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Abstract: The three-pronged sliding universal coupling is a new kind of three-pronged coupling. The
purpose of this study is to demonstrate that, compared with a traditional unequal angular velocity
universal coupling (such as the Hooke universal coupling), the universal coupling has the superior
characteristics of constant angular speed transmission, simple structure and strong transmission
capacity by performing kinematic and dynamic analysis of the new three-pronged sliding constant
angular velocity universal coupling. It provides a broad prospect for applications in automotive
and other fields. To study its kinematic and dynamic characteristics, directional cosine matrices
are utilized as tools to analyze the coordinate systems by establishing simplified geometric models
and corresponding motions. Through the analysis of the motions of the input and output shafts
and employing the method of single-force element, a set of equilibrium equations for the forces
acting on the output shaft and the input shaft are formulated for solution analysis. The research
indicates that during the rotation process, there exists a small angular difference between the input
shaft and the intermediate shaft, demonstrating the quasi-constant angular velocity characteristics
of the new tripod sliding universal coupling. The curves of the forces and force moment acting on
each component of the coupling approximate sinusoidal curves. The optimal operating angle range
for the new tripod universal coupling is at angle β ≤ 25

◦
, during which the system exhibits good

transmission and mechanical performance. It can be widely used in the automobile industry, tie steel
industry and other occasions that require angular transmission. It is especially used in high-speed
operation and large transmission capacity.

Keywords: three fork type universal coupling; kinematics; dynamic performance; the optimal
operating angle range

1. Introduction

Couplings are commonly used mechanical transmission components, primarily em-
ployed to connect two shafts or for connecting a shaft with other rotating components
in various mechanisms. Their purpose is to enable the synchronized rotation of these
shafts and facilitate the transmission of motion and torque [1–3]. Among them, universal
coupling can be applied in situations where there is a significant angular deviation between
two shafts, and they can continue to be used even when the angle changes [4–6]. Common
universal coupling can be classified into three forms based on their motion characteristics:
non-constant velocity universal coupling, quasi-constant velocity universal coupling, and
constant velocity universal coupling [7,8].

The novel three-pronged sliding universal coupling is a new type of three-pronged
coupler invented by our research team [9–11], as shown in Figure 1. It mainly consists of
a three-pronged sleeve, three sliding pin rods, three inner bearings, and three-pronged
itself. Among them, the inner bearing can rotate relatively freely, forming a spherical pair;
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the sliding pin rod can slide relative to the three-pronged sleeve hole, and is connected to
the inner bearing. Compared to traditional three-pronged roller-type couplers, the three-
pronged sliding universal coupling uses three sliding pin rods instead of three spherical
or cylindrical rollers. This design allows it to transmit larger force moment. Additionally,
its structure is simpler, and it comes with advantages such as easy installation, low man-
ufacturing cost, and high transmission efficiency. It can be widely applied in situations
requiring heavy torque and heavy loads. By using three sliding pin rods instead of three
spherical or cylindrical rollers, the three-pronged sliding universal coupling improves upon
the original three-pronged roller-type coupler, which suffered from high contact stress and
significant wear due to small contact areas.
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This new type of three-pronged sliding universal coupling can be widely used in
transmission systems, especially in the automotive industry, with broad prospects for
application [12]. Therefore, conducting kinematic and dynamic performance analysis on it
is of significant importance, paving the way for further applications in various fields. To
achieve a precise analysis of the coupling, it is necessary to clearly define the composition
of the coupling before conducting the relevant research. Based on this, we established the
motion equations for the three-pronged universal coupling [13]. To understand the motion
characteristics of universal couplings and further clarify the motion laws of this device, we
designed an analysis method specifically for this device, focusing on the three-pronged
universal coupling as the research object [14]. This article utilizes the direction cosine
matrix to analyze the motion of the input and output shafts, studying the effects of the
angle between the axes of the input and output shafts and the rotational frequency of the
coupler on the motion of the sliding pin rod within the triple-rod sleeve holes. Building
upon this motion analysis, the single force method is employed [15–17] to establish the force
equilibrium equations for the output shaft and the input end shaft, followed by solving and
analyzing these equations to delve into the dynamic behavior of the input and output shafts.
In the dynamic analysis, the use of the single force method bypasses the need for complex
solving processes. This method is a straightforward and intuitive approach to force analysis,
where the focus lies not on simultaneously determining all constraint forces, but rather on
initially calculating the constraint forces within a specific motion pair. Subsequently, the
equilibrium equations for the remaining motion pairs are solved individually, component
by component. The study of the three-pronged slip universal coupling was mainly carried
out in the field of synchronicity and motion law. This research is mainly to establish a
kinematic model and dynamic model that can guide the development of a new type of
constant angular velocity universal coupling structure, and analyze the kinematics and
dynamic characteristics of the new structure, which are of great significance to guide the
application of a new type of three-pronged universal coupling. Most of the previous studies
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carried out by our group focused on the motion trajectory simulation of the components of
the three-pronged sliding universal coupling (such as the center point slide bar, etc.), but
this study is to establish a guiding model and systematically analyze the model.

