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Abstract: In order to drive electric vehicle adoption and bolster grid stability, the incorporation of
battery swapping stations (BSSs) into the power grid is imperative. Conversely, network reconfig-
uration plays a crucial role in optimizing energy exchange within the power network, ensuring
its economical and safe operation. Therefore, this study proposes an optimal planning method
for battery swapping stations that integrates dynamic power distribution network reconfiguration
while addressing technical aspects of the grid. The proposed method aims to concurrently optimize
the placement and capacity of battery swapping stations, along with power distribution network
reconfiguration, to enhance grid reliability and efficiency. The optimization model accounts for
various factors including power quality, technical considerations, grid limitations, and operational
expenses. A multi-objective optimization framework is devised to simultaneously reduce system
losses, improve voltage stability, and mitigate environmental impacts of the power distribution
network incorporating DG units. Case studies are conducted to illustrate the efficacy of the proposed
approach in enhancing overall grid performance while accommodating the integration of battery
swapping stations. The findings underscore the significance of considering technical factors and
grid reconfiguration in battery swapping station planning to achieve optimal system operation and
maximize benefits for electric vehicle users and grid operators alike.

Keywords: battery swapping stations (BSSs); optimal placement; network reconfiguration; technical
and economical criteria

1. Introduction
1.1. Research Motivation

Battery swapping stations provide a convenient and effective solution for addressing
concerns about electric vehicle (EV) range anxiety and charging times, thereby expediting
the shift toward sustainable transportation. Nonetheless, the successful incorporation
of battery swapping stations into the power grid necessitates meticulous planning and
optimization to ensure dependable and economical operation. Furthermore, the impor-
tance of power network reconfiguration lies in its capacity to optimize energy distribution,
bolster grid reliability, and ensure the efficient functioning of the electrical system. Through
dynamic adjustments to the power network configuration, it becomes feasible to adapt
to fluctuations in demand, mitigate voltage variations, and minimize transmission losses.
Additionally, network reconfiguration assumes a critical role in the assimilation of re-
newable energy sources, accommodating the growing presence of distributed generation
and facilitating the adoption of emerging technologies like electric vehicles and battery
storage systems. Consequently, the synchronized deployment of battery swapping stations
coupled with power network reconfiguration can aid in mitigating peak demand, reducing
system losses, enhancing voltage stability, and supporting the integration of renewable
energy sources, aspects that have been overlooked in recent research efforts.
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1.2. Research Literature Review

The incorporation of battery swapping stations into the power grid presents a promis-
ing solution to tackle the challenges associated with EV charging infrastructure. However,
ensuring the optimal planning of these stations is paramount, particularly when consider-
ing dynamic power distribution network reconfiguration and technical intricacies of the
power grid, to ensure their efficient operation. This review critically assesses the recent
literature pertaining to the optimal planning of battery swapping stations, with a specific
emphasis on their integration with dynamic power distribution network reconfiguration
and the technical considerations inherent in the power grid. This review scrutinizes vari-
ous methodologies, identifies challenges, explores opportunities, and delineates potential
future research directions in this rapidly evolving domain. Reference [1] focuses on de-
termining the ideal size and location of battery swapping stations while accounting for
power system reliability and fluctuations in load. While it underscores the necessity for
robust infrastructure planning to guarantee the dependable operation of battery swapping
stations within the power grid, it may fall short in fully incorporating dynamic power
distribution network reconfiguration or offering comprehensive insights into technical grid
aspects, potentially undermining the robustness of the planning approach. Reference [2]
delves into the optimal allocation of battery swapping stations, with a keen eye on system
reliability. It underscores the importance of strategically siting these stations to bolster the
overall reliability of the power distribution network. Nevertheless, it may lack a compre-
hensive integration of dynamic power distribution network reconfiguration or a thorough
consideration of technical grid aspects, potentially leading to less effective planning out-
comes. Reference [3] employs particle swarm optimization (PSO) to ascertain the optimal
placement and size of battery swapping stations. By leveraging advanced optimization
techniques, the study endeavors to enhance the efficiency and efficacy of battery swapping
station planning. However, it may not fully integrate dynamic power distribution network
reconfiguration or comprehensively address technical grid aspects, potentially diminishing
the planning approach’s effectiveness. Reference [4] places significant emphasis on user
convenience as a pivotal factor in determining the optimal placement of battery swapping
stations. The research endeavors to augment the accessibility and usability of battery
swapping infrastructure to encourage the widespread adoption of electric vehicles. Despite
its focus on user-centric considerations, it may lack a holistic integration of dynamic power
distribution network reconfiguration or a comprehensive examination of technical grid
aspects, potentially compromising the planning process. Reference [5] investigates the
optimal sizing of battery swapping stations, taking into account the dynamic loading
patterns of electric vehicles. By analyzing the varying demand for charging, the study
aims to optimize the capacity of battery swapping stations to efficiently meet fluctuating
demand. However, it may not thoroughly integrate dynamic power distribution network
reconfiguration or comprehensively address technical grid aspects, potentially resulting
in suboptimal sizing decisions for battery swapping stations. Reference [6] addresses the
challenges posed by uncertain loads in the optimal siting and sizing of battery swapping
stations. The research explores methodologies to mitigate the impact of load variability on
the performance and reliability of battery swapping infrastructure. However, it may not
fully incorporate dynamic power distribution network reconfiguration or comprehensively
address technical grid aspects, potentially limiting the robustness of the planning decisions.
Reference [7] considers demand response mechanisms in determining the optimal place-
ment and size of battery swapping stations. By incorporating demand-side management
strategies, the study aims to optimize the utilization of battery swapping infrastructure
while bolstering grid stability. Nonetheless, it may lack a comprehensive integration of dy-
namic power distribution network reconfiguration or a thorough examination of technical
grid aspects, potentially compromising the planning approach. Reference [8] delves into
the optimal siting and sizing of battery swapping stations while considering the uncertainty
associated with renewable energy sources and electric vehicle loads. The research endeav-
ors to enhance the resilience of battery swapping infrastructure amidst variable inputs
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and demand. However, it may not fully integrate dynamic power distribution network
reconfiguration or offer comprehensive insights into technical grid aspects, potentially
diminishing the planning approach’s robustness. Reference [9] focuses on the optimal
allocation of battery swapping stations, accounting for load uncertainty. By considering
variations in demand, the study aims to optimize the distribution of battery swapping
infrastructure to maximize grid reliability and efficiency. However, it may not compre-
hensively integrate dynamic power distribution network reconfiguration or thoroughly
address technical grid aspects, potentially leading to less effective planning outcomes.
Reference [10] investigates the optimal sizing and location of battery swapping stations in
distribution networks witnessing increasing electric vehicle penetration. The research aims
to support the seamless integration of electric vehicles into the grid by strategically siting
and sizing battery swapping infrastructure. Nevertheless, it may not fully incorporate
dynamic power distribution network reconfiguration or comprehensively address technical
grid aspects, potentially leading to less efficient planning decisions. Reference [11] incorpo-
rates battery degradation into the determination of the optimal size of battery swapping
stations. By factoring in the impact of degradation on battery performance, the study
aims to prolong the lifespan of battery swapping infrastructure and minimize operational
costs. However, it may not comprehensively integrate dynamic power distribution network
reconfiguration or offer comprehensive insights into technical grid aspects, potentially
compromising the sizing decisions. Reference [12] explores the optimal siting and siz-
ing of battery swapping stations while considering constraints imposed by the power
grid. The research endeavors to ensure compatibility with existing infrastructure and
minimize the impact on grid operations. Nevertheless, it may not fully integrate dynamic
power distribution network reconfiguration or comprehensively address technical grid
aspects, potentially resulting in less optimal siting and sizing decisions. References [13,14]
investigate optimal sizing and siting considering constraints imposed by the power grid.
By accounting for grid limitations, these studies aim to optimize the placement and capacity
of battery swapping infrastructure to enhance grid reliability and efficiency. However, they
may not comprehensively integrate dynamic power distribution network reconfiguration
or thoroughly address technical grid aspects, potentially leading to suboptimal planning
outcomes. Reference [14] delves into optimal sizing and siting considering multiple sources
of uncertainty. By considering various factors such as load variability and renewable energy
integration, the research aims to develop robust battery swapping infrastructure resilient
to uncertainties. However, it may not fully integrate dynamic power distribution network
reconfiguration or offer comprehensive insights into technical grid aspects, potentially
compromising the planning approach’s effectiveness. Reference [15] addresses optimal
placement and sizing considering the integration of renewable generation. By strategically
locating and sizing battery swapping stations, the study aims to facilitate the seamless inte-
gration of renewable energy sources into the grid. Nonetheless, it may not comprehensively
integrate dynamic power distribution network reconfiguration or thoroughly address tech-
nical grid aspects, potentially leading to suboptimal planning decisions. Reference [16]
investigates optimal planning considering electric vehicle penetration and distribution
network loss. By accounting for these factors, the research aims to optimize the placement
and capacity of battery swapping infrastructure to minimize losses and enhance efficiency.
However, it may not fully integrate dynamic power distribution network reconfigura-
tion or offer comprehensive insights into technical grid aspects, potentially resulting in
less effective planning decisions. Reference [17] addresses optimal planning considering
load variability and system uncertainty. By incorporating these factors, the study aims
to develop robust battery swapping infrastructure capable of adapting to changing con-
ditions and uncertainties. Nevertheless, it may not comprehensively integrate dynamic
power distribution network reconfiguration or thoroughly address technical grid aspects,
potentially compromising the planning approach’s effectiveness. Reference [18] investi-
gates optimal sizing considering electric vehicle charging behavior. By analyzing charging
patterns and behaviors, the research aims to optimize the capacity of battery swapping
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stations to effectively meet demand. However, it may not fully integrate dynamic power
distribution network reconfiguration or offer comprehensive insights into technical grid as-
pects, potentially leading to suboptimal sizing decisions. Reference [19] addresses optimal
sizing and allocation considering load uncertainty. By accounting for variations in demand,
the study aims to optimize the distribution of battery swapping infrastructure to improve
grid reliability and resilience. However, it may not comprehensively integrate dynamic
power distribution network reconfiguration or thoroughly address technical grid aspects,
potentially leading to less effective allocation decisions. Reference [20] investigates optimal
placement and sizing considering renewable energy integration. By integrating renewable
energy sources, the research aims to develop sustainable battery swapping infrastructure
aligned with decarbonization goals. However, it may not fully integrate dynamic power
distribution network reconfiguration or offer comprehensive insights into technical grid
aspects, potentially compromising the planning approach’s sustainability. Reference [21]
addresses optimal placement considering voltage stability. By ensuring voltage stability,
the study aims to enhance the reliability and performance of battery swapping infrastruc-
ture within the distribution network. Nonetheless, it may not comprehensively integrate
dynamic power distribution network reconfiguration or thoroughly address technical grid
aspects, potentially leading to less effective placement decisions. Reference [22] investigates
optimal placement and sizing considering electric vehicle charging behavior. By analyzing
charging patterns, the research aims to optimize the capacity and distribution of battery
swapping infrastructure to effectively meet demand. However, it may not fully integrate
dynamic power distribution network reconfiguration or offer comprehensive insights into
technical grid aspects, potentially leading to suboptimal planning decisions. Reference [23]
addresses optimal sizing and siting with high penetration of electric vehicles. By consid-
ering the impact of electric vehicle adoption, the study aims to develop scalable battery
swapping infrastructure capable of accommodating increasing demand. Nevertheless, it
may not comprehensively integrate dynamic power distribution network reconfiguration
or thoroughly address technical grid aspects, potentially leading to less effective sizing and
siting decisions. Upon evaluating the recent state-of-the-art studies, it can be observed that
there is a potential lack of comprehensive consideration of dynamic power distribution
network reconfiguration or other technical aspects crucial for optimal planning, potentially
resulting in suboptimal solutions as evident from these references.

