-constructing routing paths. We assume that a node ui with
m neighboring nodes will make a routing decision in the time period t ∈ {1, 2, · · · , T}.
In the process of selecting the routing path, the node ui with the packet needs to select a
neighboring node as the next hop to forward the packet. In time period t, we define an
action at ∈ A, where A = {b1, b2, · · · , bm} is the set of neighboring nodes of the node ui.
The action at represents the selected neighbor node to forward the packet for the node ui,
i.e., the node ui selects the neighboring node bj to forward the packet.

(3) Reward function

The reward function represents the different immediate rewards from different routing
selections. In this chapter, the reward function R of the DQN agent is related to the QoS
parameters which are as follows: delay (L) and rate (W). The goal of each agent is to reduce
the network delay and improve the overall throughput of the network in a long period of
time. The reward function R is determined as follows:

R = α ·W − β · L. (2)

where α, β ∈ [0, 1] is the adjustable weight determined by the routing policy.
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In general, the strategy function π(a|s) : S× A→ [0, 1] is the conditional probability
distribution of the agent when it chooses action a in state s. The goal of the policy at moment
τ is to maximize the reward Rτ accumulated in the historical experience as follows:

Rτ =
∞
∑

k=0
γkRτ+k. (3)

where γ ∈ (0, 1) is a discount factor that weighs the historical and current reward data for
the agent. Then, the expected return value of the state s after executing action a in the DRL
agent (following policy π) is defined as the state–action value function as follows:

Qπ(s, a) = Eπ

[
∞
∑

k=0
γkRτ+k|sτ = s, aτ = a

]
. (4)

The goal of the DRL algorithm is to find an optimal strategy that maximizes the
long-term cumulative returns obtained from historical experience as follows:

π∗(a|s) = argmaxQπ(s, a). (5)

3. Feature Extraction with GraphSAGE

The GraphSAGE model is used to generate a hidden feature vector representation of
its own node for each DRL agent. The core idea of the GraphSAGE method is to aggregate
the neighboring nodes of each node, and then the result of the aggregation is used to update
the node’s representation. The aggregation process of the GraphSAGE is to aggregate the
embedded representations of neighboring nodes into a fixed-length vector by a learnable
function based on the embedded representations of the neighboring nodes and the node’s
feature vector. This aggregation function can be averaging or maximization, etc., or a more
complex function such as a multi-layer neural network.

The process of using the GraphSAGE model for aggregating and updating the features
of neighboring nodes of a target node is shown in Figure 2, which consists of three main
steps: sampling, aggregation and generating embedding.
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3.1. Neighborhood Node Sampling

For the target node vi, the full sampling method is used to obtain a neighbor node
set Ni containing q neighbor nodes, so the sampling number is q. q neighbor nodes are
taken out at a certain time as the nodes for information aggregation. If the number of
neighbors of a particular node is less than q, a resampling method with a put-back action is
used. If the number of neighbors of a particular node is greater than q, a negative sampling
method without a put-back action is used. This sampling method learns the feature based
on neighbor relationships and generates self-observed hidden state features.
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3.2. Neighboring Node Feature Aggregation

The GraphSAGE model has an L-layer network, and L usually takes the value of
2. When L = 2, the model performs two feature aggregations. During the aggregation
process, the target node is able to receive the node information of its first-order neighbors
and second-order neighbors. It aggregates the neighbor node information of each layer
and updates its own node information through the aggregation function. The average
aggregation function is used to obtain the aggregated features of the neighboring nodes
in each layer in this paper. First of all, the feature representation of the target node in
layer k− 1 is concatenated with the aggregated features of the neighbor nodes in layer k.
Then the mean value is calculated for each dimension of the vector. Finally, the final node
representation is achieved by the nonlinear activation function.

The initial hidden state of each node consists of the node feature vector {x0, x1, · · · xN−1}
in the input layer, and the initial hidden state of the target node vi is h0

i = xi. First of all, the
process to generate the hidden feature vector h1

i in the first layer of the network is shown in
Equation (6):

h1
i = σ

(
W1 · CONCAT

(
h0

i , AGGR
(

h0
j , ∀vj ∈ Ni

)))
. (6)

where W is the parameter matrix and σ(·) is the nonlinear activation function. The neighbor
aggregation feature h1

Ni
of node vi is obtained by aggregating the initial hidden states

h0
j , ∀vj ∈ Ni of all sampled neighbor nodes. The aggregation feature h1

Ni
and the initial

hidden state h0
i of vi are concatenated together, and a nonlinear transformation is performed

to generate the hidden feature representation h1
i of the target node vi in the first network

layer. The concatenated operation CONCAT(·) performs a linear superposition of the
feature vectors using residual concatenation. And the aggregation function AGGE(·) uses
mean value aggregation to calculate the mean value of the concatenated vectors. Finally,
the final hidden feature vector is obtained using a nonlinear transformation. The mapping
process between the middle two hidden layers is shown in Equation (7):

hJ
i = σ

(
W J · CONCAT

(
hJ−1

i , AGGE
(

hJ−1
j , ∀vj ∈ Ni

)))
(7)

The hidden feature hJ−1
i of layer J − 1 is concatenated and aggregated with the neigh-

bor aggregation feature hJ
Ni

to obtain the hidden feature vector hJ
i of layer J for node vi.

