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Abstract: Despite the partial disclosure of driving scenario knowledge graphs, they still fail to
meet the comprehensive needs of intelligent connected vehicles for driving knowledge. Current
issues include the high complexity of pattern layer construction, insufficient accuracy of information
extraction and fusion, and limited performance of knowledge reasoning models. To address these
challenges, a hybrid knowledge graph method was adopted in the construction of a driving scenario
knowledge graph (DSKG). Firstly, core concepts in the field were systematically sorted and classified,
laying the foundation for the construction of a multi-level classified knowledge graph top-level
ontology. Subsequently, by deeply exploring and analyzing the Traffic Genome data, 34 entities and
51 relations were extracted and integrated with the ontology layer, achieving the expansion and
updating of the knowledge graph. Then, in terms of knowledge reasoning models, an analysis of the
training results of the TransE, Complex, Distmult, and Rotate models in the entity linking prediction
task of DSKG revealed that the Distmult model performed the best in metrics such as hit rate, making
it more suitable for inference in DSKG. Finally, a standardized and widely applicable driving scenario
knowledge graph was proposed. The DSKG and related materials have been publicly released for
use by industry and academia.
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1. Introduction

In recent years, significant progress has been made in the field of autonomous driving,
largely attributed to the development and application of artificial intelligence technologies,
particularly algorithms such as deep learning and reinforcement learning. These algo-
rithms play crucial roles in perception, decision-making, and control, enabling vehicles to
accurately perceive and adapt to their surrounding environments.

Despite remarkable achievements, the comprehensive application of advanced au-
tonomous driving technologies still faces numerous challenges. This is mainly due to the
limitations of artificial intelligence algorithms in interpretability, understanding complex
scenarios, and handling unknown situations [1]. When faced with real-world situations
that differ from the training data, current artificial intelligence algorithms may encounter
significant setbacks, potentially leading to accidents involving autonomous vehicles. For in-
stance, several fatal accidents involving Tesla’s autonomous driving vehicles can largely be
attributed to failures in their perception systems [2,3]. Similarly, the fatal collision between
an autonomous Uber vehicle and a pedestrian also exposes shortcomings in autonomous
driving in terms of perception and prediction [4]. Additionally, artificial intelligence algo-
rithms rely on vast training datasets, requiring them to process large volumes of example
data to achieve high accuracy, which sharply contrasts with the efficiency of humans in
integrating new information through single instances of learning. In this context, under-
standing context becomes particularly important for agents to handle unknown situations,
provide feedback to users, and understand their own functionality.

Scene understanding requires systems to possess a profound semantic understanding
of entities and their relationships in complex physical and social environments. To meet this
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requirement, a feasible approach is to represent entities and their relationships in scenes
as knowledge graphs (KGs) [5]. By constructing scene knowledge graphs, systems can
better predict entity behaviors, thereby enhancing scene understanding capabilities [6,7].
For example, consider a scenario where an autonomous vehicle is navigating through a
complex intersection. Traditional visual perception systems may identify traffic signals,
pedestrians, and other vehicles. However, relying solely on this information may not accu-
rately predict the next actions in certain situations. If the system can leverage knowledge
graphs to understand the structure and rules of the intersection, it can improve predictions.
It can identify relationships between traffic signals and pedestrians, as well as the traffic
rules among different vehicles. This enables more accurate predictions of when to stop,
when to turn, or when to accelerate through. This knowledge-injection-learning-based
approach can compensate for the limitations of traditional visual perception systems. It
improves the performance and safety of autonomous driving systems in complex scenes.
Therefore, knowledge graph construction based on knowledge injection learning holds
tremendous potential in addressing the complex technical challenges of scene understand-
ing in autonomous driving.

