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Abstract: It is difficult to learn meaningful representations of time-series data since they are sparsely
labeled and unpredictable. Hence, we propose bootstrap inter–intra modality at once (BIMO),
an unsupervised representation learning method based on time series. Unlike previous works,
the proposed BIMO method learns both inter-sample and intra-temporal modality representations
simultaneously without negative pairs. BIMO comprises a main network and two auxiliary networks,
namely inter-auxiliary and intra-auxiliary networks. The main network is trained to learn inter–intra
modality representations sequentially by regulating the use of each auxiliary network dynamically.
Thus, BIMO thoroughly learns inter–intra modality representations simultaneously. The experimental
results demonstrate that the proposed BIMO method outperforms the state-of-the-art unsupervised
methods and achieves comparable performance to existing supervised methods.

Keywords: biomedical and health informatics; deep learning; unsupervised learning; time series;
modality

1. Introduction

The volume of time-series data is rapidly growing with various applications in a
wide variety of domains. Considerable developments have been noted in several fields,
such as signal processing and machine learning [1–4]. Recently, deep learning models for
time-series data have demonstrated remarkable performances [5–10].

Most of these models adopt a supervised learning approach, which has to collect
a massive amount of data with high-quality data annotation. Therefore, we explore a
time-series unsupervised learning approach to tackle data acquisition problems.

Unsupervised learning attempts to identify meaningful generalized properties from
unlabeled data. Unsupervised learning has recently attracted significant attention, partic-
ularly in computer vision. The contrastive learning method is prominent among various
unsupervised learning methods [11–17]. In addition, recent attempts have been made to
remove negative pairs, which is a problem in the contrastive learning method [15,18].

However, unsupervised learning with time-series data has not been studied as ex-
tensively in computer vision, and some challenges remain in existing methods. Most
time-series data are unpredictable and nonstationary [19,20], thus existing methods are
limited with regard to extracting meaningful generalized properties.

Unsupervised learning-based time-series models can be broadly categorized into two
approaches, those that learn inter-sample modality representations [21,22] and those that
learn inter-temporal modality representations [23,24]. Inter-sample modality represen-
tation derives relationships between two samples. In contrast, intra-temporal modality
representation derives features according to time within the same samples.

Most previous studies focused on training specific modality representations. In addi-
tion, the contrastive learning method requires attentive treatment while collecting proper
negative pairs.
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Therefore, in this paper, we propose the Bootstrap Inter–Intra Modality at Once
(BIMO) method, which is an unsupervised learning method for multivariate time series
that simultaneously explores inter–intra modality representations without negative pairs.
The proposed BIMO method comprises three neural networks: the main network and two
auxiliary networks (i.g., inter-auxiliary and intra-auxiliary networks). These three networks
interact and learn from each other.

From given raw time-series data, two transformed samples are generated using an
augmentation strategy: (1) the input to the main network and (2) the input to the inter-
auxiliary network. The input of the main network generates another sample, which is
the input of the intra-auxiliary network, using a subsampling strategy. The main network
simultaneously predicts the representation of the two samples generated from the two
auxiliary networks. The proposed BIMO method learns the complementary properties in
both modalities efficiently and simultaneously by adjusting the weight of each auxiliary
network dynamically.

We measured the performance of the learned representation with various datasets
to validate the generalizability of the proposed method. Here, we used univariate UCR
datasets [25], which are well-known time-series datasets. We showed that the proposed
BIMO method is universal, comparable to state-of-the-art (SOTA) time-series supervised
methods, and superior to previous time-series unsupervised methods.

We also evaluated the performance of the proposed method on multivariate UEA
datasets [26]. Here, we found that the proposed BIMO method is suitable for representation
learning with multivariate time-series data. We then used a real-world wearable stress and
affection detection (WESAD) dataset to demonstrate the noise robustness of the proposed
BIMO method.

Our primary contributions are summarized as follows. (1) We propose a unsupervised
learning-based time-series simple method that trains the main network using two auxiliary
networks while exploring inter–intra modality representations simultaneously. (2) We
remove the constraints for negative pairs from contrastive learning-based time-series data
analysis. (3) We present various comprehensive analyses to extract robust features, consid-
ering inter–intra modality representations, from the unsupervised learning perspective of
time-series data. (4) We utilize various datasets to verify that the proposed BIMO method
is universal, robust against noise, and outperforms contemporary SOTA methods.

2. Materials and Methods

BIMO’s goal is to be easily used in downstream tasks by discovering the most signifi-
cant modalities for representation learning in all domains of time-series data. This study
was inspired by existing work on SOTA contrastive learning-based unsupervised learning
methods [15,23,27].

As shown in Figure 1, the proposed BIMO method consists of the main network and
two auxiliary networks. The main network consists of an encoder fθ , a projector gθ , and
a predictor qθ , and each auxiliary network comprises an encoder and a projector. The main
network learns to have a similar distribution between two values p′ξ , p′′λ from the respective
projectors of the two auxiliary networks and a value qθ(pθ) from the predictor of the
main network.

