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Abstract: Concrete defects have a significant impact on concrete constructions. These defects should
be considered not only aesthetic defects but also structural defects. In this study, a novel Surface Defect
Index (SDI) method was developed to quantify the defect volume according to liquids’ penetrating
properties by applying ready-mixed plaster (RMP). The SDI refers to the volumetric proportion of
all apparent and unapparent defects in a given area of concrete, and it is expressed as a percentage
of the total volume affected by defects. The proposed SDI method was validated and tested under
various controlled defect configurations. Regardless of the specific characteristics of each defect
configuration, the SDI method consistently demonstrated a high level of consistency, repeatability,
and reproducibility, with coefficients of variation (CVr and CVR) below 5% and with correlation
coefficients of R2 = 0.9968. The method succeeded in assessing the surface quality levels through
the SDI, demonstrating a significant correlation between this index and the volume of defects. The
proposed index was tested on real concrete surfaces, affirming its efficacy in accurately quantifying
the volume of surface defects; thus, it can provide an important metric for quality control. Moreover,
it provides an excellent evaluation of the quality of concrete surfaces.

Keywords: defect volume; SDI; quality of concrete surfaces; ready-mixed plaster (RMP); controlled
samples

1. Introduction

Characterizing the quality of a concrete surface is a major problem for the concrete
industry. Surface quality varies depending on the application envisaged for concrete. The
surface needs to be not only visually appealing but also structurally sound. Quantifying
surface defects is essential for ensuring material quality and durability, and it is equally
crucial to understand how these surfaces initially form and how they may be altered.
Surfaces may indeed evolve freely during their solidification, but they may also incur
damage, or they may take on a closed shape due to the wall effect when in contact with
formwork [1,2]. In assessing the severity of surface defects in concrete, it becomes evident
that the gravity of these imperfections is not solely determined by the area that they occupy
on the surface but also by their depth. Deeper defects can have a more profound impact
on the structural integrity and performance of concrete [3,4]. Additionally, the depth of
defects can influence their potential to accumulate contaminants and facilitate the growth of
microorganisms that might compromise the material’s long-term durability [5,6]. Therefore,
for aesthetic and functional considerations, the combination of both surface area and depth
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provides an objective assessment of concrete surface quality. Surface quality evaluation
tends to be subjective and, hence, more difficult, as current specifications allow for visual
evaluation, which can lead to disagreements in the detection and evaluation results [7]. The
primary quality inspection methods for concrete surfaces are based on manual inspection—
size measurement, counting, and classification of bugholes on the surface of concrete [8–10].
The Quality Surface Index (QSI) serves as an illustrative example of a simplified method for
evaluating the surface area occupied by pores. This approach, as depicted in Figure 1, which
provides a visual representation of this surface evaluation method, involves analyzing
pore groups based on their diameter [11]. The sand patch method, according to Kaufmann,
involves a pre-defined amount of sand to be applied on the surface to be measured, and it
is distributed evenly in circular movements [12].
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Figure 1. Data collection scheme and example using the Quality Surface Index (QSI) approach: Each
colored circle represents a specific pore diameter [11].

Despite the fact that manual evaluation is a powerful inspection tool and plays a
significant role in detecting and evaluating the quality of concrete, several limitations have
been found. First, manual inspection methods are performed by inspectors walking along
the surface of a structure while using only their naked eye. It has also been pointed out
that large quantities of concrete are widely used. Secondly, the results are not always
reliable and are even prone to errors, the process of inspection is time-consuming, and the
requirement of experienced inspectors exacerbates the pressing shortage of a highly skilled
inspection workforce in the construction industry [10].

As such, the main disadvantage of visual inspection is that it is time-consuming, labor-
intensive, and impractical [9,13]. A person’s ability to judge faults is limited in that it cannot
quantify the value of a given defect. Subjective evaluation depends on individual experience
and differing perceptions without a uniform standard; in fact, the same person might even
make different judgments on different days. Moreover, it is not possible for a person to
determine all possible defects [14]. This technique, however, is extremely laborious and
is incapable of representing surface quality [7]. Therefore, this method was replaced with
an improved method recommended by the Concrete International Board (CIB) [15], which
proposed the comparison of actual concrete surfaces with photographs of reference samples
representing seven scales with different degrees of bughole coverage. An illustration of the
reference photos is provided in Figure 2. While comparison with a reference sample is a
simple avenue to evaluate surface quality, some of the views expressed in that connection
assert that it can be problematic because of the variation between the different printed
scales of the reference samples and human eyes. Moreover, one surface may have several
types of bugholes together or a combination of several different surface imperfections, so
using the references becomes difficult and somewhat subjective [14,16–18].
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Due to these quantitative problems, more objective detection and evaluation methods
have been developed. Image processing technology (IPT) is considered a powerful auto-
mated tool for application in to civil engineering materials that can deliver objective results
in many areas of study [20,21], such as in concrete bridge inspection [22], the classification
of radar images [23], and crack monitoring and quantification for concrete surfaces [24].

There are several methods focused on the use of image processing technology to detect
and evaluate the bughole distribution on concrete surfaces [5,10,25–28]. These methods
allow one to delineate and quantify areas with surface defects according to the preset
quality parameters introduced into the control software [11]. However, there are several
deficiencies associated with the direct use of image processing technology for surface defect
inspection. Although these methods reduce the subjectivity of the results with image
processing algorithms that are designed to assist inspectors in detecting defects, their final
results depend heavily on human judgment [29]. In addition, the technical variables for
each concrete element (luminosity, brightness, roughness, geometry, etc.) must be correctly
analyzed before they are introduced to obtain results that correspond to reality, which
impedes their application [11,30]. The detection results of image processing algorithms
may be inexact due to the impact of noise, such as illumination, shadows, and combinations
of several different surface imperfections [31–34]. Finally, these methods frequently involve
the need for several steps; most of them can be repeated on several occasions until the
desired results are obtained (trial and error). In other methods, analysis and inspection are
more complicated, as in the one method proposed by Majchrowski et al. [18], where an
advanced 3D scanner and an optical method were used to analyze and measure the surface
topography of a concrete surface. In recent years, other inspection methods were developed
based on deep learning algorithms [35]. Deep learning algorithms have demonstrated
outstanding technical capabilities in the analysis of inspected images [36–39]. In deep
learning, convolutional neural networks (CNNs) are specially constructed to treat the
variability in 2D forms. As such networks prevent the complex preprocessing of an image,
it is shown that they surpass all other techniques. These characteristics make CNNs
an effective identification method that is widely used [29,35,40,41]. These methods find
widespread use in the detection of concrete surface cracks [42–46] and bugholes on concrete
surfaces [9,18]. However, errors may occur during image tests when there are several types
of defects, including cracks, bugholes, and color differences. Thus, it becomes challenging to
make a clear distinction between bugholes and some areas of darker color difference, which
causes a misunderstanding coming from some similarities in their form. Additionally,
due to the light color of bugholes with a small depth, the contrast of colors with the
concrete surface is not evident [36,43] because they are usually darker than the remaining
concrete surface. While many methods offer benefits in evaluating concrete surfaces, an
assessment of the quality of concrete surfaces cannot be provided in a simple manner
on-site and by non-specialized operators. Also, previous studies have not considered
the case in which there are many different surface defects on the same concrete surface.
However, this situation occurs frequently on concrete surfaces. Moreover, these methods
face limitations in terms of cost, complexity, time requirements, resolution constraints, and



Appl. Sci. 2024, 14, 3828 4 of 22

subjectivity. Additionally, variations in the complexity of defects pose challenges for precise
measurements and effective evaluation.