However, the application of knowledge graphs also faces a series of challenges and
issues, such as the cost of knowledge acquisition, the uncertainty of knowledge represen-
tation, and the timeliness of knowledge updates. Among these, the cost of knowledge
acquisition is a significant consideration factor because building and maintaining a com-
plete and accurate knowledge graph require substantial human and time investments.
Additionally, the uncertainty of knowledge representation poses another challenge because
real-world knowledge is often fuzzy, uncertain, and may evolve over time and in differ-
ent environments. There is also a high demand for timely knowledge updates because
autonomous driving systems need to promptly acquire the latest information to adapt to
continuously changing road conditions and traffic rules.

The main contributions of this paper include:

• Proposing a more efficient method for knowledge acquisition and updating, including
automated extraction and updating of knowledge from various sources to reduce
manpower and time costs.

• Constructing a standardized and widely applicable knowledge graph for driving
scenarios, and making it open-source.

• Validating the inference effects of different knowledge embedding models in DSKG to
discover new knowledge and confirm the most effective embedding models for scene
understanding.

The subsequent sections of this paper will unfold in the following order: Section 2 will
review the construction methods of knowledge graphs. Section 3 will detail the construction
process of DSKG and provide in-depth analysis and discussion of all evaluation results.
Finally, Section 4 will summarize the main conclusions of this paper and outline future
research directions.

2. Knowledge Graph

The concept of a knowledge graph [8] was formally introduced by Google in 2012, aim-
ing to depict various concepts, entities, and their relationships in the real world using graph
theory. A knowledge graph is composed of entities, relationships, and facts, formalized as
G = (E, R, T). Here, E represents the set of entities, R represents the set of relationships,
and T represents the set of triples (h, r, t) ∈ T, where h ∈ E denotes the head entity, t ∈ E
denotes the tail entity, and r ∈ R denotes the relationship. In this structure, entities are
interconnected through relationships, forming a networked knowledge system. Compared
to traditional text and tabular representations, knowledge graphs, with their intuitive and
efficient characteristics, can clearly display entity attributes and their connections, thereby
enabling tasks such as intelligent search, question reasoning, and recommendations [9–11].
Furthermore, knowledge graphs often utilize a resource description framework (RDF) and
web ontology language (OWL) to represent and define the structure of the data, thereby
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enhancing interoperability and reasoning capabilities by facilitating data exchange and
specifying concepts, relationships, and constraints within a domain.

The construction of a knowledge graph involves two main layers: the schema layer and
the data layer [12]. The ontology, as the schema layer of the knowledge graph, constrains
the data layer through rules and axioms defined by the ontology. The data layer, situated
below the ontology layer, stores information in the form of triple tables, attribute tables, etc.,
in a graph database. For the schematic diagram of a domain knowledge graph structure,
please refer to Figure 1.
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The construction of a knowledge graph can be mainly divided into two categories:
top-down and bottom-up approaches [13]. The top-down approach establishes the schema
layer first, guiding the construction of the data layer, directly extracting ontology and
schemas from structured data sources, and incorporating them into the knowledge base.
This method performs well in displaying hierarchical relationships between concepts but
requires a high degree of human involvement and has limited schema layer updates,
making it more suitable for constructing knowledge graphs with smaller scales and clear
hierarchical structures. If a domain knowledge graph has a small scale and a clear knowl-
edge system, the top-down approach can be considered. The bottom-up approach, on the
other hand, first constructs the data layer, integrates the acquired knowledge, extracts and
filters ontology patterns from the data, and then manually selects new patterns with high
confidence to add to the knowledge base. This method updates rapidly and is suitable
for large-scale knowledge graph construction but may contain more noise. Typically, the
bottom-up approach is chosen for constructing general-purpose knowledge graphs due
to the richness and complexity of general knowledge, which makes defining patterns
manually challenging.