1.3. Shortcomings of Previous Research

Generally, while the references provided offer valuable insights into the optimal plan-
ning of battery swapping stations, the following acknowledges the potential shortcomings
or limitations that can be expressed about these research studies:

1. Limited scope: Some studies may have a narrow focus, addressing specific aspects of
optimal planning such as sizing, siting, or allocation, without considering the broader
context of dynamic power distribution network reconfiguration or comprehensive
technical aspects of the power grid like recent modern research that was performed
in [4,5,10,21].

2. Simplifying assumptions: Many studies rely on simplifying assumptions or models,
which may not fully capture the complexity of real-world scenarios. For example,
assumptions about user behavior, load variability, or renewable energy integration
could oversimplify the planning process [2,6,21].

3. Lack of real-world validation: Some research may lack validation through real-world
data or case studies, limiting the applicability and reliability of the proposed method-
ologies in practical settings [22,24].

4. Limited consideration of interactions: The interactions between battery swapping
stations and other grid components, such as renewable energy sources, conventional
generation, and grid infrastructure, may not be adequately addressed in some studies,
leading to suboptimal planning decisions [1,4,19].
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5. Neglecting operational challenges: While optimal planning is crucial, operational chal-
lenges such as maintenance, grid congestion, cybersecurity, and regulatory constraints
are equally important but may receive less attention in the literature [12,15].

6. Limited consideration of stakeholder perspectives: The perspectives and preferences
of stakeholders such as utilities, EV owners, policy makers, and local communities
may not be adequately incorporated into the planning process, potentially leading to
suboptimal solutions [24].

7. Single-objective optimization: Some studies may focus solely on optimizing a single
objective, such as cost minimization or grid reliability, without considering trade-offs
or multiple conflicting objectives in the planning process [1,3,22].

Addressing these shortcomings could enhance the robustness, applicability, and ef-
fectiveness of research on the optimal planning of battery swapping stations in dynamic
power distribution networks.

1.4. Research Contribution

In the previous section, the shortcomings of recent state-of-the-art research were
assessed. In this section, the following contributions will be presented with the aim of
addressing these shortcomings:

1. Technical and economic integration: This paper effectively combines technical aspects
of the power grid, such as voltage stability, system losses, grid reliability, sustainability,
and integration challenges, with economic goals in the planning process of battery
swapping stations. This study aims to ensure efficient and reliable operation within
the broader power grid infrastructure.

2. Dynamic network reconfiguration: The importance of dynamically reconfiguring
power distribution networks to optimize battery swapping station planning is high-
lighted. By adjusting network configurations based on real-time demand and supply
conditions, the study aims to improve grid flexibility, reliability, and efficiency while
accommodating EV integration.

3. Multiobjective optimization: This paper explores techniques for optimizing battery
swapping station planning considering multiple objectives such as station capacity,
grid constraints, renewable energy integration, and operational scheduling. By adopt-
ing a multiobjective approach, this study aims to find optimal solutions that maximize
overall system performance.

4. Risk assessment and resilience analysis: Risk assessments and resilience analyses are
conducted to identify vulnerabilities, mitigate risks, and improve the ability of battery
swapping stations to withstand disruptions. Addressing these aspects contributes to
long-term reliability and operational continuity in the face of uncertainties.

5. Environmental impact assessment: Environmental impact assessments are carried
out to evaluate the sustainability of battery swapping stations and their potential for
reducing carbon emissions in transportation. By assessing the environmental footprint,
this study aims to support environmentally friendly infrastructure development and
sustainable transportation practices.

In summary, this paper takes a holistic approach to optimizing battery swapping
station planning by integrating dynamic network reconfiguration and considering technical
aspects of the power grid. Through comprehensive analysis and synthesis of the relevant
literature, this study aims to offer insights and recommendations for developing efficient,
reliable, and sustainable infrastructure solutions for EV integration within the power grid.

1.5. Structure of the Research

This paper’s structure unfolds as follows: Starting with an Introduction section offering
an overview, subsequent sections delve into specific aspects. Section 2 elaborates on the
conceptual model, followed by Section 3, which outlines the mathematical formulation of
the proposed technique. Additionally, Section 4 discusses the incorporation of the proposed
approach into a multiobjective optimization framework, demonstrated through a flowchart.
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Moving forward, Section 5 focuses on simulating and discussing the results derived from
conducted simulations. Concluding the paper, the primary findings of this article are
summarized in the Section 6.

2. Problem Statement and Solution Procedure

This section delves into crafting and defining the framework of a novel approach aimed
at optimal and safe energy management planning within the context of the BSS placement
problem, considering the dynamic reconfiguration of power microgrids. The conceptual
model outlining this proposed structure is visually depicted in Figure 1. As illustrated,
the opening and closing of dynamic switches trigger shifts in the power network’s topology,
consequently altering the flow of energy along power transmission lines. This dynamic
process not only affects technical parameters and power quality within the network but
also influences economic objectives. Hence, it becomes imperative within the proposed
objective function framework to simultaneously factor in the optimal placement of battery
swapping stations and the status of dynamic network switches when formulating the
objective function. Consequently, further elucidation is provided on the mathematical
formulation of the objective function as outlined in the conceptual model.

