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Abstract: Transformer-based encoder-decoder networks for face super-resolution (FSR) have achieved
promising success in delivering stunningly clear and detailed facial images by capturing local and
global dependencies. However, these methods have certain limitations. Specifically, the deconvolu-
tion in upsampling layers neglects the relationship between adjacent pixels, which is crucial in facial
structure reconstruction. Additionally, raw feature maps are fed to the transformer blocks directly
without mining their potential feature information, resulting in suboptimal face images. To circum-
vent these problems, we propose an attention-guided transformer with pixel-related deconvolution
network for FSR. Firstly, we devise a novel Attention-Guided Transformer Module (AGTM), which
is composed of an Attention-Guiding Block (AGB) and a Channel-wise Multi-head Transformer
Block (CMTB). AGTM at the top of the encoder-decoder network (AGTM-T) promotes both local
facial details and global facial structures, while AGTM at the bottleneck side (AGTM-B) optimizes
the encoded features. Secondly, a Pixel-Related Deconvolution (PRD) layer is specially designed to
establish direct relationships among adjacent pixels in the upsampling process. Lastly, we develop a
Multi-scale Feature Fusion Module (MFFM) to fuse multi-scale features for better network flexibility
and reconstruction results. Quantitative and qualitative experimental results on various datasets
demonstrate that the proposed method outperforms other state-of-the-art FSR methods.

Keywords: face super-resolution; transformer; feature map enhancement; attention mechanism;
deconvolutional layer

1. Introduction

Face super-resolution (FSR), also referred to as face hallucination [1], is a technology
that enhances the quality of low-resolution (LR) face images by transforming them into
high-resolution (HR) ones. Typically, face images suffer lower spatial resolution due to
limited imaging conditions and low-cost imaging equipment. This degradation affects the
performance of most practical downstream applications, such as face recognition and face
analysis. As a result, FSR has become a popular and essential scientific tool in the fields of
computer vision and image processing [2].

Different from general image super-resolution, FSR is a technique that focuses on
recovering crucial facial structures. Although these structures only occupy a small portion
of the face, they are essential in distinguishing different faces and improving image quality.
Baker and Kanade [1] proposed the first FSR method, which triggered the upsurge of
traditional FSR methods. Afterward, various traditional techniques for FSR have been
developed over time, which can mainly resort to the interpolation approach [3], Principal
Component Analysis (PCA) [4], convex optimization [5], Bayesian approach [6], kernel
regression [7], and manifold learning [8]. Nevertheless, traditional methods are limited
in producing plausible facial images due to their shallow structure and representation
abilities. Recently, FSR has made significant progress due to the advent of deep learning
techniques [2]. Relying on the powerful deep convolution structures, various convolution
neural networks (CNNs)-based FSR methods [9–13] have been developed to predict the
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fine-grained facial details. However, due to the vanishing gradient problem, the actual
receptive field of most CNN-based models is limited. This makes it challenging to model
global dependency, resulting in blurry effects in the reconstructed face images. Devoting
to capturing both local and global dependencies, transformer-based methods [14,15] have
gained significant attention nowadays.

The efficacy of transformer-based methods in improving FSR performance is notewor-
thy. However, they still exhibit certain limitations that require attention. Transformer-based
encoder-decoder networks comprise two major parts: an up/downsample module that
connects adjacent-scale feature information and a transformer module that explores and
enhances the corresponding-level features. We will discuss the limitations of these compo-
nents separately below:

(1) Due to its relatively small network size, the up/downsample module has not
received sufficient attention in FSR methods. However, it plays a more important role than
the one applied in the general image super-resolution methods. This is because face images
are highly structured with eyes, nose, and mouth in a specific location, which is also why
some FSR methods require additional marking on the dataset. Nonetheless, as illustrated
in Figure 1b, the inner feature maps generated by pixel deconvolutional or shuffle layers
have no direct relationship since they are produced by independent convolutional kernels,
which can result in significant differences between the values of adjacent pixels. Therefore,
an up/downsample module that can build direct relationships among adjacent pixels is in
high demand.

(2) The transformer module has significantly improved FSR performance. However,
raw feature maps are fed to the transformer blocks directly without examining their
potential feature information, limiting their performance. As shown in Figure 1g, raw
features processed by the transformer block without guiding are not always detail-rich or
even buried in gray, which restricts the following transformer blocks to only selecting a
limited number of feature maps based on the self-attention heatmap (Figure 1e). On the
contrary, applying a guiding block to guide the transformer block about essential facial
components results in more correlated feature maps (Figure 1f). Such an approach is
particularly beneficial for tackling the “one-to-many” FSR problem [16] and finally yielding
superior outcomes (Figure 1h).

(3) Most previous research [15,17,18] favors improving the transformer module for
the transformer-based encoder-decoder FSR approaches. However, matching a compatible
strong up/downsample module and transformer module is crucial; otherwise, some of the
system potential could be wasted on either side.

In this work, we aim to address all the limitations mentioned above and propose
a novel attention-guided transformer with pixel-related deconvolution network for face
super-resolution. The proposed method utilizes a multi-scale connected encoder-decoder ar-
chitecture as the backbone. In encoder-decoder branches, we carefully design an Attention-
Guided Transformer Module (AGTM), which is composed of an Attention Guiding Block
(AGB) and a Channel-wise Multi-head Transformer Block (CMTB). AGB aims to guide the
transformer block in learning about essential facial components. Different from previous
transformer-based methods [15,17] which utilized the same transformer structure for differ-
ent feature layers, AGB is further divided into two subdivision modules to adapt different
levels of features: AGTM at the top of the encoder-decoder network (AGTM-T) which
promotes both local facial details and global facial structures, while AGTM at the bottleneck
side (AGTM-B) which optimizes the encoded low-level features. Noting the problem that
the usual spatial-wise transformers are limited to position-specific windows and their par-
tition strategy may potentially alter the structure of the facial image [19], the Channel-wise
Multi-head Transformer Block (CMTB) is introduced to achieve an image-size receptive field
by utilizing feature map channels. The AGB and CMTB are complementary and can simul-
taneously enhance local facial details and global facial structures. Furthermore, considering
that face images are highly structured, we design a Pixel-Related Deconvolution (PRD)
layer to establish direct relationships among adjacent pixels in the upsampling process for
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better face structure preservation. Moreover, different from the pyramid network [13,20]
that progressively reconstructs high-resolution face images, we have also developed a
Multi-scale Feature Fusion Module (MFFM) to wisely fuse multi-scale features for better
network flexibility and reconstruction results.