The main purpose of this study is to develop a novel Surface Defect Index (SDI)
method for defect quantification. The proposed index is intended to quantify the percent-
age of the volume occupied by all types of defects found simultaneously on the same
surface, regardless of the complexity of their shape and size, using the properties of liquid
penetration. Furthermore, the developed method is used for the quantification of randomly
distributed defects and the non-uniform distribution of their surfaces and depths, thus
enhancing objectivity in surface quality evaluation. This novel method mainly focuses on
assessing the impacts of volume parameters (length, width, and depth) on the quality of
concrete surfaces. This is because the volume of defects can significantly impact the ingress
of harmful elements, such as moisture, aggressive chemicals, and microorganisms, into the
concrete matrix. Deeper defects allow pathways for these detrimental elements to penetrate
deeper into the concrete, potentially compromising its structural integrity over time.

Therefore, accurately quantifying the volume of defects is essential for identifying
potential areas of vulnerability in concrete structures and implementing appropriate mainte-
nance and repair strategies to enhance their long-term durability and performance. The effi-
cacy of the method presented was validated using controlled samples, and it demonstrated
successful application and effectiveness when implemented on real concrete surfaces.

2. Proposed Method for Quantifying and Classifying Defects in Concrete Surfaces

The surface of concrete generally has many surface defects. These defects should
be considered not only as aesthetic defects but also as structural defects that reduce the
structural performance and durability of concrete surfaces. A quantitative and simple
method for quantifying the defect volume is preferable for the evaluation of the quality
levels of concrete surfaces.

The aim of this research was to innovate and develop a method for supporting the
objective evaluation of the quality of concrete surfaces. Therefore, an overall evaluation
of quality requires the integration of a maximum of parameters. This objective evaluation
reduces the discrepancies in quality evaluations. Consequently, we had the challenge of
developing a method of evaluating of the level of defects to support the objective judgment
of concrete surfaces’ quality. The proposed method can quantify the values of all types of
defects. Moreover, it is able to reveal all their positions and their infiltration into concrete,
especially in the case of large surfaces, by establishing a quantitative survey of defects in
terms of the area affected and the depth of the defects.

The developed method is based on the quantification of the volume of defects on the
concrete surfaces using concrete’s absorptive properties. This is a quantification of surface
defects through fluid penetration. The mass transport of fluids in hardened concrete refers
to the ability of concrete, once it has cured, to allow the movement of liquids through its
structure [47,48].

The capacity of concrete to absorb or take in a liquid varies depending on the concrete
mix, its rheological properties, the degree of compaction, and the porous structure of
the material [49,50]. Furthermore, the penetration of liquids is a valuable and distinctive
property that provides insights into the volumetric fraction of defects that are available for
the transport of liquids through the structure of concrete when exposed to liquids. The
porosity of concrete, which is determined by the size and distribution of its pores, has a
significant impact on the transport of fluids across concrete surfaces. This mass transport
characteristics are influenced not only by the presence of defects and their geometry but
also by the extent to which these defects have infiltrated into the concrete [51,52]. Thus,
quantification of the defect volume in concrete constitutes a key factor in determining the
concrete’s durability and resistance to degradation. The larger the surfaces of defects and
the more profound they are, the greater the potential for water, air, or harmful chemicals
to penetrate and cause damage over time. Measuring the volume of surface defects can
serve as a valuable indicator in quality control and manufacturing processes, as it can help
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identify defects that may affect the performance or appearance of concrete surfaces. A
simple measurement method is needed to quantify defects distributed on a concrete surface.

The proposed method uses concrete’s property of fluid penetration by applying ready-
mixed plaster (RMP) on a concrete surface. The amount of RMP that penetrates through a
specific area of the concrete surface reflects the extent of damage in that area by quantifying
the volume of the defects that are present; detailed surface information that can be an
important parameter in the explanation of the affected proportion of the surface and can
provide quantitative information on its quality is captured.

3. Principles of the Surface Defect Index (SDI) Method

The procedure implemented in the SDI method includes determining the area to be
examined using a frame that specifies this region. This frame serves as an indicator for
identifying and isolating the precise portion of the surface under scrutiny, allowing for a
focused and systematic assessment of the targeted areas. By defining the boundaries of the
analysis zone, the frame facilitates accurate measurements of the volume of defects, ensur-
ing consistency and reliability in the results obtained. Furthermore, it enables the precise
evaluation of the level of surface defects, further enhancing the accuracy of the assessment.

The frame used to determine the surface defect area in this method is not standardized,
meaning that there are no fixed or standardized dimensions for its measurements. Indeed,
we can adjust the dimensions of this frame according to the specific needs of each sample or
analysis. This flexibility allows the accurate targeting and quantification of surface defects
by adapting the frame to the unique characteristics of each situation. Thus, we are able to
obtain more precise and representative results by considering the variability in volume
parameters, which are reflected by the three-dimensional measurement of surface defects,
including their length, width, depth, and distribution within the material. Additionally,
there is the flexibility to use more than one frame, allowing for a comprehensive assessment
of surface defects across different areas or sections of the surface being studied. This
approach enables us to capture a more complete picture of the surface characteristics and
obtain accurate measurements of defect areas.

Figure 3 describes the overall process of the new method proposed here. The SDI
method first accurately delineates the surface defect area and then characterizes the present
defects by quantifying their volume (length, depth, and width).

The SDI method was developed using a four-step methodology, which is described in
the following:

• The first step in the SDI method, frame design, involves creating a frame adapted to
the dimensions of the surfaces under analysis. This frame can be constructed from
metal, plastic, or any other rigid material. Its dimensions are adjusted based on the
size of the samples and the specific requirements of the study. The role of the frame as
a crucial tool is to precisely delineate the measurement area for surface defects in the
SDI method.

• In the second step, the placement of the frame for optimal evaluation, it is recom-
mended to position the frame horizontally on the surface being analyzed, ensuring
direct contact with the sample surface. This arrangement allows for the precise and
effective delineation of the entire affected surface.

• In the third step, the application of RMP, a ready-mixed plaster (a pre-blended mixture
of gypsum) was used for the tests to reveal the volume of defects present on the
surface. This step involved applying RMP inside the frame at the interface between
the frame and the surface under analysis, as well as applying the RMP on an ideal
reference surface unaffected by defects (free from defects), which served as a baseline
for comparison. The ideal surface was an estimation of the surface under analysis
before the damage occurred.