It is a significant issue to simultaneously learn both inter- and intra-modality represen-
tations. We trained the proposed BIMO method to learn inter–intra modality representation
efficiently and stably based on the fundamental concept, i.e., high-level features comprise
low-level and intermediate-level features [28].
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Figure 1. BIMO’s architecture: f , g, and q represent the encoder, projector, and predictor, respectively.

An overview of the training process in the proposed BIMO method is given in
Algorithm 1. The complexity of the proposed BIMO method is O(4N), while the com-
plexity of USRL as a existing SOTA method is at least O(18N).

While training, we first used a hard constraint in the inter-auxiliary network to learn
sufficient low-level coarse information, i.e., the time characteristics within samples, from the
intra-auxiliary network. As the number of epochs increased, we gradually applied a hard
constraint to the intra-auxiliary network and not to the inter-auxiliary network. Therefore,
the proposed BIMO method sufficiently learns fine-grained features, i.e., the correlation
between two augmented samples, from the inter-auxiliary network.

Therefore, BIMO learns low-level features sufficiently at the initial training step,
and gradually learns high-level features.

Algorithm 1 BIMO’s training procedure

Input: Time series set X = {xn}N
n=1 , Number epochs M

Output: Trained fθ

1: Initialization fθ , gθ , qθ , fλ, gλ, fξ , gξ ←− initialize weights
2: m←− 1
3: repeat
4: for n = 1 to N with sn = size(xn) do
5: generate v ≜ t(x), v′ ≜ t′(x) from different augmentation t ∼ τ, t′ ∼ τ
6: extract svsub = size(v) in [[1, sn]]
7: extract vsub among subseries of v of length svsub
8: rθ ←− fθ(v), pθ ←− gθ(rθ), qθ(pθ)
9: r′ξ ←− fξ(v′), p′ξ ←− gξ(r′ξ)

10: r′′λ ←− fλ(vsub), p′′λ ←− gλ(r′′λ)
11: Linter ←− ∥q̄θ(pθ)− p̄′ξ∥

2
2

12: Lintra ←− ∥q̄θ(pθ)− p̄′′λ∥
2
2

13: LBIMO ←− (1− 1
m )(Linter) +

1
m (Lintra)

14: fθ , gθ , qθ ←− update weights using LBIMO
15: fλ, gλ, fξ , gξ ←− update weights using moving exponential average
16: end for
17: m←− m + 1
18: until m = M

2.1. BIMO’s Components

Given time-series data, X = {xn}N
n=1, where N is the volume of data, which comprises

a token xn = (xn,1, . . . , xn,T), T ordered real values.
The proposed BIMO method consists of three networks, and each network uses a set

of weights: θ, ξ, and λ.
A sample x generates two augmented views v ≜ t(x) and v′ ≜ t′(x), which apply

two augmentations t ∼ τ and t′ ∼ τ (line5). For the augmentation strategy, we employ a
magnitude domain augmentation method, which transforms the values of the time-series
data, and a time domain augmentation method, which transforms the time-series data
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sequence. Here, v is the input of the main network, and v′ is the input of the inter-auxiliary
network; vsub, which is the input of the intra-auxiliary network, is subsampled from v
(lines6–7), and M is the number of epochs.

2.2. Training Details

We first forward the three generated samples (lines8–10). The main and inter-auxiliary
networks learn representation through the generated samples from the same time-series
data in different augmentation approaches. Therefore, the proposed BIMO method learns
to have similar distributions between qθ(pθ) from the predictor of the main network and
p′ξ from the projector of the inter-auxiliary network (line11).

The inputs of the intra-auxiliary network are subsamples from the input of the main
network. Hence, the samples are highly likely to have similar distributions since they are
in similar periods. The proposed BIMO method also learns to have similar distribution
between qθ(pθ) from the predictor of the main network and p′′λ from the projector of the
intra-auxiliary network (line12).

First, we train the main network with the intra-auxiliary network in a high ratio and
the inter-auxiliary network in a low ratio to learn the low-level coarse information at an
initial time based on the fundamental principles of deep learning [28] (line13). Then, we
gradually decrease the ratio of the intra-auxiliary network and increase the ratio of the
inter-auxiliary network in every epoch. We only minimize the loss function with a single
weight, θ, in each training step (line14). The other weights (i.g., ξ and λ) prevent network
collapse using slowly moving average methods, which is τξ ← (1− τ)θ (line15).