* * =

Figure 1. Visual analysis of the pixel-related deconvolution and the guiding block for transformer-
based FSR methods: (a) is the input face image; (b) is the conventional pixel deconvolutional and
pixel shuffle upsampling layer that neglects the relationship between adjacent pixels; (c) is the
proposed pixel-related deconvolution that establishes direct relationships among adjacent pixels;
(d) is the inner feature map outputs with corresponding upsampling methods; (e–g) are self-attention
heatmaps, correlation maps [21] between input and output feature maps, and inner feature maps
without and with guiding blocks, respectively (please note that five different images are tested in the
correlation map instead of one for fair comparison); (h) is the output images (the top one is trained
without pixel-related deconvolution and guiding blocks, while the bottom one is trained with them).
Moreover, subfigure (f) represents the correlations between input and output feature maps. The more
the output feature maps squeeze together, the more the input and output feature maps are suited
and correlated, and the better it benefits the “one-to-many” FSR problem to obtain fine-grained FSR
results. Please refer to Section 2.2 for more detailed information and related works.

To sum up, this work has four main contributions:

• We devise an attention-guided transformer with pixel-related deconvolution network
for face super-resolution. To the best of our knowledge, neither the guiding block that
mines potential inner feature map information nor the pixel-related deconvolution that
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establishes direct relationships among adjacent pixels have been discussed before in
the transformer-based FSR field. Results conducted on two frequently used benchmark
datasets (i.e., CelebA [22] and Helen [23]) demonstrate that the proposed method
surpasses other state-of-the-art methods both quantitatively and qualitatively.

• We carefully design an Attention-Guided Transformer Module (AGTM) to extract
fine-grained features by enhancing the inner feature map relationship. Thanks to its
powerful modeling ability, the proposed method can proficiently explore and utilize
both local facial details and global facial structures.

• We develop a Pixel-Related Deconvolution (PRD) layer to establish direct relationships
among adjacent pixels in the upsampling process for better face structure preservation
and further strengthen the overall transformer-based FSR performance.

• We propose an elaborately designed Multi-scale Feature Fusion Module (MFFM) to
fuse multi-scale features for better network flexibility and reconstruction results. The
module is essential for the proposed method to acquire a wide range of features, which
in turn improves the quality of the restoration performance.

2. Related Work
2.1. Face Super-Resolution

With the advent of deep learning techniques [2,24,25], deep convolution neural net-
works (CNNs) have been making remarkable advancements in enhancing the quality of
face images. One of the first CNN-based FSR methods was proposed by Zhou et al. [26],
demonstrating significant improvements in FSR performance compared to traditional
FSR methods. To delve deeper into the facial information, Cao et al. [27] employed re-
inforcement learning to uncover the interdependent relationships among various facial
components. Zhang et al. [9] introduced super-identity loss to help the network generate
more accurately identified super-resolution face information. Unlike the FSR methods
mentioned above that directly recover face images, Huang et al. [28] introduced the wavelet
transform to project face images into wavelet spaces for capturing rich contextual informa-
tion. Wang et al. [19] applied the Fourier transform to obtain an image-size receptive field
to capture the global facial structures.

Motivated by the remarkable achievements of generative adversarial networks
(GANs) [29], Yang et al. [30] developed a collaborative suppression and replenishment
framework based on GANs. Yu [31] claimed that feature maps with additional facial
attribute information could significantly reduce the ambiguity in FSR and combined these
supplement residual images with GANs. Noticing that GAN-based methods are computa-
tionally intensive, PCA-SRGAN [32] leveraged Principal Component Analysis decompo-
sition, while SPGAN [33] adopted a supervised pixel-wise loss approach to facilitate the
GAN training process.

Noting that human faces are highly structured, several FSR methods utilized facial
priors, including face landmarks and face parsing maps, to improve the reconstruction
performance. Chen et al. [34] introduced facial parsing maps to guide the end-to-end FSR
convolution network. Bulat et al. [35] combined a well-designed heatmap loss with GANs
to ensure the face structure consistency between high-resolution (HR) and super-resolved
(SR) face images. Hu et al. [36] proposed 3D facial priors for capturing sharp facial struc-
tures in face images with large pose variations. Due to the difficulty of directly estimating
the prior from degraded LR facial images, DIC [37] developed an iterative process where
FSR and prior estimation were performed repeatedly to enhance FSR performance. While
the FSR models with facial priors have achieved promising outcomes, there is a problem
that has not received sufficient attention. Specifically, the deconvolution or shuffle layers in
the upsampling process neglect the relationship between adjacent pixels, which can break
the highly structured face image prior, limiting the FSR performance.

In recent years, the attention mechanism has emerged as a prominent approach in
computer vision tasks [38–41]. For instance, Chen et al. [10] introduced a face attention
unit to capture facial structures, while Lu et al. [11] designed an external-internal split
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attention group to reconstruct more detailed facial images. Moreover, transformers, which
have already demonstrated their effectiveness in various fields, are also widely applied in
computer vision tasks such as image recognition [42,43] and restoration [15,17,44]. The self-
attention mechanism, which is the core of transformers, is promised to capture both long-
and short-range correlations between words or pixels [45]. However, feeding feature maps
directly into transformers without guidance will result in the loss of some fine-grained de-
tails, limiting facial structure reconstruction performance. Therefore, it is essential to design
an effective guiding block to identify the crucial facial components for the transformers.