• In the fourth and last step, surface defect quantification, after enclosing the entire
damaged area within the frame (a rectangle bounding the length, width, and depth),
all present defects were assessed by quantifying their volume. The surface defect
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quantification relied on the difference between the measurement obtained from the
RMP applied on the surface under analysis and that applied on the reference surface.
The quantification of the volume of surface defects is expressed by the Surface Defect
Index (SDI), which represents the percentage of defects by volume.
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4. Materials and Methods
4.1. Materials
4.1.1. Frame

In this study, a rectangular steel frame with dimensions of 25.8 mm × 16.2 mm
and a thickness of 2.7 mm was designed to assess the surface under analysis. The inner
dimensions of the frame, which encompassed the affected surface, were 20 × 10.4 cm2.

These frame dimensions were chosen based on the surfaces under study. The selection
of these dimensions was deliberate, aiming to ensure adequate coverage of surface defect
areas while maintaining a practical and manageable size for laboratory use. This size was
determined considering the variability in sizes and shapes of the samples to be analyzed,
providing a wide enough area to encompass defects of variable sizes. Furthermore, the
2.7 mm thickness of the frame was chosen to ensure adequate rigidity while minimizing
any deformation that could skew the measurements. This robust frame design ensured
precise delineation of the surface defect measurement area, thereby providing reliable
results in assessing the surface quality of the samples.

4.1.2. Ready-Mixed Plaster

Ready-mixed plaster offers excellent penetration properties, in addition to several
benefits, such as being safer, cost-effective, and environmentally friendly. Ready-mix
plastering provides a convenient and easy-to-use option. In this study, Algerian-made
ready-mixed plaster was used, with water comprising 50% of the plaster’s weight. The
physical and chemical properties of the plaster used are detailed in Table 1.
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Table 1. Physical and chemical properties of the plaster.

Compounds SO3 CaO SiO2 Fe2O3 Na2O K2O MgO

(%) 38.44 28.16 10.12 0.34 0.04 0.23 1.25

Density = 2.31
Setting time = 25 min

4.2. Experimental Methodology

The procedure employed in the SDI method involved several basic phases. Firstly,
before each operation, it was necessary to prepare the tested surface to ensure the perfect
penetration of the ready-mixed plaster (RMP). This initial phase involved cleaning the
surface by brushing to remove all pulverulent compounds contained in the surface parts.
Next, a tray comprising a receptacle containing the RMP and tools needed for the handling
process (scraper, cloth) was weighed (Mt before), as shown in Figure 4.
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The frame was then placed on the surface of the controlled sample to be tested, and
the RMP was applied inside the frame with a scraper at the interface between the surface
of the frame and the specimen surface (20 × 10.4 cm2), which represented 208 cm2 of the
total area inspected. This process involved applying a bottom layer using a scraper with
sufficient RMP and adequate pressure to ensure their good penetration at the base and to
adequately cover all surface defects. Then, the frame was filled with RMP up to its edges
(See Section 5.3).

The RMP covering the surface was levelled using a scraper by shaking it periodically
from one side to the other, distributing the RMP evenly along the surface frame/specimen
surface interface. After the delineation of the RMP on the surface, the edges of the frame
were wiped with a cloth to recover any RMP that was deposited during the application
process. Once the plastering operations were completed, the cloth and the scrapers were
automatically returned to their location in the tray. The tray was then weighed to determine
the mass of the RMP deposited at the interface of the frame and specimen surface (Mt after).

The mass of the RMP was determined as follows:

Mp = Mt before − Mt after (1)

The mass of RMP that penetrated into the surface defects (Mpp) was calculated by
weighing the RMP mass deposited at the interface of the frame and specimen surface (Mp)
relative to the initial mass of the RMP (M0) applied inside the frame on a flat glass surface
that was smooth and free of defects (reference medium), as shown in Figure 5.
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The mass of the RMP that penetrated (Mpp) was determined as follows:

Mpp = MP − M0 (2)

where

- Mpp: mass (in g) of the RMP that penetrated into the surface voids inside the contact
surface area (frame/specimen surface), which represented 113.04 cm2.

- Mp: mass of the RMP (in g) deposited on the frame at the interface (frame/specimen
surface).

- M0: mass of the RMP (in g) deposited on the frame at the interface (frame/glass
surface); M0 = 103.62 g.

Knowing the mass of RMP that penetrated into all surface defects, we can then
calculate its volume, which represents the volume of the defects. The calculation was made
using the following equation:

Vdéfects=
Mpp
ρ

(3)

where

- Mpp is the mass of RMP that penetrated (g);
- Vdéfects is the defect volume (cm3);
- ρ is the RMP density (1.845 g/cm3).

The percentage of defects by volume was calculated in relation to 100% of the inspected
area with the following expression:

SDI(%) =
Vdéfects

V0
× 100 (4)

where V0 is the known volume of RMP deposited inside the frame placed on the glass
surface (reference medium).

V0 = S × e (5)

where:

- S: is the inner surface area of the frame (contact surface between RMP and the glass
surface), which is 208 cm2.

- e: is the thickness of the frame, which is equal to 2.7 mm.

5. Validation of the SDI (Surface Defect Index) Method: Experiments on Repeatability
and Reproducibility

In measurement system analysis (MSA), there are several formulas that are used to
quantify the performance and characteristics of a measurement system. These formulas
help to quantify different components of measurement variation, such as repeatability and
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reproducibility. They are used to assess the quality and reliability of a measurement system.
The objective of this part of the study is to validate the accuracy of measurements, repro-
ducibility, and repeatability of the SDI (Surface Defect Index) method. Through rigorous
testing and analysis, we aim to establish the method’s reliability in measuring defects’ vol-
ume and evaluating the quality of concrete surfaces efficiently. The validation procedure is
founded on key parameters for quantifying surface defects under various conditions using
controlled samples. These parameters include their shape, size, depth profile, density, and
distribution. This validation process involves a comprehensive assessment of the method’s
performance considering various factors. We report the accuracy of the measurements at all
levels identified in the procedure and cover the repeatability, reproducibility, and accuracy
of the measurements.

5.1. Specimen Test Preparation, Conditioning, and Test Parameters

Theoretically, this method is capable of quantifying concrete surface defects. The
test samples needed to be prepared according to the study’s specifications. To obtain
repeatability and reproducibility parameters, a series of four (27.5 cm × 17 cm × 2.5 cm)
surface specimens were manufactured using plaster. Plaster is a material with an imprint;
it is dimensionally stable and offers high precision, as well as detailed definition. Due to
the variety of surface defects encountered, the validation of the method would require
adaptation to each level of surface defects and evaluation in a case-by-case study. In
order to present different surface defects that can affect the appearance, functionality, and
durability of structures, surface specimens on which defects with known characteristics
were reproduced were manufactured. Defects on specimen surfaces can be defined as
ideal in the sense that they are regular and perfectly clean geometric indications. For this
purpose, fifteen types of forex texturing patterns with different shapes, sizes, and depths
were manufactured, as shown in Figure 6. These patterns were used to create defects on
the surface of the molded specimens with well-defined volumes, as shown in Table 2. Each
printed defect presented specific characteristics, such as its shape, size, and depth. These
features were carefully chosen to ensure a variety of defect configurations that could be
studied and evaluated as part of this research.
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Table 2. Measured volume of the texturing patterns.