To balance the advantages of both approaches, we adopted a hybrid knowledge graph
construction approach. The overall process is illustrated in Figure 2. Firstly, core knowledge
is collected from the public domain of driving scenarios, and the domain concept system
is summarized to construct the top-level ontology of the multidimensional hierarchical
knowledge graph. Secondly, knowledge extraction is performed using massive structured
data to extract entities, attributes, and relationships, forming a small-scale graph structure
relevant to new knowledge. Next, the schema layer is integrated to construct the knowledge
graph for intelligent connected vehicle driving scenarios. Subsequently, based on existing
data in the knowledge graph, knowledge embedding reasoning is conducted, and the
quality of the reasoning results is evaluated to expand and enrich the knowledge graph.
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3. Methodology: DSKG Construction
3.1. Knowledge Acquisition

The goal of knowledge acquisition is to gather, integrate, and analyze core knowl-
edge in the public domain, thereby constructing a comprehensive and reliable knowledge
system. The following will delve into the analysis and discussion of the core knowledge
of intelligent connected vehicle driving scenarios collected from the aspects of concepts,
ontology, and data.

3.1.1. Domain Concepts

A driving scenario [14] refers to the comprehensive and dynamic description of the
interactive process between intelligent connected vehicles and elements in the driving
environment (such as other vehicles, roads, traffic facilities, and weather conditions) within
a specific time and space range. Schuldt’s research [15,16] introduces the concept of us-
ing a layered model to construct scene and environment descriptions, divided into four
layers: base road network, situation-specific adaptations of the base road network, actors
and their control, and environment conditions. In the PEGASUS project [17], the layered
scene concept [16] is applied to highway scenarios. Bagschik et al. [18] and Bock et al. [19]
subsequently introduced the fifth and sixth layers, forming the six-layer model for highway
scenarios. The road layer defines road layout and topology, while the traffic infrastruc-
ture layer includes structural boundaries, traffic signs, and other elements. In subsequent
work [20,21], a new third layer was separated from the second layer to describe tempo-
rary changes, the fourth layer was named “objects”, the fifth layer represented weather
conditions, and the sixth layer represented digital information. Given the emphasis of the
PEGASUS project [17] on highway applications, Scholtes et al. [22] proposed a six-layer
model for urban scenarios. Building upon the six-layer external scene construction per-
formed by the CAICV-SOTIF Working Group, a seventh layer was added representing the
vehicle state [23], to more accurately describe in-car information. Figure 3 illustrates the iter-
ative process of the scene hierarchical concept, from the initial four layers to the latter seven
layers, reflecting the ongoing deepening and refinement of driving scenario descriptions.
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3.1.2. Domain Ontology

An ontology is a formalized model for describing domain knowledge, defining seman-
tic associations between entities, properties, and relationships within the domain. In the
work of Bagschik et al. [18], an ontology describing simple highway scenes based on a set of
predefined keywords was proposed. In subsequent work, Menzel et al. [24] extended this
concept to generate OpenSCENARIO and OpenDRIVE scenes. Tahir et al. [25] proposed an
ontology focusing on urban intersection scenarios, while also addressing evolving weather
conditions. Hermann et al. [26] proposed an ontology for dataset creation, focusing on
pedestrian detection, including occlusions of pedestrians. Their ontology, inspired by the
PEGASUS model [17], consists of 22 sub-ontologies. It can describe various scenarios
and convert them into simulations. However, due to the lack of detailed description and
unavailability, it is unclear whether a separate ontology is needed for each frame or if
the ontology itself can describe temporal scenes. The Association for Standardisation of
Automation and Measuring Systems (ASAM) [27] developed the OpenX Ontology, aiming
to provide common definitions, attributes, and relationships for central concepts in the
ASAM OpenX standard in the field of road traffic. The ontology is mainly divided into
three modules: core ontology, domain ontology, and application ontology. The domain
ontology defines the central concepts of road traffic and includes three layers: environmen-
tal conditions, road topology and traffic infrastructure, traffic participants and behaviors.
Bogdoll et al. [28] proposed an extensive framework for developing edge hazardous sce-
narios. Westhofen et al. [29] also proposed an ontology for urban automotive city traffic
(A.U.T.O.), to discover more trigger events. Table 1 summarizes the scope and attributes of
the previously introduced ontologies, and whether the ontology itself is openly published.

Table 1. Ontologies related to driving scenarios.