2.2. Feature Maps and Feature Spaces

Feature maps and feature spaces share some similarities: CNN-based FSR methods
utilize convolution layers to project LR images into inner “feature maps” and then into
HR ones. Meanwhile, traditional manifold learning-based FSR methods project LR images
into “feature spaces” and then into HR ones, assuming that both LR and HR spaces share
the same local geometry [46]. Many traditional FSR methods have been introduced based
on the manifold learning assumption [47–49], aiming to enhance the LR and HR space
relationship. However, the manifold learning technique has gained less attention with
the rise of CNNs because complicated CNN structures are challenging to deliberate. To
bridge the gap between CNNs and manifold learning, several deep learning-based FSR
methods have been proposed. Yang et al. [50] introduced a manifold localized deep external
compensation (MALDEC) network that provides accurate localization and mapping to the
HR manifold by referring to the big data online. Menon et al. [51] searched the HR manifold
space to find images that match the original LR image and then applied a generative model
for image reconstruction by feeding it the downscaling loss. Chen et al. [52] introduced an
LR and HR space homogenization projection to formulate FSR in a multi-stage framework.
Guo et al. [16] developed a closed-loop dual regression network (DRN) with an additional
constraint, claiming that limiting mapping spaces would be advantageous for image super-
resolution. The methods mentioned above tried to combine the CNN-based method with
the manifold learning technique. However, they overlook the vital role of inner feature
maps, which restricts the image super-resolution performance. Therefore, determining how
to effectively handling inner feature maps, such as a guiding block that increases feature
map correlations, is vital for a high-quality image reconstruction process.

3. Proposed Method

Considering the vital role of the guiding blocks in identifying the essential facial
components and aiming to establish direct relationships among adjacent pixels for better
face structure preservation, we develop a novel attention-guided transformer with a pixel-
related deconvolution network for face image super-resolution. This is the first study for the
transformer-based FSR field to not only mine potential inner feature map information but
also establish direct relationships among adjacent pixels in reconstructing highly structured
face images.

To better elaborate on the proposed method, we divide it into four subsections. In the
first section, we provide an overview of the architecture of the proposed method. Then, we
delve into the main component of the proposed method, the Attention-Guided Transformer
Module (AGTM), which consists of an Attention Guiding Block (AGB) and a Channel-
wise Multi-head Transformer Block (CMTB). The AGB and CMTB are complementary and
can simultaneously enhance local facial details and global facial structures. Afterward,
we introduce the Multi-scale Feature Fusion Module (MFFM), which integrates features
from all layers to improve network flexibility and restoration performance. Finally, we
introduce the Pixel-Related Up/Downsample Module (PRUM/PRDM) that establishes
direct relationships among adjacent pixels for better face structure preservation and further
strengthens the overall image reconstruction performance.
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3.1. Overview

The proposed method, illustrated in Figure 2, is a symmetrical hierarchical network
consisting of three stages: encoding, bottleneck, and decoding. The encoding stage aims to
extract and enhance both local facial details and global facial structures. Meanwhile, the bot-
tleneck stage is intended to optimize the encoded low-level features. Finally, the decoding
stage is introduced to facilitate multi-scale feature fusion and image reconstruction. To sim-
plify the description, we use the notations ILR, ISR, and IHR to represent the low-resolution
(LR) images, the super-resolved (SR) images, and the ground-truth high-resolution (HR)
images, respectively.
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Figure 2. The structure of the proposed attention-guided transformer with pixel-related deconvolu-
tion network. It is a symmetrical hierarchical network containing three stages: encoding, bottleneck,
and decoding. The goal of the encoding stage is to extract and enhance both local facial details
and global facial structures. Meanwhile, the bottleneck stage is intended to optimize the encoded
low-level features. Finally, the decoding stage is introduced to facilitate multi-scale feature fusion
and image reconstruction. Here, the red and green arrows in MFFM represent downsampling and
upsampling, respectively.

(1) Encoding Stage: The goal of the encoding stage is to extract and enhance both
local facial details and global facial structures. To begin with, the face images traverse
a 3 × 3 convolution layer to extract their low-level features. Since the output channel
number should exceed the input ones while an excessive number of output channels
would significantly increase the computational complexity [53], we suggest using 32 output
channels for optimal performance. Afterward, the extracted shallow features are passed
through three encoding stages. Each stage comprises an Attention-Guided Transformer
Module—Top (AGTM-T) and a Pixel-Related Downsample Module (PRDM). The AGTM-T
comprises an Attention Guiding Block—Top (AGB-T) and a Channel-wise Multi-head
Transformer Block (CMTB). All the blocks and modules mentioned above will be discussed
in the following subsection. Moreover, it is worth noting that the channel of the input feature
maps doubles, and the size of the input feature maps halves after each encoding stage.

(2) Bottleneck Stage: In the bottleneck stage, there are a large number of encoded
feature maps, but each one is relatively small in size compared to those in the encoding
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stage. To better use these features in the decoding stage, we introduce the Attention-Guided
Transformer Module—Bottleneck (AGTM-B). Unlike AGTM-T in the encoding stage, the
guiding blocks in AGTM-B aim to further enhance the low-level encoded features. By
applying AGTM-Bs, the model can continuously strengthen different facial features and
focus on a broader range of facial structures.

(3) Decoding Stage: The decoding stage of the proposed method aims to reconstruct
high-quality face images by utilizing previously extracted and refined multi-scale features.
In this stage, low-level features are initially fed into the Pixel-Related Upsample Module
(PRUM). The module halves the feature map channel and doubles the feature map size,
which is the opposite of the PRDM in the encoding stage. After this, the upsampled features
are combined with features from other scales using the Multi-scale Feature Fusion Module
(MFFM) to enhance network flexibility and achieve better restoration performance. The
well-combined features are then fed to AGTM-T for further refinement of image details.
Finally, a convolutional layer with a size of 3 × 3 is utilized to convert the learned feature
maps to the output face image IOut. The final SR face image output ISR is obtained by
adding the LR face image ILR, which has been upsampled to the same size as the HR image
through bicubic interpolation, to the output face image IOut.

Moreover, to optimize the performance of FSR, the proposed model is supervised by
minimizing the following pixel-level loss function:

L =
1
N

N

∑
i=1

∥∥∥Ii
SR − Ii

HR

∥∥∥
1

(1)

where N denotes the number of training images. Ii
SR and Ii

HR are the i-th SR and ground-
truth HR face image in the training dataset, respectively.