Dynamic Coupled
Switch

i j

Dynamic Techno Economical BSS Managment
Incorporating Dynamic Reconfiguration

Hierarchical Control

BSS#1

BSS#2

BSS#3

BSS#i

Dynamic
SWi

Figure 1. Conceptual model of proposed optimal planning of BSS incorporating dynamic reconfiguration.
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3. Mathematical Modeling Formulation
3.1. Modeling of Battery Swapping Station

As previously noted, battery swapping stations function as convenient hubs for inte-
grating electric vehicles into the distribution network, serving as both energy recipients
from and contributors to the grid. Hence, the charging status of these vehicles significantly
influences the metrics and parameters of the distribution network. This section introduces
a robust model tailored for planning and siting analyses aimed at determining the charging
status of these vehicles. In this proposed approach, each electric vehicle, whether charg-
ing or discharging, is depicted as a voltage source converter (VSC) in accordance with
Figures 2 and 3. Consequently, the power received by an electric vehicle from the grid dur-
ing charging is derived from Equation (1) [24]. This model not only aids in understanding
the energy flow dynamics but also facilitates efficient resource allocation and infrastructure
planning within the distribution network.

Power Inverter

M

~

=
Power Converter

~

=

Battery Pack
Electric Motor

Power Network

Electric Vehicle

Figure 2. Diagram illustrating the connection between a grid and an electric vehicle charging station.

ZVSC

Power Converter

PEV
Battery
System

VkVvscVDC

IDC

IVSC

VkVvsc

ZVSC

+  Vvsc  -

(a)

(b)

Figure 3. Equivalent representation of an electric vehicle’s circuitry when connected to the power grid
(a) general configuration, (b) electrical equivalent circuit.

Pch/dis
EV (t) = PEVmax (1 − e−αt/tmax ) + PEV0 (1)
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where in Equation (1) the following are used:
PEV0 represents the initial charging power of the electric vehicle.
α denotes the charging battery time constant of the electric vehicle.
tmax signifies the total time needed to charge the electric vehicle’s battery from zero charge
to maximum charge.
PEVmax stands for the maximum charging power of the electric vehicle.

As illustrated in Figure 4, electric vehicles, whether charging or discharging at charging
stations, are electrically interconnected to the grid in both series and parallel configurations.
Consequently, the aggregate power consumption or generation by electric vehicle charging
stations can be determined utilizing Equation (2) [24].

Ptotal
EV =

n

∑
i=1

m

∑
j=1

PEV,ij (2)

Distribution Network

Charge Station

Figure 4. Integration of electric vehicles with a charging station network.

Given that the presence or absence of electric vehicles at charging stations hinges on the
probabilistic tendencies of electric vehicle owners and the duration required for discharging
or charging, the active power received from the grid by BSS is inherently subject to random
and probabilistic behavior. This aspect necessitates careful consideration in the modeling
of Equation (2). To address this, BSSs are classified into three categories based on charging
speed: slow-charging, medium-charging (battery-switching), and fast-charging stations.
In this study, the fast-charging method is employed to model the behavior of fast-charging
stations using a probabilistic Markov model. The schematic of the probabilistic Markov
model for a fast-charging electric vehicle station is depicted in Figure 5 [25].

Cars ready to be charged Charging cars

Charged cars

κ

λφ

Figure 5. Markov probabilistic model representation for a fast-charging electric vehicle station.
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In the provided figure, λ denotes the success rate of a vehicle in accessing the charging
converter, µ represents the success rate of a vehicle in completing its battery charging,
and γ signifies the rate at which a battery charging for an electric vehicle is completed
and transitions to the ready-to-charge state. Hence, referring to Figure 5, the probability
coefficient of power consumption in an electric vehicle charging station can be derived as
follows from Equations (3) and (4) [25]:

PN =

( cρ
N
)N

N!

/(
c

∑
i=0

1
i!

(
λ

µ

)i
+

N

∑
j=c+1

1
cj−c · c!

(
λ

µ

)j
)

: N < c (3)

PN =

( cρ
c
)c · (N − c)

c!

/(
c

∑
i=0

1
i!

(
λ

µ

)i
+

N

∑
j=c+1

1
cj−c ·

1
c!

·
(

λ

µ

)j
)

: N < c (4)

In Equations (3) and (4), the following are used:
PN represents the probability coefficient of power consumption in an electric vehicle
charging station.
λ denotes the success rate of a vehicle in accessing the charging converter.
µ signifies the success rate of a vehicle in completing its battery charging.
ρ=λ/µ.c stands for the number of charging stations for electric vehicles.
C represents the number of BSSs for electric vehicles.

Hence, utilizing Equations (2) through (4), the potential power consumption of a
charging station can be reformulated as Equation (5):

Ptotal
EV,N = Ptotal

EV × PN (5)

On the other hand, the operational characteristics dictating the functionality of a BSS
are subject to numerous factors. These factors encompass the configuration of battery
units, the duration of backup power, temperature conditions, battery longevity, depth of
discharge, stipulated power reserves, and the extent of renewable energy integration into
the grid, among other variables. Therefore, it becomes imperative to intricately model the
charging and discharging processes of vehicle batteries within charging stations, a detailed
representation of which is provided in reference [26] as follows:

PBSS(t) = Pch(t) : if
{
∑ PG(t)− PD(t)

}
≥ 0. (6)

PBSS(t) = Pdis(t) : if
{
∑ PG(t)− PD(t)

}
< 0. (7)

where PBSS (t), ∑ PG(t) , and PD(t) are the powers of BSS, total generation of the system,
and load demand, respectively. Furthermore, Pch(t) and Pdis(t) are charging and discharging
powers of BSS.

Essentially, a BSS unit can function in only one mode at a time, either charging or
discharging. The computation for the power of the BSS during the charging phase is
outlined as follows:

Ech(t) =
(

∑ PG(t)− PD(t)
ηConv

)
× ∆t × ηch. (8)

SOC(t) = SOC(t − 1)(1 − σ) + Ech(t). (9)

For the discharging state,

Edis(t) =
(
−∑ PG(t)− PD(t)

ηConv

)
× ∆t × ηdis. (10)

SOC(t) = SOC(t − 1)(1 − σ)− Ech(t). (11)

where in the above equations SOC(t), Ech(t), Edis(t), σ, ηch, ηdis, and ηConv represent the
battery’s charge state, the amount of energy being charged, the amount of energy being
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discharged, the rate at which energy is self-discharged, the efficiency of charging and
discharging processes, and the efficiency of the converter, respectively. The constraints
outlined in Equations (12) and (13) are designed to regulate the energy level and the
power involved in charging and discharging operations within the PSS. Furthermore,
Equation (14) is implemented to ensure the consistency of the PSS’s energy level throughout
the scheduling horizon, guaranteeing that it remains unchanged from the beginning to the
end of the specified timeframe.

Emin(BSSmin,BSSmax)
BSS (12)

Pmin(BSSmin,BSSmax)
BSS (13)

Einitial
BSS (t) = Pfinal

BSS (t) (14)

The operating cost of the PSS (Cbw) units can be described as

CBSS = Nbatt
Crep, batt√

ηrt
+ Cconstant

BSS (15)

where in Equation (15), Crep, batt, ηrt, and Cconstant
BSS represent the following parameters: the

storage replacement cost, the round-trip efficiency of the storage, and the constant cost of
the BSS, respectively.

3.2. Modeling of PV and Wind Turbine Power

The generation of renewable energy from sources like solar photovoltaic systems
and wind turbines is greatly influenced by the availability of key energy sources such as
sunlight and wind. The electricity generated by solar panels is directly linked to the amount
of sunlight that reaches the Earth’s surface, a factor that can be influenced by variables
like geographical location, weather patterns, and the duration of daylight. Consequently,
the efficiency of solar arrays is affected by factors such as cell temperature and the intensity
of solar radiation at peak power generation. Equations (16) and (17) [26] can be employed
to compute these parameters accurately.