The output of the main network is qθ(gθ( fθ(v))) ≜ qθ(pθ), the output of the inter-
auxiliary networks is gξ( fξ(v′)) ≜ p′ξ , and the output of the intra-auxiliary networks is

gλ( fλ(vsub)) ≜ p′′λ. Each output qθ(pθ), p′ξ , and p′′λ applies ℓ2-normalization and becomes

q̄θ(pθ) ≜ qθ(pθ)/∥qθ(pθ)∥2, p̄′ξ ≜ p′ξ /∥p′ξ |2, and p̄′′λ ≜ p′′λ/∥p′′λ|2, respectively. Thus,
the training objective aims to minimize the differences between qθ(pθ) and p′ξ as well
as qθ(pθ) and p′′λ. Losses are defined as follows:

Linter ≜ ∥q̄θ(pθ)− p̄′ξ∥
2
2 = 2− 2 ·

< qθ(pθ), p′ξ >

∥qθ(pθ)∥2 · ∥p′ξ∥2
(1)

Lintra ≜ ∥q̄θ(pθ)− p̄′′λ∥
2
2 = 2− 2 ·

< qθ(pθ), p′′λ >

∥qθ(pθ)∥2 · ∥p′′λ∥2
(2)

LBIMO = (1− 1
m
)(Linter + L̃inter) +

1
m
(Lintra + L̃intra) (3)

Equations (1) and (2) represent the inter and intra losses, respectively, and Equation (3)
represents the total loss. L̃inter and L̃intra in Equation (3) exchange between v and v′ to
symmetrize the losses, where m denotes a training epoch.

2.3. Architecture and Optimization

Time-series data have to accommodate varying lengths and be efficient in terms of
time and memory, as such data are often updated in real time. Thus, we used a dilated
causal convolution network [23,29,30] as a backbone to fulfil the requirements.

The dilated causal convolution network comprises 20 layers, each of which expo-
nentially increases the dilation parameter: 2i for the i-th layer. We employ an adaptive
max-pooling layer as the last layer to squeeze the temporal dimension and output a vector
of a fixed size. Here, representation r is projected into a multilayer perceptron (MLP), gθ ,
comprising two layers, and projection p is forwarded into another MLP, qθ , which has the
same structure as gθ . We used the output dimensions of 512 and 320 for the first and second
layers of the MLPs, respectively. For the auxiliary networks, we began with the exponential
moving average parameter τbase = 0.996 and increased it to 1 during training.
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3. Results and Discussion

We performed classification tasks to evaluate the proposed BIMO method’s validity in
representation learning. We used typical time-series datasets: univariate UCR datasets [25]
and multivariate UEA datasets [26]. We also used a public wearable dataset, the WESAD
dataset [31], to validate BIMO’s robustness against noisy data. The encoder was trained
on an unlabeled training set, and the learned encoder was used to perform a classification
task. In addition, we trained a simple single-layer linear classifier on a labeled training
set [32–34].

3.1. Implementation

Sample Generation: Time-series augmentation can be divided into magnitude-based
and time-based methods. In this study, we used the time-series augmentation set t and t′,
which comprises magnitude-based magnitude warping and scaling methods, and time-
based time-slicing and time-warping methods [35,36].

The time-series subsampling strategy is based on the literature [23]. We randomly
extracted a part of the samples by selecting the length and starting point. We selected
different lengths and starting points for each epoch and trained them with various lengths
of subsamples to learn a sufficient inter-temporal modality representation.

Encoder Selection: Time-series data should comprise temporal orders, which are
required to consider temporal information, accommodate unequal lengths, and be efficient
in terms of both time and memory. Note that deep convolutional neural networks (CNNs)
do not consider temporal information and are difficult to apply to data of various lengths.
Long short-term memory (LSTM) is inefficient in terms of time and memory. Thus, we
used exponentially dilated causal convolutions to handle these issues [23,29,30].

To verify the conformity of our encoder selection, we measured the classification
performance on the UCR datasets using dilated causal convolutions, ResNet, and a two-
layer LSTM encoder. Each model outperformed the other two on 65%, 35%, and 5% of
the first 20 UCR datasets, respectively. This result confirmed that the encoder with dilated
causal convolution was the most suitable for the proposed BIMO method. The accuracy
results are detailed in Table 1.

Table 1. Accuracy scores depending on encoder type with first 15 UCR datasets. Encoder type
includes dilated convolution (DConv.), LSTM, and ResNet. Bold text represents the best accuracy.

Dataset DConv. (BIMO) ResNet LSTM

Adiac 0.760 0.482 0.342
ArrowHead 0.814 0.763 0.388

Beef 0.800 0.625 0.313
BeetleFly 0.850 0.688 0.750

BirdChicken 0.900 0.750 0.563
Car 0.917 0.688 0.417
CBF 0.998 0.992 0.401

ChlorineConcentration 0.635 0.731 0.534
CinCECGTorso 0.757 0.629 0.283

Coffee 1.000 1.000 0.625
Computers 0.681 0.729 0.571

CricketX 0.750 0.651 0.107
CricketY 0.716 0.628 0.216
CricketZ 0.758 0.378 0.102

DiatomSizeReduction 0.977 0.911 0.336
DistalPhalanxOutlineAgeGroup 0.743 0.820 0.523

DistalPhalanxOutlineCorrect 0.786 0.809 0.581
DistalPhalanxTW 0.684 0.688 0.422

Earthquakes 0.765 0.727 0.767
ECG200 0.900 0.906 0.698
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3.2. Univariate Time Series

We validated the proposed BIMO method’s performance using the 85 initially released
UCR datasets, which are representative univariate time-series datasets [25]. (1) We com-
pared the BIMO method’s performance to that of existing SOTA unsupervised models, (2)
with the existing SOTA supervised models, and (3) compared the performance depending
on combinations of the auxiliary networks.