In the introduction, the synchronization of the three-pronged sliding universal cou-
pling was verified by the synchronization experiment under different rotation angles. The
experimental results show that the universal coupling can achieve the effect of accurate
angular velocity rotation. In the case of a rotation angle of less than 25

◦
, the error is very

small, and does not affect the engineering application, and can be applied on the occasion
that requires the use of equiangular speed transmission universal coupling. The error law
of the experiment has an important reference role for the analysis of mechanical properties
in this paper. After many experimental verifications, it is proved that the three-pronged
sliding cardan shaft has the characteristics of stable transmission capacity in a straight line
in the range of commonly used corner 25

◦
. The transmission capacity of the traditional

coupling decreases in a curved state, and the decreasing speed is significantly accelerated,
resulting in a significant decrease in the transmission capacity. When the rotation angle is
less than 25

◦
, the three-pronged sliding universal coupling has the advantage of improving

the transmission capacity and, thus, improving the transmission efficiency, which has
become an important advantage in the promotion and application.

2. Establishment of Motion, Force Diagram, and Coordinate System

The coordinate system, as illustrated in Figures 2 and 3 [16], is employed: Two fixed
coordinate systems, oxyz and O′X′Y′Z′, are taken. The centerline of the output shaft
rotary cone and the axis of the input shaft are designated as axes oz and O′Z′, respectively.
Axis oy coincides with axis O′Y′, perpendicular to axes oz and O′Z′, forming angle β.
Furthermore, at the intersection of the three-pronged linkage, an auxiliary coordinate
system O′′ X′′ Y′′ Z′′ is established with axis O′′ Z′′ aligned with the output shaft, and plane
X′′ O′′ Y′′ representing the plane of the three-pronged linkage, with axis O′′ Y′′ always
perpendicular to axis ox. In the initial configuration, it is assumed that the axis m1 of the
plunger groove lies in plane X′O′Z′, while the connecting rod n1 lies in the moving plane
X′′ O′′ Z′′ that coincides with the fixed plane xoz. When the input shaft passes through any
point φ1, the connecting rod n1 on the output shaft rotates by a corresponding angle φ0
around the output shaft.

In the given scenario, m1, m2, m3 refer to the axis of the plunger groove, while n1, n2, n3
represent the axis of the connecting rod. It is known that there is no relative sliding between
the output shaft and the inner ring of the self-aligning bearing. The distance from the
intersection of the three-pronged linkage to the center of the self-aligning bearing, denoted
as l, remains constant. The motion of the output shaft is a conical motion with a cone angle
of θ. The radius of the motion trajectory of the center of the three-pronged linkage is ρ. The
angle between the center lines of the input shaft and the output shaft is β. The distance
from the axis of the plunger groove to the axis of the input shaft is r. The distance between
the center of the ball joint and the center of the connecting rod is h.
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3. Kinematic Analysis

The unified expression of the three plunger groove axes m1, m2, m3 in coordinate
system O′X′Y′Z′ is: {

X′ = r cos
[
φ1 + (j − 1) 2

3 π
]

Y′ = r sin
[
φ1 + (j − 1) 2

3 π
] (j = 1, 2, 3) (1)

This utilizes the following coordinate transformations:X′

Y′

Z′

 =

cos β 0 − sin β
0 1 0

sin β 0 cos β

x
y
z

 (2)

These are transformed into coordinate system oxyz{
x cos β − z sin β = r cos

[
φ1 + (j − 1) 2

3 π
]

y = r sin
[
φ1 + (j − 1) 2

3 π
] (j = 1, 2, 3) (3)

The expression of the axes n1, n2, n3 of the three-rod in the moving coordinate system
O′′ X′′ Y′′ Z′′ , in the fixed coordinate system oxyz, can be referred to as shown in Figure 4.{

Y′′ = X′′tg
[
φ0 + (j − 1) 2

3 π
]

Z′′ = 0
(j = 1, 2, 3) (4)
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system (O′′ X′′ Y′′ Z′′ ).