Authors Year Scene Category Open Status

Bagschik et al. [24] 2018 Highway -
Menzel et al. [25] 2019 Highway -
Tahir et al. [26] 2022 Urban -

Hermann et al. [27] 2022 Urban -
ASAM [28] 2022 Full scene

√

Bogdoll et al. [29] 2022 Full scene
√

Westhofen et al. [30] 2022 Urban
√
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3.1.3. Domain Data

In the field of autonomous driving, there are numerous high-quality structured
datasets [30–36]. These datasets contain abundant autonomous driving scene data and an-
notation information, offering vital support for research and development in autonomous
driving technology. Upon thorough analysis of these annotations, we observed that newer
datasets often represent advanced technological progress and more comprehensive data
collection strategies. For instance, the A2D2 and BDD100K datasets excel in diverse concept
categories, encompassing a wide range of scenes and traffic conditions. Conversely, the
NuScenes and Traffic Genome datasets excel in providing detailed attribute or relationship
information, enhancing our ability to accurately describe and understand scenes. Notably,
due to the significantly higher number of relationship labels in the Traffic Genome dataset
compared to others, we chose it as the primary target for knowledge extraction. Detailed
statistics on the quantities of various elements are provided in Table 2.

Table 2. Datasets related to driving scenarios.

Dataset Year Number of Concept Classes Number of Attributes
or Relationships

KITTI [30] 2013 5 -
BDD100K [31] 2018 40 -
NuScenes [32] 2019 23 5

A2D2 [33] 2019 52 -
Waymo [34] 2020 4 -

PandaSet [35] 2020 37 13
Traffic Genome [36] 2021 34 51

3.2. Construction of Ontology for Driving Scenarios

Constructing the domain ontology for driving scenarios involves considering the
standardization of domain terms, the broad applicability of conceptual categories, the
hierarchical structure of abstract concepts in the domain, and the definitions of relevant
attributes of each concept and the relationships between concepts [37]. First, existing
domain ontologies were examined. Among them, the terminology of the A.U.T.O. ontology,
open-sourced by Westhofen et al. [29], was more standardized. Therefore, based on the
reuse of the A.U.T.O. ontology, further extensions and adjustments were made for a full-
scenario perspective based on the domain knowledge obtained in this section. Additionally,
during the subsequent knowledge extraction from structured data, the ontology was
updated based on the fusion results of the small-scale knowledge graph, making it not
only conform to the domain consensus but also adaptable for describing and representing
full-scenario knowledge.

3.2.1. Definition of Classes and Their Hierarchical Structure

Referring to the widely applicable six-layer scene hierarchical concept, this section
also divides the knowledge system of intelligent connected vehicle driving scenarios into
six concept classes: Base Road, Roadside Facility, Temporary Change, Dynamic Objects,
Environmental Conditions, and Digital Information. Among them, Base Road provides
the foundational support for all scenario elements; Roadside Facility is built upon the
road structure; Temporary Change describes transient adjustments within Basic Road and
Roadside Facility; Dynamic Object acts as an intermediate layer, connecting static and
dynamic scenario elements; Environmental Condition characterizes the environmental
elements of the scenario and their impacts on the aforementioned concept and vehicle
functions; and Digital Information describes all digital data-based information related to
vehicles, infrastructure, or both. These concept classes are constructed hierarchically from
the bottom layer to the top layer, forming a complete architecture. Each concept class
contains specific subclasses, forming a parent-child inheritance relationship among them.
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We utilize the Protégé (Version 5.5.0) ontology management software developed by
Stanford University for ontology editing and management [38]. During the construction
of the domain ontology, we manually input the relevant ontology of driving scenarios.
Additionally, we employ the OWLViz module within the software to visually display the
hierarchical structure of the domain ontology, as depicted in Figure 4.
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The following briefly explains the core concept classes of the domain ontology of
driving scenarios and their subclasses:

(1) Base Road: This describes the road network and all permanent objects required for
road traffic guidance. It can be divided into Road Topology, Road Surface Condition, and
Traffic Markings.
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Road Topology can be mapped to the road network and lanes. For complex road topologies
such as intersections and roundabouts, they are recorded using a “road network + lanes” approach
to avoid redundant descriptions caused by the direct classification of road structures. The road
network consists of segments and connections, while lanes contain records of actual roads within
each segment.