PPV(t) =
[

P(PV,STC) ·
GT(t)
1000

·
(
1 − γ(Tj − 25)

)]
· NPVs · NPVp (16)

Tj = Tamp +
GT

GT,STC
· (NOCT − 20) (17)

Equations (16) and (17) define various parameters within the realm of photovoltaic
systems. Specifically, the symbols represent the following attributes: PPV denotes the output
power of the photovoltaic system at maximum power point, and PPV,STC denotes the
rated power of the photovoltaic system; GT represents the radiation level under standard
conditions; γ signifies the temperature coefficient of power at the maximum power point;
Tj stands for the temperature of solar cells; NPVs, NPVp signify the number of modules
arranged in series and parallel, respectively; and finally, NOCT denotes the nominal
operating temperature of the cell. Furthermore, the power output from wind turbines
Pwt is intricately linked to the velocity of the wind, a factor subject to fluctuations across
different timeframes, ranging from instantaneous changes to hourly, daily, and seasonal
variations. Hence, Equation (18) is utilized to model the actual power generation of a wind
turbine [26].

Pwt(ν) =


0 if ν < Vci

PR(A + Bν + Cν2) if Vci < ν < Vr

PR if Vr < ν < Vco

0 if Vco < ν

(18)
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In Equation (18), Pwt, Vci, Vco, and Vr represent the wind turbine output power, cut-in,
cut-out, and rated wind speeds, respectively. The variable A denotes the rated power of
the wind turbine, while B and C symbolize the coefficients linked with the turbine.

3.3. Cost Formulation of Renewable and Traditional Generation Units

In general, the cost function of wind and photovoltaic units is defined as a first-degree
function according to Equation (19) [26].

Cost(RE) =

{
ξRPR + ψcte

R : if 0 < PR < Pmax
R

0 : if PR = 0
(19)

In this equation, ξR represents the variable cost associated with renewable generation
units, PR denotes the output power of these renewable units, and ψc

Rte signifies the constant
costs related to the renewable units. On the other hand, Equation (20) characterizes the
generation cost of the traditional distributed generation units such as microturbines and
diesel generators. It encapsulates both operational expenses in the form of a second-order
equation and the costs attributed to environmental pollution as a first-order Equation [26].

Cost(TR) =



(κT P2
T + ςT PT + γT)︸ ︷︷ ︸

Operational Cost

+ ((λCO2 × CO2 + λSO2 × SO2 + λNOx × NOx)︸ ︷︷ ︸
Pollution Cost

: if 0 < PT < Pmax
T

0 : if PT = 0

(20)

The parameters specified in Equation (20) are outlined as follows:
λ(CO2)

represents the penalty factor associated with CO2 emissions.
λ(SO2)

signifies the penalty factor related to SO2 emissions.
λ(NOx) indicates the penalty factor linked to NOx emissions.

Ultimately, the overall cost function of generation units can be expressed in the follow-
ing manner:

Obj1 = Total Cost = CostTR + CostRE (21)

3.4. Mathematical Formulation of Technical Objectives
3.4.1. Power Losses and Loss Sensitivity Index

Minimizing power network losses is a crucial goal for microgrid planners and opera-
tors of smart distribution networks because these losses can restrict transmission capacity
and lead to increased operational expenses. Therefore, the total losses within distribution
networks play a significant role in the optimization process, as reflected in the computa-
tion outlined in Equation (22). By prioritizing the reduction of these losses, stakeholders
can enhance the efficiency and reliability of their systems while also potentially reducing
operational costs and environmental impacts [26].

Obj2 = Losses =
(
|V|2/RZi

)
end

−
(
|V|2/RZj

)
start︸ ︷︷ ︸

Active Losses

+
(
|V|2/XZi

)
end

−
(
|V|2/XZj

)
start︸ ︷︷ ︸

Reactive Losses

(22)

On the other hand, the power loss sensitivity factor (PLSF) serves as a valuable tool
for assessing the susceptibility of individual buses within the network to changes in active
power injection and their impact on overall power losses, as detailed in Equation (23). This
metric is utilized to pinpoint the most favorable bus locations for integrating distributed
generation (DG) within a radial distribution system (RDS). By analyzing the PLSF values of
each bus in the network, planners can identify strategic sites with high sensitivity, indicating
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their suitability for DG deployment. This approach allows for targeted placement of DG
resources to optimize system performance and enhance overall network efficiency.

Obj3 = PLSF =
N

∑
i=1

(
∂Ploss(i,i+1)

∂P(i+1)

)
=

N

∑
i=1

Ri

 2P(i+1)∣∣∣V(i+1)

∣∣∣2
 (23)

3.4.2. Voltage Deviation Index

The aim of this research is to minimize voltage variations in the distribution grid
during the integration of BSSs. The extent of voltage fluctuation can be quantified by
employing the formula provided in Equation (24) [26]. This study focuses on developing
strategies to mitigate voltage deviations effectively, thereby enhancing the stability and
reliability of the distribution network when incorporating BSS technology.

Obj4 = VD =

√√√√ N

∑
i=1

(
VStandard

VBase
− Vi

VBase

)2
(24)

3.4.3. Short-Circuit Level Index

The short-circuit level plays a pivotal role in the network’s technical dynamics, being
significantly influenced by variations in generation, consumption, and network configu-
ration. This critical parameter directly impacts protection settings and network planning,
thereby influencing the overall safety and efficiency of the network. When strategically
deploying BSSs, it is imperative to take into account this often overlooked factor. Failure to
consider the short-circuit level can lead to potential damages due to inadequate protection
system performance during BSS charge–discharge cycles and diverse generation sources.
Therefore, a comprehensive energy management strategy must incorporate defining and
addressing the short-circuit level to ensure network stability amidst fluctuations in genera-
tion capacity and network layout. This research paper aims to provide a clear definition of
the short-circuit level within the context of energy management strategies [26].

Obj5 = SCLI =

(
nb

∑
k=1

(
1 −

(
V∗

k
)

(Zkk + Z f )

/
Vk

(Zkk + Z f )

))
(25)

In the equations provided above, Vk and V∗
k denote the voltage at a bus in the network

before and after any modifications to the network. Zkk and Z f refer to the impedance of the
bus itself and the impedance of the fault that occurred at that particular bus in the network,
respectively.

3.4.4. Voltage Sensitivity Index
The Voltage sensitivity index (VSI) holds significant importance in power distribution

networks and microgrids, serving as a crucial indicator of system security and power
quality. It assesses the network’s capability to uphold stable voltage levels amidst escalating
consumer demand, thereby reflecting the system’s overall safety. This research endeavors
to enhance network security by elevating the VSI to a pivotal objective. The concept of
VSI is designed to illustrate a decline as the system load intensifies, ultimately converging
towards zero as the network approaches a critical state of collapse and reaches its maximum
sustainable load capacity. This study aims to refine the understanding and application of
the VSI within energy management strategies to fortify network resilience and reliability
under varying operational conditions [26].

Obj6 = VSI =
N

∑
i=1

(
|Vi|4 − 4|Vi|2

(
Req,iPLm,i + Xeq,iQLm,i

)
− 4
(

Xeq,iPLm,i − Req,iQLm,i

)2
)

(26)
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In Equation (26), the variable |Vi| represents the voltage magnitude at bus i, whereas
Req,i and Xeq,i stand for the total resistance and reactance of the line. Furthermore, the sym-
bols PLM,i and QLM,i correspond to the aggregate active and reactive power of all nodes,
respectively. This equation encapsulates the interplay between voltage levels, line char-
acteristics, and power flow distribution within the network, highlighting the intricate
relationship between these key parameters in ensuring efficient and stable operation.

3.4.5. Expected Energy Not Served (EENS) Index

In the domain of power distribution networks and microgrids, evaluating network
reliability is a critical focal point in planning and operational analyses. Various metrics are
examined to measure network reliability, with the expected energy not served (EENS) index
emerging as a particularly practical and versatile indicator for assessing reliability across
different energy generation and transmission levels. This index, also utilized in the referenced
paper [27], plays a crucial role in comprehensively evaluating the reliability of power systems,
underscoring its significance in ensuring efficient and robust network operations:

Obj7 = EENS =

(
NG

∑
i=1

ρG
i EG

(i,POutage
Gi

)

)
︸ ︷︷ ︸

EENS of G

+

(
NL

∑
j=1

ρL
j EL

(i,LOutage
i )

)
︸ ︷︷ ︸

EENS of L

(27)

3.5. Modeling of Switching in Dynamic Reconfiguration

Figure 6 illustrates the intricate interconnections between the components of a distri-
bution network and microgrids via power distribution lines. The dynamic reconfiguration
of this network and its linked microgrids is facilitated by the controlled operation of circuit
breakers within the system. This enables the adjustment of power network configura-
tions by manipulating the opening and closing of switches during network operations,
facilitating energy exchange between different segments of the network. Consequently,
the coupling switches in the network play a pivotal role in altering the power distribu-
tion pathways through their opening and closing actions. To represent the states of these
switches within the network, a binary formulation is utilized, where a value of 0 signifies
the open state and 1 indicates the closed state, as detailed in Equation (28).