3.2. Attention-Guided Transformer Module (AGTM)

As the pivotal component of the proposed method, AGTM comprises two blocks:
the Attention Guiding Block (AGB) and the Channel-wise Multi-head Transformer Block
(CMTB). To ensure the feature extraction and enhancement quality on multi-scale features,
the AGB has been bifurcated into two separate types: the Attention Guiding Block—Top
(AGB-T) in the encoding/decoding stage and the Attention Guiding Block—Bottleneck
(AGB-B) in the bottleneck stage. AGTM at the top of the encoder-decoder network (AGTM-
T) promotes both local facial details and global facial structures, while AGTM at the
bottleneck side (AGTM-B) optimizes the encoded low-level features. Furthermore, noticing
that the usual spatial-wise transformers are limited to position-specific windows and their
partition strategy may potentially alter the structure of facial images, the Channel-wise
Multi-head Transformer Block (CMTB) is introduced here to achieve an image-size receptive
field by utilizing feature map channels. The AGB and CMTB are complementary and can
facilitate the simultaneous promotion of both local facial details and global facial structures.

3.2.1. Attention Guiding Block—Top (AGB-T)

AGB-T, which aims to locate and guide both local and global facial structures for the
following transformer module, is illustrated in Figure 3a. It can be roughly divided into
three parts: the Feature Distillation Network (FDN), the Hourglass Block, and the Channel
Attention (CA) network. FDN aims to distill feature information from multiple levels of
respective fields within the input feature maps. Firstly, a 3× 3 convolutional layer is applied
to the input feature maps to halve its number and select its internal principal components;
then another 3 × 3 convolutional layer is used to restore the major information of the input
feature maps by doubling the channel number. Then again, the original and the processed
input feature maps are concatenated and sent to a full connection layer followed by a
3 × 3 convolutional layer to fully utilize the hierarchical features. After that, a CA network
is applied to highlight the critical feature map channels, followed by a 3 × 3 convolutional
layer to refine the distilled feature maps. Finally, a residual learning mechanism is applied
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to avoid the gradient vanishing problem. Following the distillation process of the FDN, the
Hourglass Block [54], which has demonstrated its efficacy in generating spatial attention
maps [13], is employed to capture landmark features of the human face, such as the
eyes, nose, and mouth. Once the feature information is appropriately processed, the CA
network [38] is utilized to select and emphasize feature map channels that contain a higher
number of features. Thanks to the well-designed structure that wisely distills internal
principal features and mutualizes spatial and channel attention, the proposed AGB can
successfully guide the following transformer block to capture the essential part of the face
images for better reconstruction results.
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Figure 3. Architectures of the Attention Guiding Block (AGB): (a) is the Attention Guiding Block—Top
(AGB-T); (b) is the Attention Guiding Block—Bottleneck (AGB-B); (c) is the Feature Distillation
Network (FDN). Here, S⃝ denotes the sigmoid function.

After all the above, the final attention map for CMTB is generated by applying a
3 × 3 convolutional layer followed by a sigmoid function. Then, input feature maps are
element-wise multiplied with the attention map and fed to the following transformer block
with better extracted spatial features and promoted channel information. Moreover, a
residual connection with a full connection layer is also applied between the input and the
CA network output to stabilize the training process.

3.2.2. Attention Guiding Block—Bottleneck (AGB-B)

Different from the above AGB-T, AGB-B in the bottleneck stage is designed to target
and guide the low-level encoded features. The channel number of feature maps in the
bottleneck stage is relatively large, but the size of each feature is relatively small compared
to those in the encoding stage. Therefore, it is crucial to implement a dynamic selection
mechanism that adaptively enables each neuron to adjust its receptive field size. Here,
we introduce the selective kernel (SK) network [55] to the AGB-B, which is shown in
Figure 3b. In the SK network, the input feature maps first pass through two convolution
layers with different respective fields, followed by a batch normalization layer and a ReLU
layer. The upper and lower outputs here are noted as U and V, respectively. Then, these
output feature maps are elementwise summed and traverse a global average pool (GAP)
to generate channel-wise statistics with different respective fields. After that, the inner
feature maps are sent through two full connection layers to enable the guidance for the
adaptive selections. Lastly, a soft attention layer is applied across different channels to
extract information from different respective fields selectively. Here, we use the notations
F(U) and G(V) ∈ RC×1 to represent the upper and lower input of the Select layer in
Figure 3b, where F(·) and G(·) denote the previous inner feature map process, and C
denote the number of channels of the inner feature map, the output weight is:

wupper
c =

eFc(U)

eFc(U) + eGc(V)
, wlower

c =
eGc(V)

eFc(U) + eGc(V)
(2)
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where c in wupper
c denotes the c-th element of the wupper, likewise wlower

c , Fc(U) and Gc(V).
The final attention maps of the SK network are obtained through attention weights on inner
feature maps from various respective fields:

Ac = wupper
c × Uc + wlower

c × Vc, wupper
c + wlower

c = 1 (3)

where A = [ A1, A2, . . . , AC ] denotes the output attention maps, Ac ∈ RH×W . H
and W denote the height and width of the feature maps, respectively.

3.2.3. Channel-Wise Multi-Head Transformer Block (CMTB)

Following the pre-processing of the inner feature maps with guiding blocks, there
still remains a demand for effectively aggregating previous feature data across various
channels to facilitate high-quality face image restoration. However, the usual spatial-
wise transformers are limited to position-specific windows, and their partition strategy
may potentially alter the structure of the facial image [19]. To address this limitation, we
introduce the Channel-wise Multi-head Transformer Block (CMTB)—a novel approach
capable of achieving image-size receptive fields based on channels rather than position-
specific windows. Furthermore, CMTB is more computation-friendly, rendering it a suitable
match for the previous guiding blocks. As depicted in Figure 4, CMTB comprises two key
components: the Channel-wise Multi-head Self-attention Network (CMSN) and the Gated-
Dconv Feed-Forward Network (GDFN). While CMSN serves as the primary component,
GDFN aims to encode information from spatially neighboring pixel positions to enable
effective learning of local image structures.
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Figure 4. Architectures of the Channel-wise Multi-head Transformer Block (CMTB). Here, S⃝, R⃝,
and P⃝ denotes the sigmoid function, reshape, and split, respectively. PE denotes the position
embedding generator.