Road Surface Condition is divided into Road Surface Material and Road Surface
Irregularity. The material of the road surface describes its physical characteristics, including
features of materials such as asphalt, concrete, gravel, etc. Road surface irregularity
describes whether the road surface has manholes, potholes, cracks, faults, depressions,
speed bumps, etc., that affect driving conditions.

Traffic Markings are traffic indications drawn on the road surface, which can be
divided into directional markings, prohibition markings, and warning markings based
on their functions. Directional markings indicate markings on facilities such as roadways,
directions of travel, road edges, and sidewalks. Prohibition markings indicate special
regulations such as adherence to, prohibition, and restriction of road traffic, which drivers
and pedestrians must strictly adhere to. Warning markings prompt drivers and pedestrians
to understand special situations on the road, increase vigilance, and prepare for contingency
measures.

(2) Roadside Facility: This describes all static objects usually placed near the road
space rather than on the road. These static objects can be further decomposed into Urban
Infrastructure, Traffic Infrastructure, Traffic Control Facilities, and Traffic Information
Facilities. Urban Infrastructure includes buildings, vegetation, streetlights, fire hydrants,
etc.; Traffic Infrastructure includes fences, tunnels, bridges, etc.; Traffic Control Facilities
include traffic lights and roadblocks; Traffic Information facilities include traffic signs and
information display screens.

(3) Temporary Change: This describes the non-persistent temporary changes of entities
within the Base Road and Roadside Facility layers in specific scenarios. This layer does not
introduce any new entity classes defined in the preceding layers but consists of temporary
modifications of elements from Layers 1 and 2. This layer categorizes temporary road events
into Road Condition Changes and Road Surface Changes. For each type of temporary
event, information such as the lane position, starting point, and end point of the event is
specified. Based on the description of the first layer, changes in road conditions can be
divided into changes in road curvature, slope, coverage, lane width, number, centerline,
etc. In addition to these temporary events closely related to the first layer of road structure,
it also includes road surface changes caused by changes in weather conditions, such as
dryness, moisture, icing, or reflective road surfaces.

(4) Dynamic Objects: This describes dynamic objects in the scenario that affect the
occurrence of events. Dynamic objects can be classified from the perspective of vehicles,
people, animals, and other objects. The movement of these objects evolves over time and
can be described through trajectories.

(5) Environmental Conditions: This describes the natural environment in which the
traffic scene is located. Weather Conditions include weather conditions, temperature,
humidity, wind speed, wind direction, visibility, etc. Lighting Conditions include the
position of light sources, the type of light sources, the intensity of light, the direction of
light, and whether there is reflected light, etc.

(6) Digital Information: This describes all information based on digital data between
vehicles, infrastructure, or both, including digital signals from information devices such as
roadside units and edge computing units. The description of roadside units includes the
change status of traffic signs and traffic lights. It is noteworthy that this layer describes the
change status of traffic signs and traffic lights but is limited to the description of changeable
information, while the respective objects themselves have already been placed in Layer 1.
The description of edge computing units includes the change information of perception
and control.
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3.2.2. Definition of Class Attributes

After the completion of class definitions, the attributes of each class need to be defined.
Since these classes have inheritance, subclasses can inherit attributes from parent classes.
Therefore, placing these attributes in the most widely applicable application class, close to
the top level, facilitates the efficiency of inheritance. Table 3 shows examples of attributes
of some classes involved in this chapter.

Table 3. Example of concept class properties in the driving scenario domain.

Classes Attributes

Lane Length, width, direction, type, speed limit, etc.
Traffic markings Type, color, width, length, shape, maintenance status, etc.