Si =

{
1 if Switch is closed
0 if Switch is opened

(28)

Coupled Dynamic
Switch

i j

Microgrid #i

Microgrid #2

Microgrid #1

Switch State = 0 or 1

Figure 6. Various forms of dynamic switching within the proposed framework.
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3.6. Formulation of the Objective Function

The optimization model proposed in this study is tailored to tackle a complex chal-
lenge with multiple competing goals. In contrast to conventional optimization problems, it
does not have a singular solution, but rather, any feasible solution that meets the specified
constraints can be deemed optimal. The primary objective is to balance safety and effi-
ciency in the deployment of BSSs and the dynamic configuration of switches, considering
factors such as unit commitment, controllable distributed generation capacities, and power
interactions with the main network for each hour ahead. The overarching goal of this
comprehensive planning is to ensure both optimal and secure operations by considering
all technical network parameters while accommodating the charging and discharging
activities of BSSs and dynamic switches over time. To achieve this, a novel multiobjective
optimization strategy is devised based on the gray wolf optimization technique. The plan-
ning challenge is framed as a multiobjective function, as depicted in Equation (29), aiming
to strike a balance between conflicting objectives and constraints effectively.

min OBJtotal = min
{

Objk(NBSS, LBSS, CBSS, S0, 1)
}

k=1,..,7 (29)

In the equation provided, the variables NBSS and LBSS denote the quantity and location
of battery storage systems (BSSs), while the parameters CBSS and S0,1 represent the capacity
of the BSSs and the statuses of dynamic switches in the objective functions of the planning
problem under consideration. Consequently, the objective functions sought in this research
can be articulated as a set of seven interconnected objectives to address the complexities of
the planning scenario at hand as a follows:

min OBJtotal = min

[γ1 γ2 ... γk]


Obj1(NBSS, LBSS, CBSS, S0, 1)
Obj2(NBSS, LBSS, CBSS, S0, 1)

...
Objk(NBSS, LBSS, CBSS, S0, 1)




k=1,..,7

(30)

In Equation (30), the variable γk symbolizes the weight coefficient associated with the
objective functions. When adjusting these weights for each objective function, it is crucial
to consider specific events and system characteristics, such as varying system states during
maintenance, replacement schedules, the probability of component failures, and diverse
error occurrences within the system, each resulting in unique system performance condi-
tions. These weights are fine-tuned to accurately reflect the importance of these events
and characteristics within the overarching optimization framework. By assigning higher
weights to certain objective functions, their impact on the optimization process is amplified,
indicating their relative significance in achieving the desired system performance levels.
The process of adjusting these weights involves a thorough assessment of each event and
system attribute to ensure an optimal and well-rounded solution for the multiobjective
optimization task.

4. Enhanced Multiobjective Optimization Method Based on GWO

In essence, multiobjective optimization involves addressing multiple goals at once.
In the context of this study, these goals encompass technical, economic, and reliability
aspects of the system, as elaborated in the preceding section. Consequently, the optimiza-
tion problem can be mathematically formulated to either minimize or maximize certain
criteria [28].

Optimize: Total OBJ(X⃗) = {obj1(x⃗), obj2(x⃗), . . . , objn(x⃗)}
subject to: ψi(x⃗) ≥ 0, i = 1, 2, . . . , ν

θi(x⃗) = 0, i = 1, 2, . . . , σ

Ulb
i ≤ xi ≤ Uub

i , i = 1, 2, . . . , γ

(31)
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In the above equation, ν represents the count of inequality constraints, σ denotes the
number of equality constraints, γ stands for the number of variables, ψi signifies the ith
inequality constraint, no indicates the number of objective functions, ϑi denotes the ith
equality constraint, and [Ulb

i and Uub
i ] represent the boundaries of the ith variable. It is

evident that traditional relational operators fall short in effectively comparing solutions
across multiple objectives. In the current study, the predominant operator utilized is Pareto
optimal dominance, which is defined as follows for minimization problems:

∀n ∈ {1, 2, · · · , γ} : objn(x⃗) ≤ objn (⃗y) ∧ ∃n ∈ {1, 2, · · · , γ} : (32)

objn(x⃗) ≤ objn (⃗y)

where in Equation (32), x⃗ = (x1, x2, · · · , xγ) and y⃗ = (y1, y2, · · · , yγ). These equations
demonstrate that a solution surpasses another in a multiobjective search space when it
matches all objectives and outperforms in at least one objective. The principle of Pareto
optimal dominance is symbolized by ≺ and ≻ , which allow for straightforward comparison
and distinction between solutions. In population-based multiobjective algorithms, solutions
consist of multiple solutions. However, the exact determination of the optimal solution is
challenging due to each solution being constrained by other objectives, leading to inherent
conflicts between objectives. Therefore, the primary function of stochastic or population-
based multiobjective algorithms is to identify the best trade-offs among objectives, resulting
in what is known as a Pareto optimally set. In the gray wolf optimization (GWO) framework,
the hierarchy among solutions designates the most optimal as alpha, followed by beta
and delta, representing the second- and third-best solutions, respectively. The remaining
solutions are collectively termed omega. Within the GWO algorithm, the strategic pursuit
is orchestrated by beta and delta, while the gamma solution trails behind these key wolves.
When the prey is cornered and ceases to move, the assault on the leadership of the alpha
wolf commences. The orchestration of this process is facilitated through the manipulation
of the reduction vector ‘a’. This vector, denoted as ‘A’, is subject to randomization within
the range [−2a, 2a]. By diminishing ‘a’, the coefficients of vector ‘A’ are likewise reduced.
Should the magnitude of ‘A’ fall below 1, it signifies the convergence of the alpha wolf
(and others) towards the prey, while a magnitude exceeding 1 indicates a movement away
from the prey. The gray wolf optimization algorithm necessitates the synchronization of all
wolves, compelling them to adjust their positions in accordance with the movements of
the alpha, beta, and delta wolves. In the pursuit scenario, gray wolves tactically encircle
their prey. This encirclement behavior is mathematically modeled through the following
equations, where ‘t’ denotes the current iteration, ‘A’ and ‘C’ stand for coefficient vectors,
‘Xp’ represents the position vector of the prey, and ‘X’ signifies the position vector of the
gray wolf:

D⃗ = |C⃗ · X⃗p(t)− X⃗(t)| (33)

X⃗(t + 1) = X⃗p(t)− A⃗ · D⃗ (34)

Vectors A and C are calculated as follows:

A⃗ = 2⃗a · r⃗1 − a⃗ (35)

C⃗ = 2 · r⃗2 (36)

In the given equations, the variable ‘a’ undergoes a linear decrease from 2 to 0 over
the course of iterations, while ‘r1’ and ‘r2’ represent random vectors falling within the
range [0, 1]. Typically, the hunting expedition is predominantly orchestrated by the alpha,
although the beta and delta wolves may intermittently join in. Within the mathematical
framework depicting gray wolf behavior during the hunt, it is assumed that alpha, beta,
and delta possess superior knowledge regarding potential prey positions. The positions
of the top three solutions are retained, compelling other wolves to adjust their positions
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in accordance with those of the highest-ranked agents, as delineated by the provided
equations.

D⃗α = |C⃗1 · X⃗α − X⃗|

D⃗β = |C⃗2 · X⃗β − X⃗| (37)

D⃗δ = |C⃗3 · X⃗δ − X⃗|

X⃗1 = X⃗α − A⃗1 · D⃗α

X⃗2 = X⃗β − A⃗2 · D⃗β (38)

X⃗3 = X⃗δ − A⃗3 · D⃗δ

X⃗(t + 1) =
X⃗1 + X⃗2 + X⃗3

3
(39)

In this investigation, both the quantitative and qualitative efficacy of the proposed
MOGWO algorithm is evaluated. To gauge its performance, a novel formulation for genera-
tional distance is employed. This formulation serves to depict the distribution of nondomi-
nated solutions acquired through the algorithm. Here is the proposed representation:

Φ =

√
1

NPFS − 1

∫ NPFS

i=1
(Di − D)2 di (40)

Here, D represents the average of all Di ,where NPFS denotes the total number of
achieved Pareto optimal solutions, and Di is defined as follows:

Di = min
1≤i,j≤n

(
|obji1(x⃗)− objj1(x⃗)|+ |obji2(x⃗)− objj2(x⃗)|

)
(41)

The minimum value of the ϕ metric indicates that the globally optimal nondominated
solutions are evenly spread out. Therefore, when the numerical values of Di and D are
identical, the ϕ metric will be zero, signifying a balanced distribution of solutions. The pro-
cess flowchart for the improved optimization method using the gray wolf optimization
(GWO) algorithm is presented in Figure 7.