The output of the last hidden layer is the final hidden feature vector hL
i of node vi. The

GraphSAGE model can output the final hidden feature vectors of all nodes in the network.
Since the GNN-DRL algorithm proposed in this section is a distributed DRL agent, only
the final hidden feature vectors of all nodes are obtained without embedding process.

3.3. Learning Parameters

The parameter matrix is the core of GraphSAGE when the aggregation of node feature
vectors is calculated, which contains the mapping relationship of information aggregation
between the node feature vectors and neighboring features. So, this subsection explains
the parameter learning process of the GNN-DRL algorithm. In the pre-training phase,
the network parameters of the DQN model are fixed while the weight parameters of the
GNN model are adjustable. Since the goal of model training is to maximize the cumulative
reward R of the routing task, a gradient descent algorithm is used to calculate the gradient
of the entire sample in order to learn the optimal weight parameter W of the GraphSAGE
model, as shown in Equation (8):

Wt = Wt−1 − γ∇W R(W) (8)

where γ ∈ (0, 1) is the learning rate, Wt denotes the weight parameter based on Graph-
SAGE model at step t and R(W) is the cumulative reward of the parameter.
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The implementation of the GraphSAGE-based feature extraction algorithm is shown
in Algorithm 2.

Algorithm 2. GraphSAGE-based feature extraction algorithm

Input: Undirected graph G, Node feature vectors {xi, ∀vi ∈ V}, sample size q, network depth L,
weighting matrix W
Output: hidden feature vector of the node {hi, ∀vi ∈ V}

1: Initialize the initial hidden state of each node of the network h0
i ← xi, ∀vi ∈ V ;

2: For each J = 1, 2, · · · L execute Equation (7);
3: For all vi ∈ V execute Equation (7);
4: Sample all neighboring nodes vj of vi with a total of q neighboring nodes to obtain the set of
neighboring nodes Ni, ∀vi ∈ Ni;
5: Extract neighborhood aggregation features of target nodes using aggregation function as

follows: hJ
Ni
← AGGREGATE

({
hJ−1

j , ∀vi ∈ Ni

})
;

6: Neighborhood aggregated features are concatenated with node features to generate hidden
feature vectors using an aggregation function as

follows: hJ
i ← σ

(
W ·MEAN

({
hJ−1

j

}
∪
{

hJ
Ni

}))
7: Paradigm normalization of results hJ

i ← hJ
i /

∣∣∣∣∣∣hJ
i

∣∣∣∣∣∣
2

is performed;

8: Obtain the final hidden feature vector of the node hi ← hL
i , ∀vi ∈ V .

4. Routing Policy for DQN

In order to adapt to dynamic networks with frequent topological changes, GNN-DRL
algorithm employs a distributed routing decision mechanism to assign routing decisions to
each node instead of pre-constructing routing paths. DQN is executed and distributed at
each node, while the centralized training of DQN is implemented to improve stability. In
this paper, the Q value of each neighboring node (i.e., an action) is computed in order. The
state representation of the link associated with the node is taken as the input to the DQN,
and the Q value of the neighbor node is taken as the output of the DQN. After obtaining the
Q values of all the neighbor nodes, the neighbor node with the largest Q value is selected
as the next-hop node to forward the packet.

In each time slot τ, the hidden representation representing the network output
(i.e., the GpaphSage model, whose output data are the network-side state hτ

i ) will be
connected with the user-side state sτ

d . Then the network state vector hτ =
[
hτ

i , sτ
d
]

will be
used as the input to the DQN model. The structure of the neural network model for the
DQN agent in the end-to-end transmission routing problem is shown in Figure 3. The
model takes the network link quality matrix as the initial state and feeds it into the neural
network. The hidden layer of the neural network consists of a two-layer fully connected
network and an activation function. Finally, the model outputs Q values corresponding
to multiple candidate paths for end-to-end transmission. According to the Q values, the
candidate paths can be selected as end-to-end transmission paths by a greedy strategy.