Texturing Patterns P1 P2 P3 P4 P5 P6 P7 P8 P9

Volume (cm3) 0.785 0.392 3.14 7.065 3.532 3.065 3 1.5 3.75

Texturing Patterns P10 P11 P12 P13 P14 P15 P16

Volume (cm3) 1.875 0.4 2 0.5 4 2 1

5.2. The Process of Preparing Test Specimens

After casting the plaster, a powder release agent was sprinkled on the molded surface
to facilitate the detachment of the texturing patterns. Once the texturing patterns were
well distributed across the surface, a glass plate was placed on the surface with a certain
pressure to provide uniform implantation of the texturing patterns and guarantee the
perfect flatness of the surface.
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The texturing patterns were pre-perforated, allowing a screw to be placed inside
subsequently. This operation needed to be performed by carefully retrieving all of the
patterns. Once the surface specimens’ preparation was completed, the test specimens
were exposed to drying in the laboratory until the dimensional stability of the volumes
of the defects created was achieved. The main steps in the specimens’ preparation are
summarized in Figure 7.
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Furthermore, to avoid the presence of imperfections induced during the casting pro-
cess and, thus, to truly isolate the effect of roughness on the tested surfaces, the samples
were coated with an epoxy film that allowed for smooth surfaces that were resistant and
free from undesirable defects. Only variations in defects found during surface preparation
should be considered for quantifying the defect volume, which allowed for the accurate and
detailed characterization of the surface profile. The epoxy film also allowed perfect and thor-
ough cleaning of surfaces to facilitate their reuse in repeatability and reproducibility studies.

According to the specifications of the surface defect characteristics, the surface samples
were grouped into four types of configurations. These configurations were carefully de-
signed to represent different defect characteristics that can be encountered in real situations.
Thus, each sample of configurations allowed for the assessment and study of a specific set
of defects based on various defect parameters, such as size, shape, depth, distribution, and
density, as follows:

• Configuration C1: (P12, P7, P8, P9, P10, P5, P6, P14) with a theoretical volume of
defects equal to 22.72 cm3 and a theoretical surface area of defects of 32.71 cm2.

• Configuration C2: (3.P16, P13, 2.P1, 2.P2, P11) with a theoretical volume of defects
equal to 6.25 cm3 and a theoretical surface area of defects of 7.54 cm2.

• Configuration C3: (P11, P10, P15, P5, 2.P16, 2.P1) with a theoretical volume of defects
equal to 11.37 cm3 and a theoretical surface area of defects of 18.78 cm2.

• Configuration C4: (P9, P10, P14, P12, P4, P5, P3) with a theoretical volume of defects
equal to 25.36 cm3 and a theoretical surface area of defects of 30.77 cm2.

Figure 8 shows the appearance of the four surface configurations: C1, C2, C3, and
C4. Each surface sample had a specific configuration that encompassed defects of various
sizes, lengths, depths, and shapes, covering a wide range of scenarios corresponding to
one of the configurations mentioned above. The four configurations reflected the expected
variability under the conditions of repeatability and reproducibility and were adapted to
the measurements to be made.
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5.3. Application of Ready-Mixed Plaster (RMP) and Execution of Measurements

After the preparation of the test samples, the surfaces were subjected to plastering
tests, where the ready-mixed plaster (RMP) was applied following the guidelines of the
SDI method. The main steps in applying RMP to the surfaces of the test specimens are
summarized in Figure 9.
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Figure 9. Specimen surface in the different steps of the RMP application process: (a) sample surface
with various defects; (b) placement of the frame on the surface with all defects grouped inside;
(c) application of the RMP on the framed area; (d) filling of the interior of the frame. In (e), all defects
were filled after removing the frame and unloading the RMP from it.

The measured ready-mixed plaster masses for each sample were investigated as
quantitative variables. These variables are represented as the mean (M), standard deviation
for repeatability (SDr), and standard deviation for reproducibility (SDR), along with the
corresponding coefficients of variation in repeatability and reproducibility (CVr% and
CVR%). First, repeatability (within-operator variance) and repeatability variance was
assessed as follows: an operator performed four repeated measurements on the same
specimen. This represented the variation due to repeated measurements by the same
operator on the same specimen.
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The formula for calculating the standard deviation for repeatability is

SDr =
√

∑
((

Vi − V
)2/(n − 1)

)
(6)

where Vi is the ith measurement, V is the average of all measurements, and n is the total
number of measurements. The coefficient of variation for repeatability (%CVr) is given by

CVr% =
(
SDr/V

)
× 100 (7)

Next, reproducibility (between-operator variance) or reproducibility variance was
assessed as follows: two operators (operators A and B) performed the measurement
procedure on four configurations/parts. This represented the variation due to differences
between operators.

The formula for calculating the standard deviation for reproducibility is

SDR =

√
∑

((
Vi − V

)2/(k − 1)
)

(8)

where Vi is the average of measurements by the ith operator, V is the overall average
of all measurements, and k is the number of operators. The coefficient of variation for
reproducibility is given by

%CVR =
(
SDR/V

)
× 100 (9)

Hence, four surface specimens were measured by two operators with four replications,
resulting in a total of 32 conducted experiments.

6. Results and Discussion

Tables 3 and 4 summarize the results of the measurements performed by the operators
and the different variables calculated in the assessment of repeatability and reproducibility.

Table 3. Summary of operators’ results for the different specimens.

Operator A

M
ea

su
re

m
en

t Specimens

C1 C2 C3 C4

Amount of
RMP

Applied (g)

Defect
Volume

(cm3)

SDI
(%)

Amount of
RMP

Applied
(g)

Defect
Volume

(cm3)

SDI
(%)

Amount of
RMP

Applied
(g)

Defect
Volume

(cm3)

SDI
(%)

Amount of
RMP

Applied
(g)

Defect
Volume

(cm3)

SDI
(%)

1 148.0 24.05 42.82 116.8 7.09 12.62 124.9 11.53 20.53 151.9 26.16 46.58

2 146.4 23.18 41.27 115.7 6.55 12.62 126.8 12.56 22.36 152.0 26.22 46.69

3 147.3 23.67 42.15 117.0 7.25 12.91 125.9 12.07 21.49 150.9 25.63 45.64

4 146.8 23.40 41.66 116.2 6.82 12.14 126.1 12.18 21.69 152.7 26.60 47.36

M
ea

n

147.12 23.57 41.97 116.42 6.93 12.34 125.92 12.08 21.52 151.87 26.15 46.57

Th
eo

re
ti

ca
l

va
lu

es

22.72 40.45 6.25 11.13 11.37 20.24 25.36 45.16
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Table 3. Cont.