Start
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Population Size  n, Parameter a, maximum number of iteration,

Coefficient Vector 12 .A a r a< ,
θ θ θ θ

22.C r<
θ θ

Parameter Initialization
Calculate initial population   randomly

Calculate the fitness of each search agent
( )iX t
( )if X

Assign the value for the first, second, third best
solution ,X X and X α χ

1 2 3

( 1) ( ) . ( ) ( )

( 1)
3

n p p nX t X t A C X t X t

X X XX t

∗ < , ,

∗ ∗
∗ <

θ θθ θ θ θ

θ θ θ
θ

Update the Position of Wolves

Update A, a and C Using :

∋ (2

1

1
1

NPFS

i
i

D D
NPFS <

Ε < ,
, 〉

Calculate the fitness of all search agents

Report

α β δUpdate X ,X and X

Verified ?

αX

No

Yes

Figure 7. Flowchart illustrating the optimization process of the modified gray wolf algorithm.
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5. Result Analysis and Discussion

In this section, this paper explores a proposed method for evaluating the strategic
placement of BSSs and dynamic reconfiguration in intelligent distribution networks like
the IEEE 118-, 69-, and 33-bus systems and their subnetworks. The assessment considers
various load conditions, ranging from 20% to 150% of the rated load, as depicted in Figure 8
for different case studies. To validate this methodology, the authors utilize a 118-bus
distribution network with interconnected microgrids, as shown in Figure 9, comparing it
with recent approaches in the field. For detailed information on load data and network
lines, readers are advised to refer to the provided source [26]. In this study, three microgrids
are positioned at nodes 1, 26, and 111. Additionally, specific lines between buses 11–12,
68–69, and 104–105 are coupled with the lines between buses 17–27, 80–99, and 91–115 in
the network, respectively. In this regard, Table 1 shows the dynamic coupled switches in
each case study. The distributed generation resources in these microgrids include wind
turbines, photovoltaic systems, microturbines, and diesel generators to provide operational
power. The optimal placement of BSSs is conducted during system operation. The proposed
method is then assessed and compared with recent methods, considering network security
and reliability indicators. A multiobjective optimization algorithm is employed to optimize
the mentioned function, and its results are evaluated against other optimization algorithms
discussed.

Figure 8. Different load factor scenarios for each case study of IEEE 33, 69, and 118 bus.

Table 1. Initial states of dynamic coupled switches in each case study.

IEEE 118 Bus IEEE 69 Bus IEEE 33 Bus

Switch Number Coupled Switch Location Coupled Switch Location Coupled Switch Location

Normally open Normally
closed

Normally open Normally
closed

Normally open Normally
closed

1 Bus17–Bus27 Bus11–Bus12 Bus46–Bus15 Bus3–Bus36 Bus25–Bus29 Bus3–Bus23

2 Bus80–Bus99 Bus68–Bus69 Bus20–Bus65 Bus9–Bus53 Bus5–Bus33 Bus6–Bus26

3 Bus91–Bus115 Bus104–Bus105 Bus5–Bus35 Bus3–Bus28 Bus12–Bus22 Bus2–Bus19
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Figure 9. Schematic of IEEE 118-bus case study involving microgrids and dynamic switches.

5.1. Input Data Analysis

As mentioned in the previous section, the advanced distribution network, combined
with its interconnected microgrids, utilizes decentralized power sources like wind turbines
and photovoltaic systems to produce electricity. Figures 10–12 further depict the patterns
of solar radiation, ambient temperature, wind speed, and load consumption at different
load factor intervals within the network. These visuals provide a comprehensive overview
of the dynamic factors influencing power generation and consumption in the system.
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1200

1100

Figure 10. Variations in solar radiation corresponding to load fluctuations at each step.
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Figure 11. Temperature fluctuations corresponding to load changes at each step.
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Figure 12. Alterations in wind speed corresponding to changes at each step.

5.2. Analytical Insights and Discussion (Unveiling the Findings)

In the initial phase, a thorough analysis was conducted to determine the most effective
placement of BSSs and dynamic reconfiguration in the IEEE 118-, 69-, and 33-bus distribu-
tion networks and their interconnected subnetworks. This evaluation, utilizing the pro-
posed methodology, considered both technical and economic considerations. Figures 13–15
illustrate the probability density functions of various desired objective functions throughout
the optimization process.
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Figure 13. Probability density function of each objective function for IEEE 118-bus case study.

Figure 14. Probability density function of each objective function for IEEE 69-bus case study.

Subsequently, following the application of the proposed approach to identify the
optimal positioning and operational states of BSSs, as well as the optimal states of dynamic
switches in the IEEE 118-, 69-, and 33-bus systems across different load levels to enhance the
economic and technical aspects of the system, a multiobjective optimization algorithm was
employed. The resultant optimal solution can be summarized as follows. Figures 16 exhibits
the optimal power generation profiles for each energy source during load fluctuations in
the IEEE 118-, 69-, and 33-bus systems, respectively. Furthermore, Figures 17–19 portray
the optimal placement and operational states of BSSs within the power networks of IEEE
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118, 69, and 33 for each analyzed load percentage. These visuals offer valuable insights
into the efficient management of power generation and storage within the network under
varying load conditions.

Figure 15. Probability density function of each objective function for IEEE 33-bus case study.

Figure 16. Optimal generation allocation for each unit at different load factors across various case
studies (IEEE 118, 69, and 33 bus).
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Figure 17. The optimal placement and optimal dis/charging of BSSs across various load percentages
within the IEEE 118-bus network.

Figure 18. The optimal placement and optimal dis/charging of BSSs across various load percentages
within the IEEE 69-bus network.

The precise findings detailing the optimal placement and operational configurations of
BSSs for the IEEE 118−, 69−, and 33-bus systems are presented in Tables 2–4, correspond-
ingly. These tables provide comprehensive information on the most effective locations
and optimal charging/discharging states of BSSs within each network, offering valuable
insights into the enhancement of power system performance and efficiency.

Moreover, the proposed framework delineates the ideal configurations of dynamic
switches across varying load factors. Figures 20–22 illustrate the diverse states of intercon-
nected switch breakers to ascertain the most efficient setup for the primary distribution
network of IEEE 118, 69, and 33, respectively. This visualization aids in identifying the
optimal configuration that maximizes the network’s performance and efficiency.
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Figure 19. The optimal placement and optimal dis/charging of BSSs across various load percentages
within the IEEE 33-bus network.

Table 2. Detailed outcomes outlining the optimal placement of BSSs within the IEEE 118-bus network
for varying percentages of load.

Bus
Number

Optimal State of Dis/Charging (kWh) of BSSs
at Different Percentages of Nominal Load Bus

Number

Optimal State of Dis/Charging (kWh) of BSSs
at Different Percentages of Nominal Load

20% 50% 100% 150% 20% 50% 100% 150%

1 0 0 0 0 60 −1000 0 0 874.548
2 523.571 −1000 1000 −1000 61 −519.82 0 0 0
3 0 −521.45 −846.81 0 62 0 −1000 −1000 807.008
4 −1000 1000 0 0 63 0 0 0 0
5 444.543 0 467.19 0 64 −1000 0 1000 399.456
6 0 −1000 0 −623.75 65 0 0 0 0
7 −1000 0 −1000 −501.03 66 1000 −1000 −47.964 −1000
8 0 0 0 0 67 0 0 0 0
9 1000 400.055 −1000 −1000 68 1000 0 1000 0

10 775.125 −1000 0 1000 69 −1000 −1000 0 1000
11 −1000 0 −1000 0 70 0 −770.4 0 −86.382
12 0 0 1000 0 71 1000 0 1000 0
13 0 612.979 −1000 0 72 −1000 −34.278 −1000 0
14 −1000 0 0 0 73 −567.78 0 0 −1000
15 0 0 −1000 0 74 0 1000 1000 1000
16 1000 0 0 1000 75 −1000 0 −232.3 −803.82
17 1000 454.839 −265.73 −1000 76 0 1000 0 0
18 0 −314.93 0 −1000 77 1000 −1000 818.687 0
19 0 0 −403.79 0 78 −1000 −1000 0 −1000
20 81.6294 0 0 0 79 0 0 −9.3727 1000
21 0 −970.19 −964.72 −372.11 80 0 1000 1000 0
22 0 0 −1000 1000 81 0 0 0 0
23 905.58 −1000 0 −23.363 82 −406.23 1000 0 −1000
24 0 0 −1000 0 83 0 0 −1000 301.726
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Table 2. Cont.