Vehicle Type, brand, color, driving status, etc.
Person Age group, gender, activity status, etc.
Object Type, size, color, material, shape, mobility, etc.

3.2.3. Definition of Class Relationships

Based on the framework of the driving scenario domain ontology, the parent-child relation-
ships of the hierarchical concepts of driving scenarios can be clearly defined. These relationships
have transitivity, where subclasses can inherit parent class relationships and may also possess
new specific relationships. Therefore, parent class relationships can be defined as common
attributes, while subclass relationships are defined as specific relationships. The construction of
conceptual relationships between classes in the driving scenario domain adopts a top-down
approach. The ontology relationships describe the spatial, temporal, and semantic relationships
between entities in traffic scenarios, as shown in Table 4.

Table 4. Example of relationships in the driving scenario domain.

Relationship Category Meaning Examples

Spatial
Relationship

Describes the topological,
directional, and metric relationships
between concept classes.

The position dependency between lanes,
road irregularities, and roadside facilities.

The positional relationship between the
driving direction of the vehicle and dynamic
objects such as vehicles and pedestrians.

The relative distance between the vehicle
and roadside facilities, dynamic objects,
and other elements.

Temporal
Relationship

Describes the geometric topology
information of time points or
timelines between concept classes.

Whether the vehicle passes through the
intersection during the green light phase
of the traffic signal.

Changes in environmental conditions over
time during vehicle travel.

The duration of vehicle parking in
temporary parking areas.

Semantic
Relationship

Describes the traffic connections
between concept classes to express
accessibility or restrictions, subject
to constraints of time and space.

The restricted access rules for the tidal
lane at different times.

The relationship between people and vehicles
in terms of driving or being driven.

To illustrate the hierarchical structure and associative relationships of the domain ontology
further, we utilized the OntoGraf module of the Protégé for visualization. The complete ontology
is shown in Figure 5. In the figure, solid lines represent the hierarchical relationships of the
ontology, while dashed lines illustrate the associations between concept classes.
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3.3. Knowledge Extraction and Fusion

In the construction of the domain knowledge graph generated in this chapter, the
ontology layer mainly relies on manual summarization of human experience. Although it
has good organization and theoretical foundation, its scale is limited and difficult to expand
in bulk. The data layer, on the other hand, has a large scale and high information richness.
However, due to the insufficient organizational structure of the network, the information
density of the data layer is relatively low, and its utilization is limited. To address this issue,
this section leverages the guiding role of the ontology layer to extract entity data from a
large amount of standardized autonomous driving data, serving as the data layer of the
driving scenario domain knowledge graph. By integrating the data layer with the ontology
layer, the expansion and correction of the ontology layer are achieved, thereby realizing a
“bottom-up” semi-automatic update of the ontology layer.

3.3.1. Data Extraction

Knowledge extraction refers to the process of accurately extracting and acquiring key
information from massive data. According to the different characteristics of the data’s
intrinsic structure, knowledge extraction can be subdivided into three types: structured data
extraction, semi-structured data extraction, and unstructured data extraction. The Traffic
Genome dataset, as a typical structured dataset, has representative processing methods.
When dealing with such data, we need to convert the original labeled HDF5 format scene
graphs into a more standardized RDF format data. Figure 6 details how to convert the
scene graph labels from the Traffic Genome dataset, thereby generating a small-scale but
well-structured knowledge graph.
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3.3.2. Knowledge Fusion

Knowledge fusion is a process that integrates, disambiguates, processes, verifies, and
updates heterogeneous data, information, methods, experiences, and human thoughts into
a high-quality knowledge base through high-level knowledge organization under the same
framework. Considering that this project involves the fusion between the top-level ontology
and a small-scale knowledge graph, a text-based approach can be used for entity matching.