Figure 4 shows the model of the next node selection framework based on DQN
which consists of three components: environment, agent and reward. The DRL agent
is operated by interacting with the network simulation environment and the learning
process is implemented by DQN. During execution progress, the node that saves the packet
fixes its state and selects an action to determine the next hop node using DQN. After
performing an action, the node receives a reward from its environment. During training,
the centralized trainer draws a small random sample from the experience pool and updates
its parameters by minimizing the loss of the DQN. After the parameters are updated, the
centralized trainer sends the updated parameters to each node. Upon receiving the updated
parameters, each node updates the parameters of its DQN. Then, the old experiences are
deleted, and the new policy parameters are used to collect new experiences. This progress
is repeated until convergence or a predefined criterion is reached.
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At the beginning, the DQN agent goes through all traffic demands and tries to change
its current routing configuration. For each traffic demand, the DQN agent evaluates and
assigns the demand for each possible node on this traffic routing path with the GNN. The
DQN outputs a Q value for each action and selects the action to be performed by the agent
from the Q values of all actions. Finally, the network performs the selected action, which
achieves a new state, a reward and a flag when the agent has completed iterating over all
traffic demands. The reward is set to the minimum end-to-end delay between two steps.
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Since the deviation of Qπ(s, a) in the MDP solution of Equation (4) is usually very
high, the dominance function Aπ(s, a) is proposed to replace the value function Qπ(s, a),
which is expressed as follows:

Aπ(sτ , aτ) = Qπ(sτ , aτ)−Vπ(sτ) = Rτ −Vπ(sτ) (9)

where Vπ(s) is a function of the state value expected to be returned in state s. The superiority
of Aπ(s, a) in selecting an action a from the set of actions in a particular state s can be seen.
The policy π is represented by the neural network and its parameter θ, i.e., πθ(a|s; θ) . And
the policy parameters are updated using the parameter gradient as shown in Equation (10):

∇θ J(θ) = Eπθ

[
∞
∑

τ=0
∇θ log πθ(aτ |sτ)Aπθ (sτ , aτ)

]
(10)

Specifically, the parameter θ is updated according to the current strategy and the
dominance function Aπ(s, a).

In the distributed routing model, each agent updates the policy parameters using the
above formulas, and the specific process of realizing the GNN-DRL algorithm is shown in
Algorithm 3.

Algorithm 3. Process of Distributed Routing Algorithm for DQN Agents Based on GraphSAGE.

Input : traffic demand (src, dst, bw) flowing through agent i
Output: find the best next hop node for the route

1: Initialize the network G, neural network parameters θ and experience Pool D;
2: If (i ̸= d);
3: Feature extraction is performed based on GraphSAGE to obtain the final hidden
feature vector of the node hi ← hL

i , ∀vi ∈ V;

4: Combine user states to form a state space si ← [hi

∣∣∣∣∣∣h(s,d,bw)] ;

5: Select action a from Q(s, a) using the strategy function;
6: Perform executable action a, obtain reward r and new status s′;
7: Add the sample (s, a, r, s′) to the experience pool D;
8: A random batch sample is drawn from the empirical pool. And the dominance function is
computed according to Equation (9) so that the standard deviation function (loss function) is
minimized;
9: Use the parameter gradient according to Equation (10) to update the policy parameter θ;
10: Reset the target action value function Q̂ = Q;
11: Save the model.

5. Performance Evaluation

Since the LEO networks lack of the dataset for training, we use NSFNet dataset
instead of the LEO dataset in this section for training. Both LEO networks and NSFNet are
hierarchical routing networks. And some characteristics of LEO networks are similar to
those of NSFNet. Changing the connecting state of some links in NSFNet can monitor the
topological changes in LEO networks. Usually the topological changes in LEO are caused
by link failure and node failure, and in this paper, they can be monitored by disabling
the nodes in the NSFNet, which will cause link failure and node failure. Other than that,
the node and link state are almost the same. The network modeling open-source dataset
KDN (knowledge-defined networking) is used in this chapter, which is based on the real
environment generated through OMNet++. The NSFNet network topology in KDN is
shown in Figure 5. The NSFNet network contains the following: network node distribution,
node attribute characteristics, traffic matrix, transmission delay, link bandwidth, etc.
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The GNN-DRL modeling algorithm uses the KDN dataset and is implemented based
on the TensorFlow and OpenAIGym frameworks. All experiments were performed using
standard hardware (Ubuntu 20.04.1 LTS (Canonical and friends, Boston, MA, USA), AMD
Riptide 9 3950x16-core processor (AMD, Santa Clara, CA, USA), GTX-3080 graphics card
(NVIDIA, Santa Clara, CA, USA)) without using any special hardware accelerators. The
simulation environment is configured by initializing the link characteristics of each topology
with its respective link capacities. In order to make the weights for all links equal, the
network is set to have a bandwidth capacity of 100 Mbps for each link. Traffic demand
is initially distributed on each node according to precomputed routing paths, then the
simulation environment is sequentially updated when training by traffic demand.