Overall Performance: In terms of performance, we compared the proposed BIMO
method with unsupervised models for time series, i.e., USRL (which utilizes triplet loss) [23],
DTW (which employs a kernel-based estimation method) [37], and RWS (which uses a
similarity matrix) [38], as shown in Table 2.

Table 2. Accuracy scores of BIMO, SOTA unsupervised models (USRL, and DTW), and supervised
models (BOSS, PF, ResNet, HIVE-COTE and ITime). Bold text represents the best accuracy among the
unsupervised models; * denotes the best accuracy, while underlined text represents the second-best
accuracy among all models.

Dataset
Unsupervised Supervised

BIMO USRL DTW BOSS PF HIVE-COTE ITime

Adiac 0.760 0.716 0.604 0.765 0.734 0.811 0.836 *
ArrowHead 0.814 0.829 0.703 0.834 0.875 * 0.863 0.829
Beef 0.800 0.700 0.633 0.800 0.720 0.933 * 0.700
BeetleFly 0.850 0.900 0.700 0.900 0.875 0.950 * 0.850
BirdChicken 0.900 0.800 0.750 0.950 * 0.865 0.867 0.950 *
Car 0.917 * 0.817 0.733 0.833 0.847 0.867 0.900
CBF 0.998 0.994 0.997 0.998 0.993 0.999 * 0.998
ChlCon 0.635 0.782 0.648 0.661 0.634 0.712 0.875 *
CinCECGTorso 0.757 0.740 0.651 0.887 0.934 0.996 * 0.851
Coffee 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 *
Computers 0.681 0.628 0.700 0.756 0.644 0.760 0.812 *
CricketX 0.750 0.777 0.754 0.736 0.802 0.823 0.867 *
CricketY 0.716 0.767 0.744 0.754 0.794 0.849 0.851 *
CricketZ 0.758 0.764 0.754 0.746 0.801 0.831 0.859 *
DiaSizRed 0.977 0.993 * 0.967 0.931 0.966 0.941 0.931
DisPhaOutAgeGroup 0.743 0.734 0.770 * 0.748 0.731 0.763 0.727
DisPhaxOutCorrect 0.786 0.768 0.717 0.728 0.793 0.772 0.794 *
DistalPhalanxTW 0.684 * 0.676 0.590 0.676 0.660 0.683 0.676
Earthquakes 0.765 * 0.748 0.719 0.748 0.754 0.748 0.741
ECG200 0.900 0.900 0.770 0.870 0.909 0.850 0.910 *
ECG5000 0.940 0.936 0.924 0.941 0.937 0.946 * 0.941
ECGFiveDays 1.000 * 1.000 * 0.768 1.000 * 0.849 1.000 * 1.000 *
ElectricDevices 0.632 0.732 0.602 0.799 * 0.706 0.770 0.723
FaceAll 0.839 0.802 0.808 0.782 0.894 * 0.803 0.804
FaceFour 0.841 0.875 0.830 1.000 * 0.974 0.955 0.966
FacesUCR 0.948 0.918 0.905 0.957 0.946 0.963 0.973 *
FiftyWords 0.783 0.780 0.690 0.705 0.831 0.809 0.842 *
Fish 0.959 0.880 0.823 0.989* 0.935 0.989 * 0.983
FordA 0.850 0.935 0.555 0.930 0.855 0.964 * 0.948
FordB 0.714 0.810 0.620 0.711 0.715 0.823 0.937 *
GunPoint 1.000 * 0.993 0.907 1.000 * 0.997 1.000 * 1.000 *
Ham 0.740 * 0.695 0.467 0.667 0.660 0.667 0.714
HandOutlines 0.924 0.922 0.881 0.903 0.921 0.932 0.960 *
Haptics 0.510 0.455 0.377 0.461 0.445 0.519 0.568 *
Herring 0.703 * 0.578 0.531 0.547 0.580 0.688 0.703 *
InlineSkate 0.372 0.447 0.384 0.516 0.542 * 0.500 0.486
InsWinbeatSound 0.630 0.623 0.355 0.523 0.619 0.655 * 0.635
ItalyPowerDemand 0.963 0.925 0.950 0.909 0.967 0.963 0.968 *
LarKitAppliances 0.866 0.848 0.795 0.765 0.782 0.864 0.907 *
Lightning2 0.883 0.918 * 0.869 0.836 0.866 0.820 0.803
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Table 2. Cont.