The coordinates of the origin O′′ of the moving coordinate system O′′ X′′ Y′′ Z′′ in the
fixed coordinate system oxyz can be determined by referencing Figure 4.

X(O′′) = ρ cos θ sin 3φ0

Y(O′′) = ρ cos θ cos 3φ0

Z(O′′) = ρ sin θ

(5)

Since the O′′ Y′′ axis of the moving coordinate system O′′ X′′ Y′′ Z′′ is always perpen-
dicular to the ox axis of the fixed coordinate system, it can be considered by, as shown in
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Figure 2, first rotating the oxyz coordinate system about the ox axis by an angle θx to align
the oy axis parallel to the O′′ Y′′ axis, then rotating about the new oy axis by an angle θy to
align the x axis parallel to O′′ X′′ , while also making the oz axis parallel to the O′′ Z′′ axis.

Due to the transformation relationship between the fixed coordinate system oxyz and
the moving coordinate system O′′ X′′ Y′′ Z′′ ,x

y
z

 =

ρ cos θ sin 3φ0
ρ cos θ cos 3φ0

ρ sin θ

+

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

X′′

Y′′

Z′′

 (6)

This is based on the properties of matrix transformationsX′′

Y′′

Z′′

 =

cos θy sin θx sin θy − cos θx sin θy
0 cos θx sin θx

sin θy − sin θx cos θy cos θx cos θy

x
y
z

−

ρ cos θ sin 3φ0
ρ cos θ cos 3φ0

ρ sin θ

 (7)

After expanding,
X′′ = x cos θy + y sin θx sin θy − z cos θx sin θy − ρ cos θ sin 3φ0
Y′′ = y cos θx + z sin θx − ρ cos θ cos 3φ0
Z′′ = x sin θy − y sin θx cos θy + z cos θx cos θy − ρ sin θ

(8)

The angles θx and θy can be determined by the intersection point S of axes oz and

O′′ Z′′ . By substituting the coordinates of point S in both coordinate systems,
(

0, 0, l
cosθ

)
and (0, 0, l), into the above equation, θx and θy can be solved.

θx = arcsin
(ρ

l
cos2 θ cos 3φ0

)
(9)

θy = arccos

(
ρ sin θ cos θ√

l2 − ρ2 cos4 θ cos2(3φ0)

)
(10)

Substitute Equation (8) into Equation (4), and then, after simplification, the equation
of the axis of the three rods (Rod n1, Rod n2, Rod n3) in the oxyz coordinate system can
be obtained.

x cos θytgφ0 + y
(
sin θx sin θytgφ0 − cos θy

)
− z
(
cos θx sin θytgφ0 + sin θx

)
= ρ cos θ sin 3φ0tgφ0 − ρ cos θ cos 3φ0
x sin θy − y sin θx cos θy + z cos θx cos θy = ρ sin θ

(11)


x cos θytg

(
φ0 +

2
3 π
)
+ y
[
sin θx sin θytg

(
φ0 +

2
3 π
)
− cos θy

]
−z
[
cos θx sin θytg

(
φ0 +

2
3 π
)
+ sin θx

]
= ρ cos θ sin 3

(
φ0 +

2
3 π
)
tg
(

φ0 +
2
3 π
)
− ρ cos θ cos 3

(
φ0 +

2
3 π
)

x sin θy − y sin θx cos θy + z cos θx cos θy = ρ sin θ

(12)


x cos θytg

(
φ0 +

4
3 π
)
+ y
[
sin θx sin θytg

(
φ0 +

4
3 π
)
− cos θy

]
−z
[
cos θx sin θytg

(
φ0 +

4
3 π
)
+ sin θx

]
= ρ cos θ sin 3

(
φ0 +

4
3 π
)

tg
(

φ0 +
4
3 π
)
− ρ cos θ cos 3

(
φ0 +

4
3 π
)

x sin θy − y sin θx cos θy + z cos θx cos θy = ρ sin θ

(13)

To determine the relationship between the input shaft angle φ1 and the output shaft
angle φ0, we can utilize the characteristic that the axis of the plunger slot m1 should intersect
with the rod n1. Therefore, we can express this by utilizing Equations (3) and (11).
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
A1x + B1y + C1z + D1 = 0
A′