Operator B

M
ea

su
re

m
en

ts

Specimens

C1 C2 C3 C4

Amount of
RMP

Applied (g)

Defect
Volume

(cm3)

SDI
(%)

Amount of
RMP

Applied
(g)

Defect
Volume

(cm3)

SDI
(%)

Amount of
RMP

Applied (g)

Defect
Volume

(cm3)

SDI
(%)

Amount of
RMP

Applied (g)

Defect
Volume

(cm3)

SDI
(%)

1 147.5 23.78 42.34 116.0 6.71 11.95 127.4 12.88 22.93 153.6 27.09 48.24

2 148.8 24.49 43.61 115.3 6.33 11.27 126.9 12.62 22.47 151.8 26.11 46.49

3 146.9 23.46 41.77 116.5 6.98 12.43 127.6 12.94 23.04 152.9 26.71 47.56

4 148.8 24.49 43.61 115.5 6.44 11.47 125.5 11.86 21.12 152.1 26.28 46.79

M
ea

n

147.85 24.05 42.83 115.82 6.61 11.78 126.85 12.57 22.39 152.60 26.55 47.27

Th
eo

re
ti

ca
l

va
lu

es

22.72 40.45 6.25 11.13 11.37 20.24 25.36 45.16

Table 4. Standard deviation (SDr, SDR) and coefficient of variation (CVr, CVR) of the measurements
for each specimen.

Operators
Specimens

C1 C2 C3 C4

A SDr 0.37 0.30 0.42 0.40

B SDr 0.51 0.29 0.49 0.43

Mean SDr 0.44 0.29 0.45 0.41

A
SDR 0.34 0.23 0.35 0.28

B

A CVr % 1.57 4.33 3.48 1.53

B CVr % 2.12 4.39 3.90 1.62

Mean CVr % 1.84 4.36 3.69 1.57

A
CVR % 1.43 3.40 3.84 1.06

B

Figure 10a displays a comparison of the results for the standard deviations for repeata-
bility (SDr) and reproducibility (SDR) involving the different configurations of surface
defects, with each surface having a specific theoretical volume of defects. The standard
deviations for repeatability (SDr) and reproducibility (SDR) were generally consistent
across configurations. A comparison of the results shows that the standard deviation for
reproducibility (SDR) was slightly lower than the standard deviation for repeatability (SDr)
for each configuration, suggesting that the variability between operators was slightly lower
than the variability of repeated measurements by the same operator. The relatively low val-
ues indicated good accuracy and greater repeatability and reproducibility in measurements
for these configurations.

• Configuration C1: The standard deviations for repeatability and reproducibility were
relatively low for this configuration (SDr = 0.44, SDR = 0.34). This suggests high
precision and consistency between repeated measurements and across operators.

• Configuration C2: The standard deviations remained low (SDr: 0.29, SDR: 0.23),
indicating that even for smaller defect volumes, the measurement method maintained
good precision and acceptable repeatability and reproducibility.

• Configuration C3: The standard deviations for repeatability and reproducibility were
consistent with those of the previous configurations (SDr: 0.45, SDR: 0.35). The



Appl. Sci. 2024, 14, 3828 14 of 22

method maintained its precision, repeatability, and reproducibility for a moderate
defect volume.

• Configuration C4: Once again, the standard deviations remained low (SDr: 0.41, SDR:
0.28), suggesting that even for larger defect volumes, the method maintained high
precision and satisfactory repeatability and reproducibility.
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Figure 10. (a) Variations in SDr and SDR; (b) variations in SVr and SVR as affected by various defect
configurations, repeated measurements, and operators.

From the comparison results shown in Figure 10b, it is demonstrated that the CVr %
(coefficient of variation of repeatability) values were slightly higher than the corresponding
CVR % (coefficient of variation of reproducibility) values for all of the specimens. This
suggests that the variability in measurements taken by the same operator (CVr) for a
specific specimen was slightly higher than the variability observed when different operators
measured the same specimen (CVR). The two indicators of variability were nearly identical,
implying a high level of measurement reliability. This suggests that the method used to
measure these surface specimens demonstrated good repeatability and reproducibility
across different configurations of defects.

• Configuration C1 (CVr: 1.84%, CVR: 1.43%): This defect configuration exhibited very
low variability, both for measurements repeated by the same operator (CVr) and for
measurements between different operators (CVR). The CVr and CVR values were close
and low, indicating high consistency and repeatability, as well as reproducibility of
measurements. The CVr and CVR values below 5% for this configuration indicate that
the measurement method was highly precise and consistent [53–55], suggesting an
accurate defect volume assessment for a defect configuration with a relatively larger
volume. The measurement method proved to be reliable for assessing a relatively
larger defect volume with consistent results.

• Configuration C2 (CVr: 4.36%, CVR: 3.40%): Measurements repeated by the same
operator (CVr) displayed slightly higher variability than in Configuration C1. How-
ever, the variability between different operators (CVR) was also slightly higher but
still acceptable. Although slightly higher than for Configuration C1, the CVr and CVR
values were still below 5%, indicating good precision and satisfactory repeatability
and reproducibility. Consequentially, despite the smaller defect volume, the method’s
consistency suggests that it can reliably capture smaller defect sizes.

• Configuration C3 (CVr: 3.69%, CVR: 3.84%): The results were similar to those of
Configuration C2, with slightly higher variability values for measurements repeated
by the same operator (CVr) and between different operators (CVR). Similarly to the
previous configurations, the CVr and CVR values below 5% point to a method with
high precision. The consistency of the measurements across the moderate defect
volume indicate reliable performance regardless of defect size.

• Configuration C4 (CVr: 1.57%, CVR: 1.06%): This configuration demonstrated variabil-
ity values similar to those of Configuration C1, with high consistency in measurements
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repeated by the same operator (CVr) and between different operators (CVR). Config-
uration C4 stood out for its exceptional precision and consistency in measurements,
showcasing CVr and CVR values that were among the lowest. The stability in the mea-
surements suggests that the method could accurately capture larger defect volumes as
well. Despite the larger defect volume, the CVr and CVR values remaining below 5%
indicate a method that can handle different defect scales.

In our study, all four defect configurations of the specimen surfaces exhibited very
low variability in measurements. The coefficient of variation of repeatability (CVr) and the
coefficient of variation of reproducibility (CVR) for each configuration were both below
5%. The small variability indicates that our measurements were consistently close to the
mean value for each configuration. This indicates a high level of consistency, repeatability,
and reproducibility in our measurements. The relationship between the CVr and CVR
values and the theoretical defect volume showcases the robustness and adaptability of our
measurement method. The fact that the CVr and CVR values were consistently below 5%
across different defect volumes implies that the SDI method is not significantly influenced
by the specific defect size.