Dataset
Unsupervised Supervised

BIMO USRL DTW BOSS PF HIVE-COTE ITime

Lightning7 0.819 0.795 0.726 0.685 0.822 * 0.740 0.808
Mallat 0.956 0.964 * 0.934 0.938 0.958 0.962 0.963
Meat 1.000 * 0.950 0.933 0.900 0.933 0.933 0.950
MedicalImages 0.730 0.784 0.737 0.718 0.758 0.778 0.799 *
MidPhaOutAgeGroup 0.618 0.656 * 0.500 0.545 0.562 0.597 0.533
MidPhaOutCorrect 0.826 0.814 0.698 0.780 0.836 * 0.832 0.835
MiddlePhalanxTW 0.566 0.610 * 0.506 0.545 0.529 0.571 0.513
MoteStrain 0.871 0.871 0.835 0.879 0.902 0.933 * 0.903
NonInvFetECGTho1 0.923 0.910 0.790 0.838 0.906 0.930 0.962 *
NonInvFetECGTho2 0.929 0.927 0.865 0.901 0.940 0.945 0.967 *
OliveOil 0.964 * 0.900 0.833 0.867 0.867 0.900 0.867
OSULeaf 0.729 0.831 0.591 0.955 0.827 0.979 * 0.934
PhaOutCorrect 0.801 0.801 0.728 0.772 0.824 0.807 0.854 *
Phoneme 0.263 0.289 0.228 0.265 0.320 0.382 * 0.335
Plane 1.000 * 0.990 1.000 * 1.000 * 1.000 * 1.000 * 1.000 *
ProPhaOutAgeGroup 0.863 * 0.854 0.805 0.834 0.846 0.859 0.854
ProPhaOutCorrect 0.878 0.859 0.784 0.849 0.873 0.880 0.931 *
ProximalPhalanxTW 0.814 0.824 * 0.761 0.800 0.779 0.815 0.776
RefrigerationDevices 0.524 0.517 0.464 0.499 0.532 0.557 * 0.509
ScreenType 0.446 0.413 0.397 0.464 0.455 0.589 * 0.576
ShapeletSim 0.694 0.817 0.650 1.000 * 0.776 1.000 * 0.989
ShapesAll 0.667 0.875 0.768 0.908 0.886 0.905 0.925 *
SmaKitAppliances 0.790 0.715 0.643 0.725 0.744 0.853 * 0.779
SonAIBORobSur1 0.967 * 0.897 0.725 0.632 0.846 0.765 0.884
SonAIBORobSur2 0.858 0.934 0.831 0.859 0.896 0.928 0.953 *
StarLightCurves 0.970 0.965 0.907 0.978 0.981 0.982 * 0.979
Strawberry 0.962 0.946 0.941 0.976 0.968 0.970 0.984 *
SwedishLeaf 0.929 0.931 0.792 0.922 0.947 0.954 0.971 *
Symbols 0.960 0.965 0.950 0.967 0.962 0.974 0.982 *
SyntheticControl 0.900 0.983 0.993 0.967 0.995 0.997 * 0.997 *
ToeSeg1 0.917 0.952 0.772 0.939 0.925 0.982 * 0.969
ToeSeg2 0.891 0.885 0.838 0.962 * 0.862 0.954 0.939
Trace 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 *
TwoLeadECG 0.996 0.997 * 0.905 0.981 0.989 0.996 0.996
TwoPatterns 1.000 * 1.000 * 1.000 * 0.993 1.000 * 1.000 * 1.000 *
UWavGesLibAll 0.958 0.941 0.892 0.939 0.972 * 0.968 0.955
UWavGesLibX 0.802 0.811 0.728 0.762 0.829 0.840 * 0.825
UWavGesLibY 0.712 0.735 0.634 0.685 0.762 0.765 0.769 *
UWavGesLibZ 0.742 0.759 0.658 0.695 0.764 0.783 * 0.770
Wafer 0.996 0.993 0.980 0.995 0.996 0.999 * 0.999 *
Wine 0.808 0.870 * 0.574 0.741 0.569 0.778 0.667
WordSynonyms 0.701 0.704 0.649 0.638 0.779 * 0.738 0.756
Worms 0.684 0.714 0.584 0.558 0.718 0.558 0.805 *
WormsTwoClass 0.842 * 0.818 0.623 0.831 0.784 0.779 0.792
Yoga 0.807 0.878 0.837 0.918 * 0.879 0.918 * 0.906

We also compared BIMO with supervised models, i.e., PF (which uses a decision tree
ensemble) [39], BOSS (which employs a dictionary-based classifier) [5], InceptionTime
(ITime) [7], and HIVE-COTE (which uses ensemble methods) [8]. As shown in Figure 2, we
compared performance based on the average rank according to the accuracy results on the
UCR datasets. All accuracy results are detailed in Table 2.