Bus
Number

Optimal State of Dis/Charging (kWh) of
BSSs at Different Percentages of Nomi-
nal Load

Bus
Number

Optimal State of Dis/Charging (kWh) of BSSs
at Different Percentages of Nominal Load

20% 50% 100% 150% 20% 50% 100% 150%

25 1000 −768.75 0 −1000 84 0 0 0 0
26 0 0 0 0 85 −1000 −1000 −1000 −1000
27 1000 1000 676.006 0 86 2.12226 0 0 0
28 0 0 0 0 87 0 −1000 0 0
29 1000 0 0 1000 88 0 0 0 0
30 0 0 740.004 0 89 −1000 −778.33 1000 −625.07
31 −1000 854.918 0 −1000 90 0 0 0 0
32 0 0 1000 0 91 −1000 0 0 0
33 0 0 −1000 0 92 0 −1000 0 0
34 −1000 −1000 0 −1000 93 1000 0 −196.43 910.988
35 1000 0 620.332 1000 94 0 549.319 0 0
36 −1000 0 149.303 0 95 −1000 −478.27 −752.23 −620.77
37 −1000 0 −1000 −1000 96 0 1000 656.258 0
38 0 −1000 0 −237.66 97 1000 0 −96.738 −1000
39 0 −519.7 1000 0 98 1000 −1000 0 0
40 −1000 0 0 1000 99 −993.03 0 984.607 −1000
41 0 0 0 0 100 0 419.9 0 0
42 0 0 0 0 101 0 0 850.257 1000
43 0 0 −945.09 −1000 102 237.936 −1000 −1000 0
44 1000 −1000 452.465 0 103 0 0 0 0
45 −673.14 0 0 0 104 0 0 −1000 0
46 1000 −1000 1000 0 105 741.08 1000 0 1000
47 0 0 168.756 1000 106 405.013 0 0 0
48 284.628 0 0 0 107 0 0 0 0
49 0 0 −206.96 370.976 108 −827.6 0 −1000 0
50 0 1000 −96.276 0 109 207.884 777.042 851.119 33.8206
51 1000 0 0 0 110 210.632 0 −1000 −1000
52 0 −1000 0 −933.37 111 0 −450.68 0 0
53 −1000 −922.78 0 446.985 112 0 0 0 0
54 257.077 0 0 353.034 113 134.103 −1000 0 0
55 0 1000 0 0 114 0 0 −1000 −1000
56 1000 0 −1000 0 115 0 −234.4 0 1000
57 −521.32 −1000 0 −1000 116 362.797 477.75 −1000 0
58 −1000 0 0 0 117 0 0 0 1000
59 0 −1000 −416.79 326.779 118 0 −14.107 1000 0
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Table 3. Detailed outcomes outlining the optimal placement of BSSs within the IEEE 69-bus network
for varying percentages of load.

Bus
Number

Optimal State of Dis/Charging (kWh) of BSSs
at Different Percentages of Nominal Load Bus

Number

Optimal State of Dis/Charging (kWh) of BSSs
at Different Percentages of Nominal Load

20% 50% 100% 150% 20% 50% 100% 150%

1 0 1000 −1000 1000 35 1000 1000 −1000 0
2 1000 0 −385.62 0 36 0 0 480.231 −614.18
3 0 −1000 0 −1000 37 −1000 −1000 0 −1000
4 0 0 0 0 38 0 0 701.071 0
5 1000 723.346 1000 1000 39 0 634.73 0 258.296
6 0 0 −1000 0 40 −1000 −1000 1000 0
7 −1000 0 0 −1000 41 −1000 0 0 0
8 0 1000 595.473 0 42 1000 1000 −1000 −531.26
9 0 0 0 0 43 0 876.503 0 0

10 621.568 196.493 0 319.34 44 0 0 0 −403.21
11 842.22 0 1000 0 45 −1000 −1000 1000 0
12 0 −1000 −1000 −1000 46 0 1000 0 −307.2
13 0 773.802 0 0 47 281.831 0 174.788 −508.75
14 0 0 −310.99 0 48 0 0 1000 0
15 0 −1000 0 −879.39 49 39.5753 −1000 0 −469.19
16 −1000 0 −1000 0 50 0 0 −1000 0
17 194.665 0 1000 −625.27 51 1000 −1000 0 743.649
18 1000 −1000 0 0 52 0 1000 −1000 −489.12
19 0 1000 1000 727.966 53 −1000 −111.68 0 0
20 0 −991.96 0 0 54 0 0 −824.4 682.179
21 −1000 1000 −1000 995.552 55 −1000 −1000 0 0
22 0 1000 −221.91 −1000 56 0 1000 −486.82 −57.385
23 1000 −1000 0 −1000 57 0 0 0 −640.08
24 0 0 456.635 76.5487 58 0 0 0 −1000
25 407.979 −1000 −697.48 −1000 59 −1000 −1000 −1000 0
26 0 −369.67 −1000 1000 60 0 1000 0 −236.62
27 −874.55 −1000 0 0 61 −1000 0 0 0
28 0 −1000 1000 1000 62 0 0 −968.4 −65.005
29 0 0 −391.5 0 63 943.29 0 1000 1000
30 0 0 0 −1000 64 0 −246.06 0 0
31 0 0 0 0 65 0 −272.54 0 −1000
32 −536.92 878.989 0 0 66 −209.87 0 501.54 0
33 0 0 −212.52 −1000 67 1000 0 −611.79 −1000
34 0 0 0 897.894 68 0 −1000 0 0

69 1000 0 −1000 0
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Table 4. Detailed outcomes outlining the optimal placement of BSSs within the IEEE 33-bus network
for varying percentages of load.

Bus
Number

Optimal State of Dis/Charging (kWh) of BSSs
at Different Percentages of Nominal Load Bus

Number

Optimal State of Dis/Charging (kWh) of BSSs
at Different Percentages of Nominal Load

20% 50% 100% 150% 20% 50% 100% 150%

1 0 250 0 0 17 250 0 0 250
2 0 0 0 0 18 0 −250 250 250
3 −250 −250 250 −250 19 0 250 250 0
4 −250 0 0 140.857 20 250 250 0 250
5 0 0 −250 0 21 0 0 −161.55 0
6 −250 250 250 −250 22 250 250 0 0
7 0 −250 0 0 23 −250 250 −250 250
8 −250 0 −250 64.5045 24 0 0 0 0
9 250 0 −250 −250 25 0 0 0 0

10 0 0 0 0 26 0 −250 0 −250
11 −250 −250 −250 0 27 −96.052 0 −250 −250
12 0 0 0 −250 28 0 −76.418 0 0
13 0 −250 −250 0 29 −250 250 −250 250
14 0 0 250 0 30 250 0 250 0
15 −250 −250 −250 120.263 31 250 0 −250 −250
16 0 250 0 0 32 −250 0 0 0

33 0 0 250 −250

Figure 20. Optimal state of dynamic coupled switches in IEEE 118-bus network within different
load factors.
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Figure 21. Optimal state of dynamic coupled switches in IEEE 69-bus network within different
load factors.

Figure 22. Optimal state of dynamic coupled switches in IEEE 33-bus network within different
load factors.
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Furthermore, Tables 5–7 were meticulously compiled to showcase a comprehensive
analysis of the proposed methodology’s performance compared to existing approaches.
The comparison covers various key metrics such as economic viability, power quality
improvements, reliability enhancements, and network security considerations. These tables
offer a detailed evaluation of the optimal BSS placement program’s effectiveness over the
study period within the IEEE 118-, 69-, and 33-bus networks, providing valuable insights
into the overall impact and benefits of the proposed method.