This consistency enhances the credibility of our results and suggests that the method
can reliably assess defect volumes across a range of sizes. The combination of low CVr
and CVR values with consistent measurements for various defect configurations and
volumes underscores the accuracy, reliability, and versatility of our measurement method
in assessing the volume of surface defects in concrete surfaces.

The following are the conclusive outcomes of the validation:

• High precision: The fact that both the CVr and CVR values were below 5% suggests
that our measurement method is highly precise. The small variability indicates that
our measurements were consistently close to the mean value for each configuration.

• Reliability: The consistency across all defect configurations suggests that our measure-
ment method is robust and reliable. The method was not significantly affected by the
specific features of each configuration.

• Consistent performance: Regardless of the specific characteristics of the surface defects,
our measurements remained stable, repeatable, and reproducible. This implies that
our method was capable of producing reliable results under various conditions.

• Validation findings: The low variability values are indicative of a well-controlled
measurement process. This provides confidence that the method can be effectively
used to assess the surface defect volume in concrete samples.

Consequently, based on the results gathered in Table 2, a correlation between the
experimental and theoretical measurements of the defect volume is evident. From the data
in Figure 11a, there is a strong positive linear correlation and high agreement (R2 = 0.9968)
between the experimental measurements of the defect volume by both operators and the
theoretical values of the defect volume for each configuration. This is an extremely favorable
result that confirms the validity and high accuracy of the experimental measurements with
respect to the theoretical values of the defect volume. In addition, in Figure 11b, an
extremely strong positive correlation (R2 = 0.9968) is shown between the experimental
index and the theoretical index, suggesting that the experimental SDI accurately reflects
variations relative to the theoretical SDI. The experimental SDI is a robust indicator for
evaluating the conformity of experimental measurements with theoretical measurements
of defect volume.
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Figure 11. Correlation between the experimental and theoretical values: (a) defect volume and
(b) SDI.

Surface Quality Evaluation with the SDI of the Controlled Specimens

In order to compare the variability at the different levels of defects in this study, the
average values of the experimental SDI for each of the controlled samples were calculated.
The individual SDI of each of the configurations is presented in Table 5 with the theoretical
values (comprising previous data from controlled samples).

Table 5. Theoretical values and experimental average values of the SDI for each configuration.

Configuration
Theoretical Volume of

Defects
(cm3)

Theoretical Surface
Area of Defects

(cm2)

SDI
(%)

Experimental Volume
of Defects *

(cm3)

SDI *
(%)

C1 22.72 32.71 40.45 23.81 42.4

C2 6.25 7.54 11.13 6.77 12.05

C3 11.37 18.78 20.24 12.32 21.94

C4 25.36 30.77 45.16 26.35 46.92

(*) Mean value.

The advantage of the SDI is that it quantifies the defect volume by considering both the
spatial extent (surface area) and the depth of defects. This provides a more comprehensive
assessment of surface quality, accounting for defects that may not be immediately visible at
the surface but can still impact long-term performance. For example, honeycombs, deep
cracks, and bugholes in concrete may indicate durability problems that may not necessarily
be detected through surface assessment alone.

The quantification of the defect volume often has a stronger correlation with material
durability than the quantification of the defect surface area. Defects that penetrate deep into
a material typically have a more significant impact on durability. Although Configuration
C1 had a larger total defect area than that of Configuration C4 (estimated at 32.71 cm2 and
30.77 cm2, respectively), the SDI was lower for Configuration C1, with a value equal to 42.4
(42.4% of the volume occupied by defects) compared to the volume of defects occupied by
Configuration C4, which was estimated at 46.92%. This was due to the greater depth of
defects in C4, which had a more significant impact on the surface quality. In other words,
even though C1 had a greater defect surface area, the defects were less deep, resulting in a
lower SDI.

This comparison highlights that the SDI takes into account the depth of defects, in
addition to the surface area, when assessing surface quality. In this case, it demonstrates
that the depth of defects can be a determining factor in the quality of a surface.

That is, the quality of the sample surfaces is closely related to the defect volume.
Actually, Figure 12 demonstrates an excellent correlation between this index and the
volume of defects when the surface quality is assessed through the SDI, suggesting that
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the measurements of the SDI and the volume of defects are consistent and reliable, which
enhances the validity and reliability of this study’s results.
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Figure 12. Relationship between the volume of defects (surface area, depth) and the SDI.

This strong linear relationship implies a direct dependence between the SDI and the
volume of defects. In other words, as the volume of defects increases, the SDI increases
proportionally. For example, if the surface defects increase in surface area or depth, their
volume will also increase proportionally, which reflects the linear relationship between
the SDI and the volume of defects. The observed linear relationship between the SDI and
the experimental volume of defects suggests consistency in measurements and a direct
correlation between surface quality and the volume of defects and, consequently, between
surface quality and the SDI. These findings are consistent with previous studies [5,6], which
revealed a strong relationship between the surface area, the depth of the defects, and the
quality of surfaces. These defects may allow the accumulation of contaminant agents and
promote the agglomeration of microorganisms that can compromise the structural integrity
of the concrete and detract from its aesthetic appearance.

According to these criteria, the SDI can be employed to classify the levels of surface
quality. These classifications provide an insight into the quality of the sample surfaces,
where a low SDI indicates a higher surface quality due to the low defect volume, while a
high index is associated with lower surface quality due to the high defect volume. Therefore,
Configuration C2, with the lowest SDI, represents the highest quality, while Configuration
C4, with the highest index, indicates the lowest surface quality.

7. Application Examples of the SDI on Real Concrete Surfaces

The index proposed in this study underwent practical application on real concrete
surfaces to assess its potential utility and the accuracy of its defect quantification capabil-
ities. The selection of specific examples for the application of the SDI was methodically
determined, as depicted in Table 6. Each chosen example involved careful consideration of
different defect rates and represented a distinct quality of concrete surfaces, ranging from
pronounced defects to minor imperfections. Specifically, the defects ranged from the most
pronounced on surface S1 to moderate defects on surface S2 and minimal defects on surface
S3. This selection was intended to provide a pertinent assessment of the SDI’s versatility
across different conditions of concrete surfaces. Two frames were positioned on samples
of concrete surfaces. The frames delineated specific areas affected by surface defects for
calculating the percentage of the defects’ volume.
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Table 6. SDI values and visual representations for various concrete surfaces.

Concrete Surfaces Examined Application of the RMP on the Framed Area SDI
(%)
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tiveness in capturing the variability in concrete surface conditions. 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22 
 

high index is associated with lower surface quality due to the high defect volume. There-
fore, Configuration C2, with the lowest SDI, represents the highest quality, while Config-
uration C4, with the highest index, indicates the lowest surface quality. 