CMTB has been proposed to achieve image-size receptive fields based on different
channels of feature maps rather than position-specific windows. Suppose feature maps
Xin ∈ RH×W×C as the input of the CMSN, which is reshaped into tokens X ∈ RHW×C based
on channels. Here, H, W, and C denote the height, width, and channel numbers of the
feature maps, respectively. Then X is linearly projected to obtain three different matrices:
query Q ∈ RHW×C , key K ∈ RHW×C, and value V ∈ RHW×C:

Q = XWQ, K = XWK, V = XWV (4)

where WQ, WK, and WV ∈ RC×C are learnable parameters; biases are omitted here for
simplification. Afterwards, Q, K and V are split into N heads along the channel dimension:
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Q = [ Q1, . . . , QN ], K = [ K1, . . . , KN ], V = [ V1, . . . , VN ], where the dimen-
sion of each head is d = C/N. Therefore, the self-attention matrix for headi is:

Ai = so f tmax(σiKT
i Qi), headi = ViAi (5)

where KT
i denotes the transposed matrix of Ki. By implementing the reshape strategy, the

size of the generated attention maps will be d × d instead of HW × HW, which greatly
reduces the computational complexity. Moreover, a learnable parameter σi ∈ R1 is intro-
duced to further improve the flexibility of the network. Subsequently, N heads outputs
are concatenated and fed to a full connection layer. The resulting attention matrix is then
added with the embedding values from the position embedding generator:

CMSN(X) = (
N

Concat
i=1

(headi))W + fp(V) (6)

where W ∈ RC×C are learnable parameters. fp(·) represents the position embedding
generator, which is designed to encode the position information from various channel
dimensions. It contains a 3 × 3 depth-wise convolution layer with a stride of 1 followed
by a GELU layer [56] and another 3 × 3 depth-wise convolution layer with a stride of 1.
Finally, the output feature maps Xout ∈ RH×W×C can be calculated by reshaping the result
of Equation (6).

Additionally, we introduce GDFN [57] to effectively learn local image structures by
encoding information from spatially neighboring pixel positions. Given feature maps
Xin ∈ RH×W×C as the input of the GDFN, the output Xout ∈ RH×W×C can be obtained by:

X̂ = H3×3
dconv(H f c(Xin)), Xout = H f c(X̂ · σ(X̂)) (7)

where H3×3
dconv(·) and H f c(·) denote the 3 × 3 depth-wise convolution layer and the full

connection layer, respectively. σ(·) represents the GELU non-linearity.
The AGB and CMTB are two components that work in tandem to enhance facial

features and strengthen the inner feature map relationship. The AGB is responsible for
extracting and guiding the key features from the inner feature maps, while the CMTB
aggregates and refines the previously extracted feature information. By leveraging both
these blocks, the AGTM can concurrently enhance local facial details and global facial
structures, making it a promising solution for face image reconstruction tasks.

3.3. Multi-Scale Feature Fusion Module (MFFM)

The importance of multi-scale feature information in the image reconstruction process
has been proven by the successive pyramid super-resolution networks [13,20]. However,
the pyramid methods mentioned above reconstruct high-resolution images only from
adjacent layers, limiting the FSR performance. To further utilize the multi-scale feature
information and enable the network with better feature representation capabilities, we
introduce the Multi-scale Feature Fusion Module (MFFM), which is shown on the bottom
side of Figure 1.

The first step of the MFFM is to unify the size of multi-scale feature maps. Noticing that
the magnification scale of adjacent layers in the proposed method is always 2, we introduce
a 3 × 3 convolution layer with a stride of 2 and a 6 × 6 transposed convolution layer
with a stride and padding of 2 for /2 down-scale and ×2 up-scale, processes respectively.
Please note that the /M down-scale and ×N up-scale mentioned here represent the M
times downsampling and N times upsampling, respectively. Furthermore, for a larger
magnification scale like /4 or ×4, double 3× 3 convolution or 6× 6 transposed convolution
layers are applied, etc. Considering that the MFFM is trained for residual compensation for
multi-scale feature maps, a single convolution or transposed convolution layer is applied
here to modify the feature map size instead of the PRUM/PRDM for simplicity. After
resizing the multi-scale feature maps to a uniform size, they are concatenated to undergo a
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full connection layer and then fed to the CA network to highlight the essential channels.
Finally, the well-handled multi-scale features are integrated with the target feature map
layer from the encoding stage.

Pixel-Related Up/Downsample Module (PRUM/PRDM)

The Pixel-Related Up/Downsample Module (PRUM/PRDM) aims to establish direct
relationships among adjacent pixels for better face structure preservation and further
strengthen the overall image reconstruction performance, whose structure is illustrated
in Figure 5.
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Figure 5. Architectures of the Pixel-Related Up/Downsample Module (PRUM/PRDM).
(a) and (b) are the Pixel-Related Downsample Module and Pixel-Related Upsample Module,
respectively.

The PRDM consists of three layers. Firstly, a 3 × 3 convolutional layer with a padding
of 1 and a stride of 2 is applied to simulate the image degradation process. The kernel
size here is set to 3 × 3 due to the fact that multiple 3 × 3 kernels from the multi-scale
encoding-decoding network can simulate large kernel sizes while reducing computational
complexity. After that, a Pixel Unshuffle layer instead of a convolutional layer is utilized
to preserve as much original pixel information as possible. Finally, a full connection layer
is applied to extract the vital image features. After the PRDM, the feature map channel
doubles while the feature map size halves.

To establish direct relationships among adjacent pixels in the upsampling process, we
introduce the PRUM, whose central part is the Pixel-Related Deconvolution (PRD) layer.
The structure of the module is illustrated in Figure 5b. As we all know, pixel-Os obtained
from /2 down-scale are not always their original values due to the complicated degradation
process. Therefore, we first applied a 2 × 2 convolutional layer to obtain the real pixel-As.
Then, the diagonal pixel-Bs are calculated by their corresponding As with another 3 × 3
convolutional layer with a padding of 1. After the above processing, the Cs and Ds are
surrounded by known pixels and can be obtained by two separate 3 × 3 convolutional
layers. Based on the relative pixel position, the calculated pixel-As, Bs, Cs, and Ds are
highly related and structured, which assists the PRUM in establishing direct relationships
among adjacent pixels. After the PRUM, the feature map channel halves while the feature
map size doubles, which is the exact opposite of the PRDM in the encoding stage.