A text-based approach refers to matching entities based on their textual description
information. Descriptive information of concepts from two graphs can be extracted, and
the similarity between two concepts can be measured by calculating the similarity. For
example, in different graphs, the concepts “vehicle” and “car”, despite having different
names, have the same meaning and description, requiring the establishment of a matching
relationship between these two concepts. Figure 7 depicts the graphical representation of
classes defined in the Traffic Genome dataset, mapped to their equivalent DSKG classes.
The equivalence between elements is defined by the “owl:sameAs” relation, indicating that
one element can be replaced by another without changing the meaning, and vice versa.
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Through extraction and fusion, we constructed the initial knowledge graph of driving
scenarios. The final merged DSKG contains a total of 178 classes, 34 object properties,
and 43 data properties. For convenient association, it has been converted and stored in
the Neo4j graph database. Neo4j supports large-scale data storage, effectively addressing
issues such as low data density, large volumes, and rapid updates in the traffic domain.
Additionally, the Cypher graph query language supports relevant queries and graph
algorithms, facilitating data querying and value mining. Therefore, Neo4j graph database
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was chosen for knowledge storage in this study. Figure 8 presents the final driving scenario
domain knowledge graph (partial).
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3.4. Knowledge Inference Models Based on Representation Learning

The main idea of knowledge inference based on representation learning is to learn
the semantic correlations between entities and relations by mapping them into a low-
dimensional continuous vector space. Specifically, knowledge embedding models first
project the knowledge graph into a low-dimensional vector space, transforming entities and
relations in the graph into low-dimensional vectors. Then, a scoring function is designed to
compute the scores of all knowledge triples, and the backpropagation algorithm is used
to maximize the scores of the triples actually existing in the knowledge graph, thereby
learning the vector embeddings of entities and relations in the knowledge graph.

3.4.1. Model Definition

Knowledge graph representation learning models are a class of methods used to learn
vector representations of entities and relations in knowledge graphs. These models play a
crucial role in entity-linking prediction tasks in knowledge graphs. This section introduces
several commonly used knowledge graph representation learning models, including the
TransE [39], Complex [40], Distmult [41], and RotatE [42] models.

The TransE model is a distance-based knowledge representation learning model. Its
core idea is to learn the embedding representation of knowledge by translating the relation
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vector as the translation operation from the head entity vector to the tail entity vector. For a
given triple (h, r, t), its scoring function is defined as follows:

fr(h, t) = ∥h + r − t∥2 (1)

where p is the norm (usually 1 or 2), and ∥·∥P is the norm. This function calculates the
distance between the head entity after relation translation and the tail entity, where a
smaller distance indicates a better match.

The Complex model is a complex-based knowledge representation learning model. Its
core idea is to represent entities and relations in the knowledge graph as complex vectors
and use complex inner product to compute the similarity between entities and relations. Its
scoring function is defined as follows:

fr(h, t) = Re
(

hTrt
)

(2)

where Re(·) represents the real part, and t represents the conjugate of the tail entity vector.
The Distmult model is a dot-product-based knowledge representation learning model.

Its core idea is to represent entities and relations in the knowledge graph as vectors and use
dot product to measure the similarity between entities and relations. Its scoring function is
defined as follows:

fr(h, t) = hTr ⊙ t (3)

where ⊙ represents the element-wise product.
The RotatE model is a rotation-based knowledge representation learning model. Its

core idea is to use rotation operations to capture semantic correlations between entities and
relations. Its scoring function is defined as follows:

fr(h, t) = dist(h ◦ r, t) (4)

where ◦ represents element-wise multiplication of complex numbers, and dist(·) represents
a metric function, usually 1 or 2-norm.

3.4.2. Model Training and Analysis

Multiple evaluation metrics were employed in this study to assess the performance
of different models in link prediction tasks, including Mean Rank (MR), Mean Reciprocal
Rank (MRR), Hits@1, Hits@3, and Hits@10. MR represents the average rank of correct
triples in the test set. Hits@10 indicates the ratio of correct triples among the top 10 rankings
to the total number of triples in the test set. When the average rank is lower, the MRR,
Hits@1, Hits@3, and Hits@10 are higher, indicating better inference performance. The
optimal hyperparameters for different models are shown in Table 5.