1x + B′
1y + C′

1z + D′
1 = 0

A′′
1 x + B′′

1 y + C′′
1 z + D′′

1 = 0
A′′′

1 x + B′′′
1 y + C′′′

1 z + D′′′
1 = 0

(14)

Among which

A1 = cos β B1 = 0 C1 = − sin β D1 = −r cos φ1
A′

1 = 0 B′
1 = 1 C′

1 = 0 D′
1 = −r sin φ1

A′′
1 = cos θytgφ0 B′′

1 = sin θx sin θytgφ0 − cos θy C′′
1 = − cos θx sin θytgφ0 − sin θx

D′′
1 = −ρ cos θ sin 3φ1tgφ0 + ρ cos θ cos 3φ0

A′′′
1 = sin θy B′′′

1 = sin θx cos θy C′′′
1 = cos θx cos θy D′′′

1 = ρ sin θ

According to Equation (14), a solution exists, so the condition must be satisfied.∣∣∣∣∣∣∣∣
A1 B1 C1 D1
A′

1 B′
1 C′

1 D′
1

A′′
1 B′′

1 C′′
1 D′′

1
A′′′

1 B′′′
1 C′′′

1 D′′′
1

∣∣∣∣∣∣∣∣ = 0 (15)

Substitute each coefficient into Equation (15), expand it, and obtain a complex relation-
ship involving arbitrary angular variables φ1 and φ0. It can be written in the following form:

A(φ0) sin φ1 + B(φ0) cos φ1 + C(φ0) = 0 (16)

Suppose that:

A(φ0) = r
[
cos β

(
sin θx sin θytgφ0 − cos θy

)
cos θx cos θy + sin β cos θytgφ0 sin θx cos θy

+ sin θy
(
sin θx sin θytgφ0 − cos θy

)
sin β

− sin θx cos θy
(
cos θx sin θytgφ0 + sin θx

)
cos β]

B(φ0) = r
[
cos θytgφ0 cos θx cos θy + sin θy

(
cos θx sin θytgφ0 + sin θx

)]
C(φ0) = cos β

[
ρ sin θ

(
cos θx sin θytgφ0 + sin θx

)
− cos θx cos θy(ρ cos θ sin 3φ0tgφ0

+ρ cos θ cos3 φ0)] + sin β
[
ρ sin θ cos θytgφ0

+ sin θy(ρ cos θ sin 3φ0tgφ0 + ρ cos θ cos 3 φ0)]

The citation for the half-angle formula can be obtained as follows:

φ1 = 2arctg
A
(

φ0 ±
√

A2(φ0) + B2(φ0)− C2(φ0)
)

B(φ0)− C(φ0)
(17)

From this, the functional relationship between the input angle φ1 and the output angle
φ0 can be obtained.

When r/l is small, we can assume that ρ/l = tgθ ≈ sin θ ≈ θ or, in other words, point
O′′ lies within the oxyz coordinate plane. At the same time, terms containing r/l or ρ/l
squared, as well as higher-order terms, can be neglected. Thus, we have the following
simplified calculation relationship:

φ0 − φ1 ≈ r(1 − cos β)

2l(1 + cos β)
tgβ cos 3φ1 (18)

dφ0

dφ1
= ω0/ω1 = 1 − 3r(1 − cos β)

2l(1 + cos β)
tgβ cos 3φ1 (19)

The theoretical angular deviation curve calculated according to Equation (18) is shown
in Figure 5. From Equation (18), it can be seen that the angular deviation varies with the
deflection angle β. When the input shaft rotates one turn, the angular deviation undergoes
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three cycles of variation. At the deflection angle 10◦, only a fraction of the maximum
angular deviation occurs at point 1′; even when the deflection angle is 30◦, the maximum
angular deviation does not exceed 10′. The curve of maximum angular deviation varies
with the deflection angles β and λ = r

l , as shown in Figure 6.
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is used for three-prong-type universal coupling.

4. Dynamics Analysis

The dynamic analysis of the new type of three-pronged sliding constant-velocity
universal coupling is based on the motion analysis. The purpose of force analysis is to
determine the support forces and support moments at various support points, thereby
establishing the mechanical performance of this type of coupling. Here, let us assume
an idealized condition, neglecting friction and gravity. The force diagram for the three-
pronged sliding constant-velocity universal coupling with self-aligning bearings is illus-
trated in Figure 7.
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Figure 7. The kinetics simplified drawing of a three-pronged universal coupling with a self-align bearing.