4. Experiments
4.1. Dataset and Metrics

The proposed model is trained on the CelebA dataset [22], and its performance is
evaluated on both CelebA and Helen datasets, as well as on real face images. During the
data preprocessing phase, we crop the images to a size of 128 × 128 based on their center
point and treat them as the ground truth. After that, we obtain 16 × 16 LR face images
from the ground truth using a /8 down-scale bicubic operation. It is worth noting that no
additional facial landmarking is required on the datasets to train the model. We trained the
model on 18,000 face images from the CelebA dataset and evaluated its performance on
1000 faces from the same dataset, along with 50 faces from the Helen dataset. Additionally,
we directly applied the same model trained on CelebA to the Helen datasets and real face
images to evaluate the flexibility of the model.
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To evaluate the quality of the SR results, three image quality assessment metrics are
introduced: Peak Signal-to-Noise Ratio (PSNR) [58], Structural Similarity (SSIM) [59], and
Learned Perceptual Image Patch Similarity (LPIPS) [60].

4.2. Implementation Details

All experiments are conducted using PyTorch [61] on an NVIDIA GeForce RTX 4090
24 GB graphics card. The proposed model is optimized using Adam with β1 = 0.9,
β2 = 0.99, and a learning rate of 2 × 10−4.

4.3. Ablation Studies

To assess the effectiveness of individual model modules, we conducted a series of
ablation studies on the CelebA test sets for ×8 SR.

(1) Study on AGTM-T: AGTM-T is a module that combines an AGB-T and a CMTB
to extract and promote both local facial details and global facial structures. This module
marks the first attempt to explore the potential of inner feature map information with a
guiding block to reconstruct plausible face images in the transformer-based FSR area. To
test its effectiveness, we design three test models by removing different module parts, of
which the results are shown in Table 1.

Table 1. Ablation study of the components in the proposed AGTM-T.

AGB-T CMTB PSNR↑ SSIM↑ LPIPS↓
× × 27.45 0.7870 0.2026
× ✓ 27.68 0.7925 0.1804
✓ × 27.71 0.7931 0.1795
✓ ✓ 27.77 0.7941 0.1766

The symbols ✓and × indicate whether or not a corresponding block is included, respectively. The best results are
emphasized with bold. ↑ and ↓ indicate whether higher or lower evaluation matrix values correspond to better
image quality, respectively.

From the table, we can observe that:
(a) The performance decreases dramatically when the AGTM-T module is completely

removed. The proposed model structure will be considerably shallower without the AGTM-
T, which further results in the difficulty in refining input features. Moreover, the multi-scale
feature fusion operation module (MFFM), which is complemented with the AGTM-T, will
also be greatly affected.

(b) The AGTM-T with a single component performs better compared with the no-
component one mentioned above. This demonstrates that both AGB-T and CMTB benefit
the learning ability of the proposed model. However, the AGTM-T with AGB-T only lost
the guiding target, while the AGTM-T with CMTB only cannot focus on crucial feature
parts, limiting its performance.

(c) The carefully designed components AGB-T and CMTB ensure that the AGTM-T
achieves the best performance in all evaluation matrices. This proves that the AGB-T and
CMTB are complementary and can simultaneously enhance local facial details and global
facial structures.

(2) Study on AGTM-B: AGTM-B, which contains an AGB-B and a CMTB, aims to
enhance the low-level encoded features. Similar experiments as the above section are
conducted and the results are shown in Table 2. We have arrived at comparable observa-
tions and conclusions in the preceding AGTM-T section. However, we do notice that the
performance of the model without AGTM-B is better than that without AGTM-T. This is
because AGTM-T and MFFM are more complementary when compared to the relationship
between AGTM-B and MFFM. The removal of AGTM-T will result in a further decline in
the performance of the proposed method.

Furthermore, we also conduct an evaluation of the model on the number of AGTM-Bs,
whose results are shown in Table 3. It can be observed that the performance of the model
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is poor without any AGTM-B, suggesting that AGTM-B plays a crucial role in the model.
Meanwhile, we also notice that the performance improves when the number of AGTM-Bs
increases within a specific range. However, when the number of AGTM-Bs exceeds 4, the
change rate of the evaluation matrix slows down, and the performance even decreases
slightly. Therefore, to maintain a good balance between model size and performance, we
set the number of AGTM-Bs to 4.

Table 2. Ablation study of the components in the proposed AGTM-B.

AGB-B CMTB PSNR↑ SSIM↑ LPIPS↓
× × 27.63 0.7911 0.1896
× ✓ 27.73 0.7935 0.1788
✓ × 27.74 0.7938 0.1779
✓ ✓ 27.77 0.7941 0.1766

The symbols ✓and × indicate whether or not a corresponding block is included, respectively. The best results are
emphasized with bold. ↑ and ↓ indicate whether higher or lower evaluation matrix values correspond to better
image quality, respectively.

Table 3. Performance comparisons of different AGTM-B numbers in the proposed method.

AGTM-B Numbers PSNR↑ SSIM↑ LPIPS↓
0 27.63 0.7911 0.1896
2 27.71 0.7933 0.1797
4 27.77 0.7941 0.1766
6 27.76 0.7938 0.1775

The best results are emphasized with bold. ↑ and ↓ indicate whether higher or lower evaluation matrix values
correspond to better image quality, respectively.

(3) Study on MFFM: MFFM is specially designed to integrate features from all layers
to improve network flexibility and restoration performance. In this part, we create three
different multi-scale feature fusion models to demonstrate the effectiveness of the MFFM,
whose results are shown in Table 4.

Table 4. Performance comparisons of different approaches of the multi-scale feature fusion process.

Approaches PSNR↑ SSIM↑ LPIPS↓
Not Applied 27.67 0.7917 0.1846

Only Add 27.72 0.7926 0.1809
Only Concat 27.73 0.7930 0.1800
Our MFFM 27.77 0.7941 0.1766

The best results are emphasized with bold. ↑ and ↓ indicate whether higher or lower evaluation matrix values
correspond to better image quality, respectively.

It can observed from the table that: (a) The experiment demonstrates the importance
of incorporating multi-scale features in the image reconstruction process since the model
without multi-scale feature fusion performs the worst. (b) Using an addition or concate-
nation layer to fuse multi-scale features has proven beneficial. However, it is imperative
to note that these techniques are inadequate for the complex multi-scale feature fusion
process. (c) The model with the carefully designed MFFM achieves the best performance
regarding PSNR, SSIM, and LPIPS. This proves that a suitable feature fusion strategy like
MFFM can benefit the image reconstruction process.