For the unsupervised models, the proposed BIMO method obtained the best rank
scores: 3.71, 3.91, and 6.11 for BIMO, USRL, and DTW, respectively. For the supervised mod-
els, BIMO showed the third-highest score: 2.41, 2.52, 3.71, 3.73, and 3.91 for HIVE-COTE,
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ITime, BIMO, BOSS, and PF, respectively. These results demonstrate that BIMO is superior
to existing SOTA unsupervised models and comparable to well-known supervised models.

Figure 2. Average rank diagram of BIMO, existing SOTA unsupervised models (USRL, DTW),
and supervised models (PF, BOSS, HIVE-COTE, ITime) for the UCR datasets. The average rank
means the average of the top ranking results of a model. The black lines indicate an unsupervised
models, and dotted lines represent supervised models.

Inter–Intra Modality Representation Ablation: We compared performance depend-
ing on the combination of auxiliary networks based on the average rank according to the
accuracy results on the UCR datasets. We used a single auxiliary network, e.g., an inter-
auxiliary or intra-auxiliary network, and multiple auxiliary networks, e.g., inter-auxiliary
and intra-auxiliary networks. As shown in Table 3, we compared the performance in terms
of the average rank score. More detailed overall accuracy results are shown in Table 4.

Table 3. Average rank comparison depending on the combination of auxiliary networks: a single
auxiliary network (Inter or Intra) and multiple auxiliary networks (Inter and Intra, Inter 7→ Intra, Intra
7→ Inter). Bold text represents the best rank score.

Single Plural

Inter Intra Inter and Intra Inter 7→ Intra Intra 7→ Inter

2.39 3.33 2.87 3.33 1.90

Table 4. Accuracy scores depending on the combination of auxiliary networks for the first and recent
UCR datasets: using a single auxiliary network (Inter or Intra) and plural auxiliary networks (Inter
and Intra, Inter 7→ Intra, Intra 7→ Inter). Bold text represents the best accuracy, and the underlined text
represents the second-best accuracy.

Dataset

Single Plural

Inter Intra Inter and Intra Inter 7→ Intra
Intra 7→ Inter

(BIMO)

Adiac 0.778 0.693 0.729 0.642 0.760
ArrowHead 0.831 0.767 0.826 0.785 0.814
Beef 0.750 0.786 0.786 0.821 0.800
BeetleFly 0.850 0.850 0.900 0.850 0.850
BirdChicken 0.850 0.900 0.800 0.797 0.900
Car 0.917 0.850 0.883 0.983 0.916
CBF 0.990 0.993 0.996 0.986 0.998
ChlCon 0.613 0.627 0.597 0.733 0.635
CinCECGTorso 0.745 0.737 0.766 1.000 0.757
Coffee 1.000 1.000 1.000 1.000 1.000
Computers 0.633 0.621 0.681 0.625 0.681
CricketX 0.771 0.629 0.683 0.649 0.750
CricketY 0.696 0.585 0.686 0.652 0.716
CricketZ 0.750 0.626 0.706 0.670 0.758
DiaSizRed 0.961 0.980 0.964 0.984 0.977
DisPhaOutAgeGroup 0.735 0.699 0.735 0.721 0.786
DisPhaxOutCorrect 0.772 0.772 0.761 0.750 0.743
DistalPhalanxTW 0.721 0.669 0.669 0.713 0.684
Earthquakes 0.750 0.735 0.735 0.706 0.765
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Table 4. Cont.

Dataset

Single Plural

Inter Intra Inter and Intra Inter 7→ Intra
Intra 7→ Inter

(BIMO)