Table 5. Hyperparameter values of the different models.

Model Learning Rate Hidden Layer Margin Batch_Size

TransE 0.001 50/256/512 0.9 20,000
Complex 0.001 50/256/512 None 20,000
Distmult 0.001 50/256/512 0.9 20,000

Rotate 0.001 50/256/512 1.0 20,000

For a deeper understanding of the model training process, we provide Figure 9, which
details the training process. Additionally, Table 6 showcases the entity prediction results in
the Traffic Genome dataset. These results offer insights into the accuracy, precision, recall,
and other metrics of each model in capturing entities within driving scenarios.
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Table 6. Results of predicting the entities.

Model (Optimal Hidden Layer) MR MRR Hits@10 Hits@3 Hits@1

Transe (256) 9.18 41.67% 59.79% 42.82% 32.47%
Complex (50) 8.51 42.01% 56.43% 42.98% 33.77%
Distmult (256) 7.01 46.09% 65.91% 46.92% 36.29%

Rotate (50) 4.99 45.68% 76.54% 52.17% 32.51%

Based on Figure 8 and Table 6, we conducted a comprehensive analysis of four different
models. The Rotate model performs best in MR, with an average rank of 4.99, significantly
lower than other models. The Complex model excels in MRR, reaching 42.01%, slightly
higher than the Rotate model’s 45.68%. However, under stricter evaluation metrics such as
Hits@10, Hits@3, and Hits@1, the Rotate model demonstrates outstanding performance,
ranking first in Hits@10, Hits@3, and Hits@1 with 76.54%, 52.17%, and 32.51%, respectively.
The Distmult model also performs well, ranking second in Hits@10 with 65.91%, and
second in Hits@3 and Hits@1 with 46.92% and 36.29%, respectively. In contrast, the Transe
and Complex models show relatively average performance across all metrics. Therefore,
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considering the overall performance, the Rotate model emerges as a preferred choice among
these evaluation metrics and could serve as one of the primary models in research.

4. Conclusions

This study investigates the modeling methods of knowledge graphs in the domain
of driving scenarios. It includes ontology construction, knowledge extraction and fusion,
and analysis of knowledge reasoning models based on representation learning. Ontology
construction standardizes domain knowledge. It ensures the wide applicability of concept
categories. This process lays the foundation for subsequent knowledge extraction and
fusion. In the data extraction and fusion phase, entity data were extracted from the Traffic
Genome dataset. It was then integrated with the ontology layer. This facilitated the
expansion and updating of the knowledge graph. Finally, we will publicly release the
generated DSKG and related materials for use by both industry and academia.

Furthermore, we conducted in-depth research on knowledge reasoning models based
on representation learning, introducing several commonly used models and evaluating
their performance in link prediction tasks. The analysis revealed that the Distmult model
performed the best in metrics such as average ranking and hit rate. This finding validates
the effectiveness of the Distmult model in knowledge embedding and supports its applica-
tion in real-time scene understanding and driving decision-making. Additionally, it can
also be applied in scenario-based testing and verification. Knowledge embedding models
accurately detect scene similarity, reducing non-safety-critical scenarios and improving
testing efficiency.

In the discussion, we acknowledged the scalability and applicability of our method.
However, we recognize several limitations. Firstly, our method still requires human inter-
vention in the knowledge graph construction process, lacking full automation. Secondly,
the performance of our method is subject to the quality and quantity of data, which may
limit its adaptability to modeling complex scenarios. Therefore, in future work, we need to
explore more automated and intelligent approaches to enhance the efficiency and scope of
our method. Additionally, our method has not fully considered the correlations and transi-
tions between different scenarios, suggesting future research into knowledge associations
and transfer methods between different scenes.

In conclusion, our proposed method provides a systematic framework for constructing
and enriching a knowledge graph of driving scenarios, advancing research and develop-
ment in intelligent connected vehicle technology. Future work will focus on addressing the
current limitations of the method and exploring more advanced technologies and methods
to further advance driving scenario analysis and decision-making.
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