Table 5. Comparison between the proposed method and other state-of-the-art approaches in the
context of the IEEE 118-bus network.

Method
Objectives Operating Cost ($) Losses (kW) Voltage Deviation (pu) (EENS) (kWh) VSI (pu) Sum of Short-Circuit-Level Changes (pu)

Proposed method
12,687.72 1.33 1.36 62.62 9.982 1.93

✓ ✓ ✓ ✓ ✓ ✓

[2,3] 18,452.63 6.62 6.791 114.21 5.32 4.25
✓ ✓ ✗ ✗ ✓ ✗

[7,10] 24,384.21 8.274 5.217 87.64 4.28 6.54
✓ ✓ ✗ ✓ ✗ ✗

[14,19] 21,628.64 11.427 1.87 314.21 7.81 12.37
✓ ✗ ✓ ✗ ✗ ✗

Table 6. Comparison between the proposed method and other state-of-the-art approaches in the
context of the IEEE 69-bus network.

Method
Indexes Operating Cost ($) Losses (kW) Voltage Deviation (pu) (EENS) (kWh) VSI (pu) Sum of Short-Circuit-Level Changes (pu)

Proposed method
1153.01 15.09 0.81 31.19 5.00 0.751

✓ ✓ ✓ ✓ ✓ ✓

[2,3] 1453.21 21.12 2.35 68.21 4.21 8.51
✓ ✓ ✗ ✗ ✓ ✗

[7,10] 1712.31 16.32 6.31 38.54 1.24 10.24
✓ ✓ ✗ ✓ ✗ ✗

[14,19] 1471.14 18.25 3.98 48.56 2.94 11.71
✓ ✗ ✓ ✗ ✗ ✗

Table 7. Comparison between the proposed method and other state-of-the-art approaches in the
context of the IEEE 33-bus network.

Method
Indexes Operating Cost ($) Losses (kW) Voltage Deviation (pu) (EENS) (kWh) VSI (pu) Sum of Short-Circuit-Level Changes (pu)

Proposed method 3401.21 1.82 0.29 56.08 1.55 0.929
✓ ✓ ✓ ✓ ✓ ✓

[2,3] 5061.28 3.21 2.63 63.21 1.23 1.24
✓ ✓ ✗ ✗ ✓ ✗

[7,10] 4716.25 4.612 3.83 59.32 0.68 5.28
✓ ✓ ✗ ✓ ✗ ✗

[14,19] 4781.21 8.241 0.81 71.23 0.94 3.67
✓ ✗ ✓ ✗ ✗ ✗

The analysis of the simulation results from the IEEE 33-, 69-, and 118-bus test systems,
detailed in Tables 5–7, underscores the superiority of the proposed method over existing
approaches in both economic and technical network metrics. This achievement is particu-
larly remarkable given the historical oversight of reliability and power quality indicators in
prior studies. The innovative methodology effectively optimizes distributed generation
control within the distribution network and intelligent microgrids, notably by strategically
managing the operation, such as the charging and discharging of BSSs at key locations and
dynamically switching energy paths in power line transmission. For example, the eval-
uation presented in Tables 5–7 reveals that the energy storage systems in the IEEE 118-,
69-, and 33-bus networks were charged during periods of low demand, typically ranging
from 20% to 150% of nominal load. This strategic charging aligns technical aspects like
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reliability and power quality with economic considerations such as operational efficiency
and generation costs.

6. Conclusions

In the contemporary landscape, intelligent distribution microgrids represent a fusion
of autonomous units that act as energy consumers and generators, pivotal for optimizing
economic efficiency and ensuring the secure functioning of smart distribution networks.
The dynamic operation of charging and discharging BSSs within these networks can elevate
these units to intelligent network nodes, especially when dynamic switches alter energy
pathways during network reconfiguration. This capability enables the effective manage-
ment of a substantial portion of locally generated energy, catering to both generators and
consumers. This study introduces a novel approach for the strategic placement of BSSs in
conjunction with dynamic network reconfiguration, considering technical power system
aspects such as power quality and reliability alongside economic factors. By orchestrating
the generation resources and harnessing the charging and discharging capabilities of BSSs
within the distribution network, this solution aims to optimize energy transfer pathways
while mitigating potential risks associated with purely economic exploitation. The formula-
tion of an objective function in a comprehensive BSS placement program for the network
necessitates the inclusion of not only economic metrics but also reliability and security
indicators like EENS and stability in short-circuit connection levels. By integrating these
diverse factors into a multiobjective optimization algorithm for simultaneous BSS place-
ment and dynamic network reconfiguration, the framework ensures effective management
of anticipated energy shortages and protection setting disruptions during the economic
operation of distribution networks and interconnected microgrids, particularly under peak
load conditions. Leveraging the charge and discharge capabilities of microgrid networks in
tandem with optimal energy management facilitates the achievement of these objectives.
Comparative analysis between the proposed method and prior approaches demonstrates
consistent and substantial enhancements in technical and economic indicators, emphasizing
the significance of incorporating reliability and security considerations into the formulation
of BSS placement strategies. It should be noted that the accuracy of the proposed optimal
planning method for BSSs could be influenced by uncertainties in factors such as future
energy demand, technological advancements, and regulatory changes. Additionally, the ef-
fectiveness of the integrated approach in addressing grid stability and reliability may vary
depending on specific grid characteristics and local conditions. On the other hand, future
research could focus on refining the optimization model by incorporating more detailed
and accurate data, such as real-time grid measurements and user behavior patterns.
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Abbreviations

The following abbreviations are used in this manuscript:

DG Distributed generation
BSS Battery swapping station
DER Distributed energy resources
EV Electric vehicle
EBs Electric buses
VSC Voltage source converter
GWO Gray wolf optimization
PSO Particle swarm optimization
EMS Energy management systems
RDS Radial distribution system
EENS Expected energy not served
RE Renewable energy
TR Traditional energy
VSI Voltage sensitivity index
PLSF Power loss sensitivity factor
ESS Energy storage systems
MT Microturbine

List of Nomenclature

PEV0 The initial charging power of the electric vehicle.
PEVmax The maximum charging power of the electric vehicle.
α The charging battery time constant of the electric vehicle.

tmax
Signifies the total time needed to charge the electric vehicle’s battery from zero
charge to maximum charge.

PN
The probability coefficient of power consumption
in an electric vehicle charging station.

λ The success rate of a vehicle in accessing the charging converter.
µ The success rate of a vehicle in completing its battery charging.
ρ = λ/µ.c Stands for the number of charging stations for electric vehicles.
C The number of BSSs for electric vehicles.
PPV PV system output power at the maximum power point.
Pwt Wind turbine output power.
P(PV,STC) Nominal PV power at the maximum power point and standard conditions.
GT Radiation amount in standard conditions.
γ Temperature coefficient.
Tj The temperature of the solar cells.
NPVs The number of series modules.
NPVp The number of parallel modules.
Vci Lower cutoff speed.
Vr Nominal speed of the wind turbine.
Vco Upper cutoff speed.
PR Nominal power of the wind turbine.
COP

DG,t The cost of operating in each time interval t.

CEM
DG,t

The cost associated with the pollution of the units in each
time interval t.

λ(CO2) Penalty factor for CO2 production.
λ(SO2) Penalty factor for SO2 production.
λ(NOx) Penalty factor for NOx production.
PBSS(t) The powers of the BSS.
PDG(t) The powers of DG.
Pg(t) The powers of the grid.
Pch(t) Charging powers of BSS.
Pdch(t) Discharging powers of BSS.
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SOC(t) State of charge.
Ech(t) Charging energy.
Edch(t) Discharging energy.
σ Denotes the number of equality constraints.
ηch Charging/discharging efficiency.
ηConv Converter efficiency.
Crep,batt The storage replacement cost.
ηrt The roundtrip efficiency of the storage.
Cconstant

BSS The constant cost of the battery swapping station (BSS).
NOCT Normal operating cell temperature of the PV system.
PR The output power of these renewable units.
ξR The variable cost associated with renewable generation units.
ψcte

R The constant costs related to the renewable units.

Vk & V∗
k

The Voltage of each bus in
the network before and after any changes in the network.

Req,i Resistance of the line.
Xeq,i Reactance of the line.
PLm,i The aggregate active power of all nodes.
QLm,i The aggregate reactive power of all nodes.
Si Dynamic switch.
γk The weight coefficient associated with the objective functions.
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