The DRL agent uses GraphSAGE to extract the hidden feature state of the links.
In each execution of the GNN, T = 5 message passing steps are run, and a small batch
of 50 samples is used. The optimizer used for training is the Adam optimizer, which
has an initial learning rate of 2× 10−4 and follows an exponential learning rate decay
during training.

During the training of the GNN-DRL algorithm, the reward function converges very
quickly. In order to evaluate the effectiveness of the routing algorithms based on graph
neural networks, we will give the reward curves for all machine-learning-based algorithms
in our experiments during online learning. For simplicity, the reward curves will be
normalized as follows:

Rnormalized = (R− Rmin)(Rmax − Rmin). (11)

where Rmin and Rmax are the minimum and maximum rewards during online learning. The
normalized reward curve is shown in Figure 6, and the results show that the cumulative
reward of the GNN-DRL algorithm is better than that of the DQN algorithm.

Three routing algorithms are compared in the simulation implementation: Dijkstra,
DQN and GNN-DRL. The GNN-DRL is the proposed graph neural-network-based routing
optimization method for LEO satellite networks in this chapter. After a comparison is
made, the GNN-DRL algorithm can find a feasible solution to significantly improve the
average network throughput and reduce the average end-to-end delay under different
traffic demands, as shown in Figures 7 and 8. It can be seen that the GNN-DRL algorithm
has better performance than that of the other two methods in terms of average through-
put and end-to-end delay. Compared with Dijkstra and DQN, the GNN-DRL algorithm
increases the average throughput by 29.47% and 18.42%, respectively, and reduces the
average end-to-end delay by 39.76% and 15.29%, respectively.
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In order to evaluate the performances of Dijkstra, DQN and GNN-DRL algorithms
with changes in the network topology, we consider a case in which there are node failures
in the network. In this test, the NSFNet topology is disconnected with different numbers
of selected nodes to simulate the network node failures in a real network operational
environment. And the experimental results are shown in Figure 9. The GNN-DRL method
proposed in this paper outperforms Dijkstra and DQN on topologies not seen in the training
phase. It can be seen that GNN-DRL has better performance than that of the other two
methods in coping with changes in the network topology and always has lower end-to-end
delay than that of Dijkstra and DQN. The average end-to-end delay of GNN-DRL is reduced
by 29.46% and 17.29% compared to Dijkstra and DQN, respectively. This proves that the
GNN-DRL algorithm proposed in this paper can adapt to different network scenarios and
can operate in highly dynamic networks (e.g., traffic variations, link failures and node
failures), even if the network topology changes frequently in such a scenario.
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Due to the small number of nodes in the dataset used for training, it needs to be
considered whether the algorithm is applicable to large networks. After completing the
training with different routing schemes under NSFNet topology, the trained routing algo-
rithm was applied to networks with different number of nodes to test the changes in the
average end-to-end delay and average throughput of the network as the number of network
nodes increases.

Figure 10 shows the simulation results of the average end-to-end delay of the network
with the variation in the number of nodes. As the number of nodes in the network keeps
increasing, the average end-to-end delay of the three algorithms keeps becoming larger.
But it can be seen that the average end-to-end delay of the GNN-DRL algorithm proposed
in this paper is always lower than that of the other two routing algorithms. At thirty nodes,
the average end-to-end delay of the GNN-DRL algorithm is 30% and 22% lower than those
of the Dijksta and DQN algorithms, respectively. Figure 11 shows the simulation results of
the average throughput of the network with the variation in the number of nodes. As the
number of nodes in the network increases, the average throughput of the three algorithms
becomes smaller, but it can be seen that the average throughput of the GNN-DRL algorithm
is overall higher than that of the other two routing algorithms.
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6. Conclusions

This paper implements a routing optimization algorithm for low-orbit satellite net-
works based on graph neural networks. A graph neural-network-based algorithm for
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low-orbit satellite networks is designed to adapt to dynamic networks with frequent topo-
logical changes and to solve the network congestion problem. The GNN-DRL algorithm
proposed in this paper optimizes network routing by modeling the graph data in the
network with a GNN feature engineering model, generating hidden feature vector repre-
sentations of its own nodes with graph neural networks and then using a fully distributed
multi-intelligence DRL routing model to make routing decisions with a deep reinforcement
learning algorithm. Compared with Dijkstra’s algorithm as well as the traditional DQN
algorithm, the GNN-DRL algorithm proposed in this paper not only improves the overall
network throughput but also reduces the average end-to-end delay. Compared with the Di-
jkstra and DQN algorithms, the average throughput of the GNN-DRL algorithm increases
by 29.47% and 18.42%, respectively, and the average end-to-end delay is reduced by 39.76%
and 15.29%, respectively. In addition, the model used in the GNN-DRL approach is able
to cope with network topological changes (e.g., traffic variations, link failures and node
failures) and is more suitable for real networks.
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