7. Application Examples of the SDI on Real Concrete Surfaces 
The index proposed in this study underwent practical application on real concrete 

surfaces to assess its potential utility and the accuracy of its defect quantification capabil-
ities. The selection of specific examples for the application of the SDI was methodically 
determined, as depicted in Table 6. Each chosen example involved careful consideration 
of different defect rates and represented a distinct quality of concrete surfaces, ranging 
from pronounced defects to minor imperfections. Specifically, the defects ranged from the 
most pronounced on surface S1 to moderate defects on surface S2 and minimal defects on 
surface S3. This selection was intended to provide a pertinent assessment of the SDI's ver-
satility across different conditions of concrete surfaces. Two frames were positioned on 
samples of concrete surfaces. The frames delineated specific areas affected by surface de-
fects for calculating the percentage of the defects’ volume. 

Table 6. SDI values and visual representations for various concrete surfaces. 

Concrete Surfaces Examined Application of the RMP on the Framed Area 
SDI 
(%) 

  

68.58% 

  

15.03% 

  

1.61% 

After the application of the RMP to the concrete surfaces inside both frames, the re-
sults displayed a significant variation. Surface indices of 68.58%, 15.03%, and 1.61% were 
obtained for surfaces S1, S2, and S3, respectively, reflecting the differing levels of defects 
encountered. This variation underscores the sensitivity of the index to nuances in surface 
quality. The index of 15.03% represents a surface with characteristics distinct from those 
with higher or lower indices. This range of results highlights the SDI's sensitivity in dis-
cerning and quantifying defects at different levels of defect severity, showcasing its effec-
tiveness in capturing the variability in concrete surface conditions. 

68.58%

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22 
 

high index is associated with lower surface quality due to the high defect volume. There-
fore, Configuration C2, with the lowest SDI, represents the highest quality, while Config-
uration C4, with the highest index, indicates the lowest surface quality. 

7. Application Examples of the SDI on Real Concrete Surfaces 
The index proposed in this study underwent practical application on real concrete 

surfaces to assess its potential utility and the accuracy of its defect quantification capabil-
ities. The selection of specific examples for the application of the SDI was methodically 
determined, as depicted in Table 6. Each chosen example involved careful consideration 
of different defect rates and represented a distinct quality of concrete surfaces, ranging 
from pronounced defects to minor imperfections. Specifically, the defects ranged from the 
most pronounced on surface S1 to moderate defects on surface S2 and minimal defects on 
surface S3. This selection was intended to provide a pertinent assessment of the SDI's ver-
satility across different conditions of concrete surfaces. Two frames were positioned on 
samples of concrete surfaces. The frames delineated specific areas affected by surface de-
fects for calculating the percentage of the defects’ volume. 

Table 6. SDI values and visual representations for various concrete surfaces. 

Concrete Surfaces Examined Application of the RMP on the Framed Area 
SDI 
(%) 

  

68.58% 

  

15.03% 

  

1.61% 

After the application of the RMP to the concrete surfaces inside both frames, the re-
sults displayed a significant variation. Surface indices of 68.58%, 15.03%, and 1.61% were 
obtained for surfaces S1, S2, and S3, respectively, reflecting the differing levels of defects 
encountered. This variation underscores the sensitivity of the index to nuances in surface 
quality. The index of 15.03% represents a surface with characteristics distinct from those 
with higher or lower indices. This range of results highlights the SDI's sensitivity in dis-
cerning and quantifying defects at different levels of defect severity, showcasing its effec-
tiveness in capturing the variability in concrete surface conditions. 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22 
 

high index is associated with lower surface quality due to the high defect volume. There-
fore, Configuration C2, with the lowest SDI, represents the highest quality, while Config-
uration C4, with the highest index, indicates the lowest surface quality. 

7. Application Examples of the SDI on Real Concrete Surfaces 
The index proposed in this study underwent practical application on real concrete 

surfaces to assess its potential utility and the accuracy of its defect quantification capabil-
ities. The selection of specific examples for the application of the SDI was methodically 
determined, as depicted in Table 6. Each chosen example involved careful consideration 
of different defect rates and represented a distinct quality of concrete surfaces, ranging 
from pronounced defects to minor imperfections. Specifically, the defects ranged from the 
most pronounced on surface S1 to moderate defects on surface S2 and minimal defects on 
surface S3. This selection was intended to provide a pertinent assessment of the SDI's ver-
satility across different conditions of concrete surfaces. Two frames were positioned on 
samples of concrete surfaces. The frames delineated specific areas affected by surface de-
fects for calculating the percentage of the defects’ volume. 

Table 6. SDI values and visual representations for various concrete surfaces. 

Concrete Surfaces Examined Application of the RMP on the Framed Area 
SDI 
(%) 

  

68.58% 

  

15.03% 

  

1.61% 

After the application of the RMP to the concrete surfaces inside both frames, the re-
sults displayed a significant variation. Surface indices of 68.58%, 15.03%, and 1.61% were 
obtained for surfaces S1, S2, and S3, respectively, reflecting the differing levels of defects 
encountered. This variation underscores the sensitivity of the index to nuances in surface 
quality. The index of 15.03% represents a surface with characteristics distinct from those 
with higher or lower indices. This range of results highlights the SDI's sensitivity in dis-
cerning and quantifying defects at different levels of defect severity, showcasing its effec-
tiveness in capturing the variability in concrete surface conditions. 

15.03%

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22 
 

high index is associated with lower surface quality due to the high defect volume. There-
fore, Configuration C2, with the lowest SDI, represents the highest quality, while Config-
uration C4, with the highest index, indicates the lowest surface quality. 

7. Application Examples of the SDI on Real Concrete Surfaces 
The index proposed in this study underwent practical application on real concrete 

surfaces to assess its potential utility and the accuracy of its defect quantification capabil-
ities. The selection of specific examples for the application of the SDI was methodically 
determined, as depicted in Table 6. Each chosen example involved careful consideration 
of different defect rates and represented a distinct quality of concrete surfaces, ranging 
from pronounced defects to minor imperfections. Specifically, the defects ranged from the 
most pronounced on surface S1 to moderate defects on surface S2 and minimal defects on 
surface S3. This selection was intended to provide a pertinent assessment of the SDI's ver-
satility across different conditions of concrete surfaces. Two frames were positioned on 
samples of concrete surfaces. The frames delineated specific areas affected by surface de-
fects for calculating the percentage of the defects’ volume. 

Table 6. SDI values and visual representations for various concrete surfaces. 

Concrete Surfaces Examined Application of the RMP on the Framed Area 
SDI 
(%) 

  

68.58% 

  

15.03% 

  

1.61% 

After the application of the RMP to the concrete surfaces inside both frames, the re-
sults displayed a significant variation. Surface indices of 68.58%, 15.03%, and 1.61% were 
obtained for surfaces S1, S2, and S3, respectively, reflecting the differing levels of defects 
encountered. This variation underscores the sensitivity of the index to nuances in surface 
quality. The index of 15.03% represents a surface with characteristics distinct from those 
with higher or lower indices. This range of results highlights the SDI's sensitivity in dis-
cerning and quantifying defects at different levels of defect severity, showcasing its effec-
tiveness in capturing the variability in concrete surface conditions. 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 22 
 

high index is associated with lower surface quality due to the high defect volume. There-
fore, Configuration C2, with the lowest SDI, represents the highest quality, while Config-
uration C4, with the highest index, indicates the lowest surface quality. 