ECG200 0.890 0.890 0.880 0.890 0.900
ECG5000 0.940 0.940 0.941 0.939 0.940
ECGFiveDays 0.991 0.998 0.995 0.997 1.000
ElectricDevices 0.606 0.521 0.625 0.585 0.632
FaceAll 0.830 0.680 0.771 0.701 0.839
FaceFour 0.853 0.875 0.841 0.841 0.841
FacesUCR 0.947 0.920 0.922 0.917 0.948
FiftyWords 0.774 0.792 0.785 0.788 0.783
Fish 0.959 0.901 0.948 0.913 0.959
FordA 0.867 0.920 0.870 0.918 0.850
FordB 0.718 0.788 0.756 0.775 0.714
GunPoint 1.000 0.986 0.993 0.986 1.000
Ham 1.000 0.760 0.740 0.712 0.740
HandOutlines 0.921 0.916 0.902 0.913 0.924
Haptics 0.916 0.494 0.523 0.487 0.510
Herring 0.594 0.688 0.625 0.703 0.703
InlineSkate 0.352 0.367 0.367 0.374 0.372
InsWinbeatSound 0.608 0.598 0.609 0.597 0.630
ItalyPowerDemand 0.955 0.954 0.952 0.963 0.963
LarKitAppliances 0.871 0.621 0.863 0.659 0.866
Lightning2 0.767 0.783 0.767 0.717 0.883
Lightning7 0.778 0.778 0.764 0.750 0.819
Mallat 0.898 0.829 0.920 0.875 0.956
Meat 1.000 0.950 0.983 0.983 1.000
MedicalImages 0.733 0.726 0.730 0.746 0.730
MidPhaOutAgeGroup 0.533 0.658 0.618 0.605 0.826
MidPhaOutCorrect 0.799 0.792 0.799 0.823 0.618
MiddlePhalanxTW 0.586 0.559 0.566 0.533 0.566
MoteStrain 0.854 0.851 0.859 0.851 0.871
NonInvFetECGTho1 0.916 0.891 0.907 0.894 0.923
NonInvFetECGTho2 0.926 0.905 0.920 0.907 0.929
OliveOil 1.000 0.964 0.964 0.964 0.964
OSULeaf 0.717 0.650 0.696 0.667 0.729
PhaOutCorrect 0.780 0.783 0.793 0.770 0.801
Phoneme 0.249 0.216 0.275 0.220 0.263
Plane 1.000 0.990 0.990 1.000 1.000
ProPhaOutAgeGroup 0.848 0.843 0.814 0.843 0.878
ProPhaOutCorrect 0.885 0.882 0.892 0.865 0.863
ProximalPhalanxTW 0.789 0.819 0.784 0.789 0.814
RefrigerationDevices 0.538 0.556 0.530 0.559 0.524
ScreenType 0.460 0.454 0.457 0.419 0.446
ShapeletSim 0.583 0.628 0.600 0.639 0.694
ShapesAll 0.662 0.647 0.663 0.647 0.667
SmaKitAppliances 0.755 0.728 0.796 0.726 0.790
SonAIBORobSur1 0.970 0.942 0.953 0.960 0.967
SonAIBORobSur2 0.853 0.860 0.843 0.873 0.858
StarLightCurves 0.978 0.963 0.963 0.955 0.970
Strawberry 0.962 0.943 0.965 0.948 0.962
SwedishLeaf 0.929 0.925 0.918 0.923 0.929
Symbols 0.929 0.935 0.945 0.933 0.960
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Table 4. Cont.

Dataset

Single Plural

Inter Intra Inter and Intra Inter 7→ Intra
Intra 7→ Inter

(BIMO)

SyntheticControl 0.873 0.850 0.863 0.873 0.900
ToeSeg1 0.917 0.917 0.917 0.886 0.917
ToeSeg2 0.883 0.883 0.883 0.883 0.891
Trace 1.000 1.000 1.000 1.000 1.000
TwoLeadECG 0.996 0.996 0.995 0.996 0.996
TwoPatterns 1.000 0.997 1.000 0.996 1.000
UWavGesLibAll 0.954 0.956 0.951 0.962 0.742
UWavGesLibX 0.804 0.799 0.811 0.802 0.958
UWavGesLibY 0.726 0.686 0.717 0.690 0.802
UWavGesLibZ 0.735 0.719 0.748 0.734 0.712
Wafer 0.996 0.991 0.995 0.991 0.996
Wine 0.827 0.731 0.750 0.731 0.808
WordSynonyms 0.682 0.690 0.700 0.662 0.701
Worms 0.671 0.618 0.658 0.592 0.684
WormsTwoClass 0.803 0.724 0.763 0.711 0.842
Yoga 0.807 0.810 0.796 0.797 0.807

Given multiple auxiliary networks, we employed the static and dynamic loss functions.
During training, the static loss function had an equal ratio of inter-auxiliary and intra-
auxiliary networks (Inter and Intra). The dynamic loss function had different ratios of the
inter- and intra-auxiliary networks for every epoch. Herein, the main network was initially
trained with the inter-auxiliary network at a higher ratio than that of the intra-auxiliary
network. Then, the ratio of the intra-auxiliary network was increased gradually (Inter 7→
Intra). In contrast, the main network was trained with the intra-auxiliary network in a
higher ratio than that used for the inter-auxiliary network at first; gradually, the ratio of
the inter-auxiliary network was increased (Intra 7→ Inter), which is the training method
of BIMO.

As shown in Table 3, the Intra 7→ Inter method obtained the best rank score. We
confirmed that the initial training trained the intra-modality representations sufficiently,
which are the relatively low-level features, and then the inter modality representations,
which are the relatively high-level features. The proposed dynamic training method made
the main network evenly learn both modality representations.

Representation Metric Space: We also validated the performance of representation
learning for some UCR datasets using embedding visualization with dimensionality reduc-
tion. The results are shown in Figure 3.

Figure 3. Visualization of embedded vectors of ECG500 and UWaveGestureLibrary UCR test datasets
with dimensionality reduction. Each class marked with different shapes and colors is well differentiable.