(4) Study on PRUM/PRDM: The PRUM/PRDM aims to establish direct relationships
among adjacent pixels for better face structure preservation and further strengthen the
overall image reconstruction performance. It is the first attempt to establish direct rela-
tionships among adjacent pixels in reconstructing highly structured face images in the
transformer-based FSR area. In this part, we compare its performance with the usual
deconvolution layers, of which results are shown in Table 5.
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Table 5. Performance comparisons of different up/downsample approaches.

Approaches PSNR↑ SSIM↑ LPIPS↓
Pixel Deconv 27.68 0.7924 0.1836
Pixel Shuffle 27.69 0.7930 0.1816

Ours 27.77 0.7941 0.1766
The best results are emphasized with bold. ↑ and ↓ indicate whether higher or lower evaluation matrix values
correspond to better image quality, respectively.

It can be observed that the pixel deconvolutional and pixel shuffle layers can obtain
barely satisfactory reconstruction results. This is because the inner feature maps pro-
duced by these layers have no direct pixel relationship. At the same time, our proposed
PRUM/PRDM achieves better reconstruction results due to its ability to preserve face
structure based on relative pixel positions.

4.4. Comparison with the State-of-the-Arts

To demonstrate the effectiveness of our proposed method, we conduct a comparison
with several state-of-the-art methods. These include two GAN-based methods (SRRes-
Net [29] and RCAN [38]), three attention-based methods (SPARNet [10], SISN [11], and
IGAN [39]), and two transformer-based methods (SwinIR [17] and Uformer [15]). We
evaluate these methods on the CelebA and Helen datasets, along with the real face images.
In addition, we apply bicubic interpolation as the baseline for comparison. All models are
trained on the same CelebA dataset to ensure a fair comparison. The quantitative results
are tabulated in Table 6.

Table 6. Quantitative comparisons for ×8 SR on the CelebA and Helen test sets.

Methods
CelebA Helen

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Bicubic 23.44 0.6180 0.5900 23.79 0.6739 0.5254

SRResNet [29] 26.08 0.7502 0.2131 25.47 0.7828 0.2308
IGAN [39] 26.99 0.7801 0.2201 26.37 0.7996 0.2245
RCAN [38] 26.99 0.7796 0.2249 26.39 0.7965 0.2359
SISN [11] 26.85 0.7738 0.2337 26.33 0.7974 0.2322

SPARNet [10] 26.95 0.7794 0.2211 26.38 0.7953 0.2314
SwinIR [17] 27.15 0.7850 0.2162 26.48 0.7917 0.2413

Uformer [15] 27.33 0.7884 0.2040 26.67 0.8009 0.2063

Ours 27.77 0.7941 0.1766 27.16 0.8117 0.1890

The best results are emphasized with bold. ↑ and ↓ indicate whether higher or lower evaluation matrix values
correspond to better image quality, respectively.

(1) Comparison on CelebA dataset: Quantitative comparisons of the proposed method
with other existing methods on the CelebA dataset are presented in Table 6. As per the
table, our proposed method outperforms other competitive methods in terms of PSNR,
SSIM, and LPIPS, which implies that our method has the advantage of recovering realistic
face details. We have also provided some test images from the CelebA dataset for visual
comparisons, which are shown in Figure 6. Benefiting from the guiding blocks pointing
to the key features and the pixel-related upsample layer preserving face structures, the
proposed method can generate more precise nose contours and eye details while avoiding
creating unpleasant artifacts compared with other state-of-the-art methods.
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Figure 6. Visual comparisons for ×8 SR on the CelebA test set. Please zoom in for better comparison.

(2) Comparison on Helen dataset: Aiming to prove the flexibility of the proposed
model, we assess its performance on the Helen dataset using the same model trained on
CelebA. We present a quantitative and visual comparison of the proposed method with
others on the Helen dataset in Table 6 and Figure 7, respectively. According to the results,
the proposed method still shows superiority in restoring facial images both quantitatively and
qualitatively. This proves the robustness and stability of the proposed method. However, it is
worth noting that all methods experience a decrease in performance when the training and
testing images are not from the same dataset. Therefore, investigating the styles among various
datasets will be a promising way to enhance the generality of FSR methods in the future.

(3) Comparison on real face images: Restoring face images from real-world envi-
ronments is a challenging task due to the complexity of the captured images. Although
the CelebA dataset is a good source for simulating face images, it cannot replicate all the
complexities of real-life scenarios. In order to test the effectiveness of the proposed method
in restoring real-world face images, we conduct experiments on low-quality face images
collected from the classic TV series “Friends”. It was shot in the 90s with low-tech imaging
equipment and suffered severe low-resolution issues, making it perfect for testing. The
experiment results are illustrated in Figure 8. Benefiting from the guiding blocks pointing
to the key features and the pixel-related upsample layer preserving face structures, our
method reconstructs more detailed facial images with appealing facial structures compared
with other state-of-the-art methods.

4.5. Noise Stress Test

Due to the fact that noises from image sensors are all randomly valued and located,
the Gaussian noise best fits the image degradation model. However, some other noises
from specific situations could also challenge the performance of the proposed FSR method.
Therefore, we stress-test our model in this subsection on seven different noises: Gaussian,
Poisson, Rayleigh, gamma, exponential, uniform, and salt-pepper.
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Figure 7. Visual comparisons for ×8 SR on the Helen test set. Please zoom in for better comparison.

Figure 8. Visual comparisons for ×8 SR on real face images. Please zoom in for better comparison.
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Experiments in this subsection are conducted on the same 1000 test face images from
the CelebA dataset as above. The noise images are multiplied by 0.3 and then added to
the original HR images to simulate the noise-degrading process, except for the salt-pepper
noise that directly operated on the original HR images. All the noise generation models
can be obtained from Numpy [62]. To make a fair comparison, we manually alternate the
parameters of these noise models by adjusting the PSNR of their HR outputs to 26.0–26.5 dB.
Here are the detailed parameters of the noise models: The Gaussian noise has a mean value
of 0 and a standard deviation of 70. The Poisson noise has a lambda value of 50, while the
Rayleigh noise has a scale of 40. The gamma noise has a shape of 7 and a scale of 7. The
exponential noise has a scale value of 43. The uniform noise has a low value of 20 and a
high value of 80. Lastly, the probability of the salt-pepper noise is set to 0.01. The noise
images and their HR outputs are shown in Figure 9.