7. Application Examples of the SDI on Real Concrete Surfaces 
The index proposed in this study underwent practical application on real concrete 

surfaces to assess its potential utility and the accuracy of its defect quantification capabil-
ities. The selection of specific examples for the application of the SDI was methodically 
determined, as depicted in Table 6. Each chosen example involved careful consideration 
of different defect rates and represented a distinct quality of concrete surfaces, ranging 
from pronounced defects to minor imperfections. Specifically, the defects ranged from the 
most pronounced on surface S1 to moderate defects on surface S2 and minimal defects on 
surface S3. This selection was intended to provide a pertinent assessment of the SDI's ver-
satility across different conditions of concrete surfaces. Two frames were positioned on 
samples of concrete surfaces. The frames delineated specific areas affected by surface de-
fects for calculating the percentage of the defects’ volume. 

Table 6. SDI values and visual representations for various concrete surfaces. 

Concrete Surfaces Examined Application of the RMP on the Framed Area 
SDI 
(%) 

  

68.58% 

  

15.03% 

  

1.61% 

After the application of the RMP to the concrete surfaces inside both frames, the re-
sults displayed a significant variation. Surface indices of 68.58%, 15.03%, and 1.61% were 
obtained for surfaces S1, S2, and S3, respectively, reflecting the differing levels of defects 
encountered. This variation underscores the sensitivity of the index to nuances in surface 
quality. The index of 15.03% represents a surface with characteristics distinct from those 
with higher or lower indices. This range of results highlights the SDI's sensitivity in dis-
cerning and quantifying defects at different levels of defect severity, showcasing its effec-
tiveness in capturing the variability in concrete surface conditions. 

1.61%

After the application of the RMP to the concrete surfaces inside both frames, the
results displayed a significant variation. Surface indices of 68.58%, 15.03%, and 1.61%
were obtained for surfaces S1, S2, and S3, respectively, reflecting the differing levels of
defects encountered. This variation underscores the sensitivity of the index to nuances in
surface quality. The index of 15.03% represents a surface with characteristics distinct from
those with higher or lower indices. This range of results highlights the SDI’s sensitivity
in discerning and quantifying defects at different levels of defect severity, showcasing its
effectiveness in capturing the variability in concrete surface conditions.

The results reveal a direct correlation between the SDI values and the quality of the
concrete surfaces. A higher index value (68.58%) corresponds to a surface with a higher
volume of defects, suggesting potentially lower surface quality in terms of durability, while
a lower value (1.61%) indicates a surface with a minimal defect volume, suggesting higher
surface quality and, by extension, increased durability of the concrete. Notably, the surface
with an index of 15.03% represented a moderate level of defects, indicating a moderate
level of surface quality. This direct relationship showcases the efficacy of the SDI as a
quantitative measure for defect characterization. The results specify the SDI as a valuable
tool for distinguishing between varying levels of surface quality, contributing to accurate
defect quantification and objective quality evaluation. By quantifying defects accurately, the
SDI provides a meaningful approach to predicting the strength and durability of concrete,
thus supporting more reliable durability assessments in the construction industry.

8. Conclusions

In this study, a novel Surface Defect Index (SDI) method is proposed to quantify the
volume occupied by various types of defects and reveal their positions and infiltration
within concrete surfaces. This method establishes a quantitative survey of defects in terms
of surface area and depth, enabling a comprehensive evaluation of concrete surface quality.

One of the strengths of the proposed method lies in the use of controlled samples
featuring various defect configurations, which allowed us to create a rigorous testing
environment where we could precisely assess the method’s effectiveness. Using these
samples, SDIs were obtained for each surface, providing concrete results that underscore
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the relevance of the method. The validation of the measurement method demonstrated
its high precision, reliability, and consistent performance. These validation findings instill
confidence in the ability of the method to effectively assess the surface defect volume in
concrete samples.

The correlation between the SDI and the defect volume in the various defect con-
figurations was investigated. Strongly correlated with the defect volume variability, the
SDI provides coherent measurements of the defect volume for a large range of sizes. A
strong positive linear correlation and high agreement (R2 = 0.9968) were observed between
the experimental volume and effective volume of defects. Therefore, the SDI can be a
robust indicator for quantifying the defect volume over a wide variety of defect scales. The
method effectively evaluated the levels of quality using the SDI; this was demonstrated by
the strong relationship between this index and the volume of defects.

The effectiveness and reliability of our measurement method make it a valuable tool
for assessing the quality of concrete surfaces with a high degree of precision and consistency.
The SDI was tested across a diverse array of real conditions of concrete surfaces, confirming
its applicability and reliability in concrete quality assessment.

Furthermore, the logic-based evaluation, which was based on a new Surface Defect
Quantification Index, was efficient in classifying the final quality of concrete surfaces
according to the volume occupied by all defects on the surfaces. The surface area and the
maximum depth of defects were used as parameters for the evaluation and classification
of surfaces in terms of their durability attributes. These classifications provide insights
into the quality of sample surfaces; hence, surfaces with higher SDI values are of better
quality, while the surfaces with the highest SDI values are of lower quality. Therefore, the
Surface Defect Index can serve as a valuable indicator for evaluating the susceptibility of
a material to the penetration of aggressive substances. It can be regarded as an indicator
of the durability of concrete, its performance, and its service life. Through early detection
and remediation of surface defects in concrete, it is feasible to enhance the durability and
lifetime of concrete structures, consequently relieving the need for costly future repairs
and maintenance.

Contrary to the limitations associated with several methods for the assessment of
the quality of concrete surfaces, the developed method offers several advantages. Firstly,
its simplicity and ease of implementation make it accessible to a wider range of users
without requiring specialized expertise. Secondly, the method significantly reduces time
requirements, particularly for large surfaces or those with numerous defects, enabling rapid
assessments even in time-sensitive conditions compared with referenced methods [11,18].
Additionally, its high-resolution capabilities allow for the accurate detection and quantifi-
cation of small defects or fine details on concrete surfaces, providing comprehensive and
detailed evaluations. Moreover, the SDI method is less dependent on human judgment,
thus reducing the subjectivity in the final results and ensuring consistent and reliable results
regardless of variations among inspectors and the complexity of defects.

Overall, these advantages position the developed method as a practical and efficient
solution for evaluating concrete surface defects, addressing the challenges associated with
various methods and enhancing the assessment process. Further investigation could
involve a parametric and comparative study with other current methods. While the current
study has provided valuable insights into the effectiveness of the proposed method for
evaluating concrete surfaces, future research could focus on extending the application of
this method by exploring its applicability to different contexts for meaningful applications
in the construction and civil engineering industries and in other areas of application.
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