Appl. Sci. 2024, 14, 3825 11 of 14

3.3. Multivariate Time Series

We validated the performance of BIMO for UEA datasets. Here, we compared the
performance of BIMO with USRL and DTW. The accuracy results are shown in Table 5.
The BIMO, USRL, and DTW models, respectively, showed the best accuracies for approxi-
mately 50%, 32%, and 18% of the datasets. Overall, BIMO’s performance is comparable to
that of SOTA unsupervised models for multivariate time series.

Table 5. Accuracy of BIMO and SOTA unsupervised methods (USRL, DTW) on UEA datasets. Bold
text indicates the best accuracy.

Dataset BIMO USRL DTW

ArticularyWordRecognition 0.830 0.987 0.987
AtrialFibrillation 0.417 0.133 0.200

BasicMotions 1.000 1.000 0.975
Cricket 0.861 0.986 1.000

DuckDuckGeese 0.688 0.675 0.600
EigenWorms 0.852 0.878 0.618

Epilepsy 0.926 0.957 0.964
Ering 0.922 0.133 0.133

EthanolConcentration 0.354 0.236 0.323
FaceDetection 0.550 0.528 0.529

FingerMovements 0.550 0.540 0.530
HandMovementDirection 0.444 0.270 0.231

Handwriting 0.346 0.533 0.286
Heartbeat 0.740 0.737 0.717

Libras 0.650 0.867 0.870
LSST 0.404 0.558 0.551

MotorImagery 0.600 0.540 0.500
NATOPS 0.872 0.944 0.883
PEMS-SF 0.733 0.688 0.711
PenDigits 0.975 0.983 0.977
Phoneme 0.280 0.246 0.151

RacketSports 0.737 0.862 0.803
SelfRegulationSCP1 0.853 0.846 0.775
SelfRegulationSCP2 0.550 0.556 0.539

StandWalkJump 0.500 0.400 0.200
UWaveGestureLibrary 0.819 0.884 0.903

3.4. Robustness to Noisy Data

Most real-world time-series data contain some noise. Typically, the photoplethysmo-
gram (PPG) signal, which is also referred to as the blood volume pulse, contains many
noises. A PPG signal is simple and highly useful in daily life since it can be easily mea-
sured from the wrist. However, it is difficult to apply in an end-to-end deep learning
model because it is susceptible to many internal and external noises of the measurement
environment [40,41]. Therefore, most existing PPG-based studies have focused on signal
processing and feature engineering [4,31,42–44].

In this study, we validated the noise robustness of BIMO, which is an end-to-end
deep learning model, using noisy PPG signals. We used a PPG signal from the WESAD
dataset [31]. The WESAD dataset is labeled with four emotional states: baseline, stress,
amusement, and meditation. We performed a classification task with leave-one-subject-out
cross-validation, stress versus nonstress, where nonstress is defined by combining the state
baseline and amusement states [31].

We compared the performance with BIMO and existing SOTA supervised learning
models for PPG, which is a weak feature engineering method [31] and a strong feature
engineering method named OMDP [4]. The weak feature engineering-based method uses
a peak detection algorithm, which is computed by simple statistical features. OMDP
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employs a two-step signal processing method in terms of both time and frequency and
an ensemble-based peak detection method; it extracts diverse features from detected peaks.

As a result, we found that BIMO outperformed the supervised learning methods
(Table 6), indicating that BIMO is comparable to previous SOTA models. This is a very
meaningful result, since BIMO opens up the possibility that unsupervised end-to-end
data-driven feature learning is also possible for noisy time-series data.

Table 6. Comparison of accuracy and F1 scores of BIMO and existing models using a PPG signal in
the WESAD dataset. Abbreviations: decision tree (DT), random forest (RF), Adaboost (AB), linear
discriminant analysis (LDA), k-nearest neighbor (kNN), and feature engineering (FE).

Accuracy (F1)

ML Algorithms DT RF AB LDA kNN BIMO (Ours)

weak FE 0.78 (0.81) 0.81 (0.84) 0.81 (0.84) 0.83 (0.86) 0.79 (0.82) 0.87 (0.85)
strong FE (OMDP) 0.87 (0.81) 0.91 (0.87) 0.91 (0.87) 0.97 (0.93) 0.89 (0.89)

4. Conclusions

We proposed BIMO, which is an unsupervised learning method that is applicable
to sparsely labeled and unpredictable time-series data. BIMO learns general features by
considering both inter-modality and intra-modality representations simultaneously. In the
proposed BIMO method, two auxiliary networks are employed to train the main network,
and different ratios of the two auxiliary networks are dynamically applied to learn both
modalities efficiently. BIMO demonstrated superior representation learning performance
compared to SOTA unsupervised models, and it demonstrated comparable performance
to well-known supervised models. In addition, we examined how BIMO is universal and
robust to noisy data. The trained encoder of the main network could also be used in many
different tasks by fine-tuning the model using simple classifiers.
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