These HR images, which have been impaired by noise, are /8 downscaled and sub-
sequently directed through the proposed method. Additionally, we introduce the bicubic
interpolation results as the baseline while choosing the best comparative method, Uformer,
for better comparison. Table 7 and Figure 10 show the quality evaluation matrices and
visual comparisons, respectively.

Gaussian Possion Rayleigh Gamma Exponential Uniform Salt Pepper

Figure 9. Visual noise images and their HR outputs. Please zoom in for better comparison.

Table 7. Performance comparisons of different ×8 SR on face images with noises (PSNR↑/SSIM↑).

Methods Gaussian Poisson Rayleigh Gamma Exponential Uniform Salt Pepper

Bicubic 23.96/0.6486 21.95/0.6400 21.95/0.6398 22.02/0.6404 22.43/0.6417 21.95/0.6400 23.98/0.6489
Uformer [15] 23.77/0.6303 21.97/0.6260 21.98/0.6253 22.05/0.6262 22.44/0.6274 21.98/0.6258 23.81/0.6320

Ours 27.38/0.7837 24.08/0.7817 24.09/0.7808 24.19/0.7818 24.84/0.7818 24.10/0.7817 27.36/0.7823
Noise HR 26.49/0.6175 26.34/0.9818 26.10/0.9322 26.43/0.9602 26.51/0.8309 26.29/0.9638 26.40/0.6959

The best results are emphasized with bold. ↑ and ↓ indicate whether higher or lower evaluation matrix values
correspond to better image quality, respectively.

From Table 7 and Figure 10, we can observe that:
(a) There are varying degrees of reduction in reconstructing face images using different

methods. The Uformer, which proves its effectiveness in denoising, requests a particular
denoising dataset for training, or else it will be unable to construct reasonable images. On
the contrary, the proposed method, which introduces the guiding blocks and PRUM to
mine and preserve face structures, has successfully reconstructed face images with noises.

(b) Noises like Gaussian and salt-pepper influence face structures (i.e., SSIM) much
more than others. However, they can easily be recovered using the proposed method.
This is because the natural face images taken from image sensors always contain Gaussian
noises, which makes the proposed method familiar with this kind of noise. The salt-pepper
noise influences only a few pixels, while the /8 times degradation further weakens its
impact. Therefore, it can be overcome by the face structure preserving modules of the
proposed method.
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(c) The Poisson, Rayleigh, gamma, exponential, and uniform noises greatly affect the
performance of all FSR methods, which proves their ability to blur images. More attention
needs to be paid to overcome the influence of these types of noises.

Figure 10. Visual comparisons for ×8 SR on face images with noises. Please zoom in for better comparison.

4.6. Face Recognition Results

To further prove that the proposed method can recover crucial facial structures that are
essential in distinguishing different faces, we also perform face recognition as a measure-
ment. Specifically, we chose the commonly used LFW [63] dataset as the face recognition
database. Then, several images are randomly picked, downsampled, and super-resoluted
as the reference images with different FSR methods. After that, we select face images
with the same and other identities as test images for every reference. Finally, we adopt a
pre-trained face recognition model, Deepface [64], to perform face recognition. Moreover,
we also measure Uformer along with the proposed method for better comparison and the
bicubic interpolation as the baseline. The Receiver Operator Characteristic (ROC) curve
can be seen in Figure 11.

From Figure 11, we can observe that:
(a) The performance of Deepface [64] on the original HR images is excellent, which proves

the significant improvement in the face recognition field based on the deep-learning network.
(b) SR images with bicubic interpolation are difficult for Deepface [64] to verify. This

is reasonable due to the poor SR performance of the bicubic interpolation, which can be
seen from the sections mentioned above.

(c) Both the SR images reconstructed by the Uformer and the proposed method
have obtained satisfactory face recognition performance. Moreover, the proposed method
has a larger AUC result, demonstrating its better performance in face recognition tasks
and further proving its ability to recover crucial facial structures that are essential in
distinguishing different faces.
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Figure 11. ROC curve on LFW [63] for face recognition task. The “area” in the legend of the figure
represents the area under the ROC curve (AUC).

4.7. Model Complexity Analysis

In previous experiments, the proposed method has demonstrated its superior ability
in both quantitative and qualitative FSR performance. In this section, we compare its model
performance, size, and execution time with other state-of-the-art methods, whose results
are shown in Figure 12. According to the figure, our method achieves the best quantitative
results while maintaining comparable model size and execution time. Hence, the proposed
approach strikes a better balance between model performance, size, and execution time
compared to other state-of-the-art methods.
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Figure 12. Model complexity scattergram for ×8 SR on the CelebA test set.

5. Conclusions

This work proposes a novel attention-guided transformer with pixel-related deconvo-
lution network for face super-resolution. This is the first study for the transformer-based
FSR field to not only mine potential inner feature map information but also establish direct
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relationships among adjacent pixels in reconstructing highly structured face images. The
proposed method utilizes a multi-scale connected encoder-decoder architecture as the
backbone. Specifically, we design an Attention-Guided Transformer Module (AGTM),
which is composed of an Attention Guiding Block (AGB) and a Channel-wise Multi-head
Transformer Block (CMTB). AGTM at the top of the encoder-decoder network (AGTM-T)
promotes both local facial details and global facial structures, while AGTM at the bottleneck
side (AGTM-B) optimizes the encoded low-level features. The channel-wise CMTB over-
comes the problem that the usual spatial-wise transformers are limited to position-specific
windows and exploits feature map channels to achieve an image-size receptive field. Fur-
thermore, considering that face images are highly structured, we design a Pixel-Related
Deconvolution (PRD) layer to establish direct relationships among adjacent pixels in the
upsampling process for better face structure preservation. Moreover, we have also devel-
oped a Multi-scale Feature Fusion Module (MFFM) to fuse multi-scale features for better
network flexibility and reconstruction results. Quantitative and qualitative experimental
results on both simulated and real-world datasets demonstrate that the proposed method
can achieve state-of-the-art performance.
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