Based on the motion analysis, it is known that this type of coupling achieves quasi-
constant angular velocity transmission [15]. Therefore, we can set ωi ≈ ω0 = 3ω. Addi-
tionally, considering the acceleration of the plunger sliding within the plunger groove [17],
the sum of the accelerations of the three plungers is given by:

a1 + a2 + a3 = −6ω2ρ sin β cos 3ϕ (20)

hi = r − ρ − 2ρ cos 2
(

φ + i
2π

3

)
(21)

One end of the three-pronged sliding universal coupling system is mounted with
a general rotary bearing, while the other end is mounted with a self-aligning bearing,
belonging to a single closed spatial mechanism. The balance equations can be directly
formulated. The input end is mounted with a general bearing, which can be simplified as a
single pair of rotations. It lacks the constraint reaction torque along the axis of rotation and
the support point is subjected to constraint reaction forces Rx′ , Ry′ , Rz′ , and two constraint
reaction torques Mx′ , My′ in three directions. The ball joint connecting the input shaft and
the output shaft is actually a spherical pair, transmitting forces in three directions without
bearing torque. The output end is installed with a self-aligning ball bearing, which allows a
spatial rotational range of 1.5

◦ ∼ 3
◦
. The support point does not have supporting reaction

torque on the output shaft and can be simplified as a spherical pair, only bearing three
support reaction forces Rx′′ , Ry′′ , Rz′′ in three directions.

(1) Determining the support reaction forces for the output end with a self-aligning bearing.
The force diagram of the output shaft is shown in Figure 8:
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Figure 8. A kinetic simplified drawing of the three-pronged universal coupling output axle.

When neglecting friction, the force acting on the three-bar by the ball joint can be
decomposed into a force F perpendicular to the three-bar in plane X′′ O′′ Y′′ and a force FZ′′

along axis Z′′ . There is a resisting torque T0 acting on the output shaft, as shown in the
figure above. By torque equilibrium, we can obtain:
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F1 · h1 + F2 · h2 + F3 · h3+ = T0 (22)

The component forces of force F along axis X′′ , Y′′ at X′′ O′′ Y′′ can be calculated from
Figure 9:
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{
F3x′′ = −F3 sin ϕ
F3y′′ = F3 cos ϕ

{
F1x′′ = −F1 sin

(
ϕ + 2π

3
)

F1y′′ = F1 cos
(
ϕ + 2π

3
)  F2x′′ = −F2 sin

(
ϕ + 4π

3

)
F2y′′ = F2 cos

(
ϕ + 4π

3

) (23)

When considering 90
◦
, the moments of each component force about point S are taken.

Because point S is supported by a spherical pair, there are no support reaction moments, so:

Mx′′ = 0 My′′ = 0

The following is attainable:

F1 = F2 = F3 = F =
T

h1 + h2 + h3
=

T0

3r − 3ρ
(24)

The force equilibrium equation for the output shaft is:

Rx′′ + F1x′′ + F2x′′ + F3x′′ = 0
Ry′′ + F1y′′ + F2y′′ + F3y′′ = 0
Rz′′ + F1z′′ + F2z′′ + F3z′′ = 0

 (25)

The support reaction force of the output shaft bearing can be obtained from Equation (23).

Rx′′ = 0
Ry′′ = 0
Rz′′ = −F1z′′ − F2z′′ − F3z′′

 (26)

The results show that the restraining forces Rx′′ ,Ry′′ on axes X′′ and Y′′ at the output
end of the spherical roller bearing are both zero, leaving only the restraining force Rz′′ on
axis Z′′ unknown. According to the principle of action and reaction, the forces Fx′′ , Fy′′ , Fz′′

acting on the triple rod are transformed into the OX′Y′Z′ coordinate system, and should
be equal in magnitude but opposite in direction to the forces Fx′ Fy′ Fz′ acting on the ball
joints connected to the piston. Consequently:
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Fx′

Fy′

Fz′

 = −[Co′o′′ ]

Fx′′

Fy′′

Fz′′

 (27)

In the above equation, the following are known:

Fz′ = mai, Fx′′ = −F sin
(

φ + i
2π

3

)
, Fy′′ = F cos

(
φ + i

2π

3

)
(i = 0, 1, 2) (28)

m represents the mass of the piston rod, and ai represents the acceleration of the piston.
The unknown parameters are Fx′ ,Fy′ ,Fz′ . Expanding the equation results in three equations
with three unknowns, therefore, Equation (27) can be solved. Among them:

[Co′o′′ ] =

A1 A2 A3
B1 B2 B3
C1 C2 C3


Among them [17]:

A2 = cos β cos θy −
sin β sin 2θ cos 3φ0

2 cos θy
A2 = − sin β sin θ sin 3φ0

cos θy

A3 = − cos β sin θ cos 3φ0 − sin β cos θ

B1 = − sin2 θ sin 6φ0

2 cos θy
B2 =

cos θ

cos θy
B3 = − sin θ sin 3φ0

C1 = sin β cos θy +
cos β sin 2θ cos 3φ0

2 cos θy
C2 =

cos β sin θ sin 3φ0

cos θy

C3 = − sin β sin θ cos 3φ0 + cos β cos θ

Expanding Equation (27), we obtain:
Fx′ = −A1Fx′′ − A2Fy′′ − A3Fz′′

Fy′ = −B1Fx′′ − B2Fy′′ − B3Fz′′

Fz′ = −C1Fx′′ − C2Fy′′ − C3Fz′′

(29)

Substitute Equation (28) into the third equation of Equation (29) to obtain:

Fiz′′ = −
(

mai
C3

− C1

C3
F sin

(
φ + i

2π

3

)
+

C2

C3
F cos

(
φ + i

2π

3

))
(i = 0, 1, 2)

Therefore, using Formula (20) and omitting term sin θ, substituting C3 simplifies to:

Rz′′ = −6mρω2tgβ cos 3φ (30)

When taking m = 0.2 Kg, 2000π
60 in radians per second, r = 26 mm, l = 700 mm, Rz′′

changing with φ as shown in Figure 10. As the output shaft rotates one cycle, the axial force
exhibits three periods of variation with six zero-crossings. When β = 0, Rz′′ = 0; when β = 5

◦
,

β = 10
◦
, the axial force almost coincides with the abscissa and can even be neglected; when

β ≤ 20
◦
, the peak value of the axial force increases slowly; when β ≤ 25

◦
, the peak value

of the axial force sharply rises, reaching over 8000 kilonewtons, increasing the system’s
instability, which should be overcome, while the periodic axial force variation will cause
the system to generate judder and longitudinal vibration.
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The method to simultaneously solve for Fix′ , Fiy′ is as follows:

Fix′ = A1F sin
(

φ + i 2π
3
)
− A2F cos

(
φ + i 2π

3
)
+ A3

[
mai
C3

− C1
C3

F sin
(

φ + i 2π
3
)

+C2
C3

F cos
(

φ + i 2π
3
)]

Fiy′ = B1F sin
(

φ + i 2π
3
)
− B2F cos

(
φ + i 2π

3
)
+ B3

[
mai
C3

− C1
C3

F sin
(

φ + i 2π
3
)

+C2
C3

F cos
(

φ + i 2π
3
)]


(i = 0, 1, 2) (31)

(2) Determining the support reaction of the input shaft bearing.
The force diagram of the input shaft of the three-way universal joint is shown in

Figure 11. Ignoring friction, the force applied to the ball joint due to the trine is determined
by the above calculation. The component along the Z′ axis generates acceleration of the
plunger without affecting the input shaft. Therefore, for now, the interaction between the
plunger and the input shaft is not considered, and they are treated as a whole to address
the force problem of the system (the force component in the Z′ direction can be considered
as 0). Three force equilibrium equations can be established for spatial mechanisms. ∑ Fx′ = Rx′ + F1x′ + F2x′ + F3x′ = 0

∑ Fy′ = Ry′ + F1y′ + F2y′ + F3y′ = 0
∑ Fz′ = Rz′ + 0 = 0

(32)
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Substitute Equation (31) into Equation (32) and solve to obtain:

Rx′ = tgβm(a1 + a2 + a3) = −6mω2ρ sin βtgβ cos 3φ (33)

This is the same as:
Ry′ = −1

l

(
3mρ2ω2tgβ sin 6φ

)
(34)

As shown in Figures 12 and 13, it can be observed that both Rx′ and Ry′ undergo
periodic changes during the motion process. The frequency of variation for Rx′ is three
times the angular frequency, while for Ry′ , it is six times the angular frequency. When the β

angle is the same, the peak value of Ry′ is much smaller than that of Rx′ . Under different
β values, the variation pattern of Rx′ and Ry′ is similar to RZ′ . When β = 5

◦
, β = 10

◦
, the

support reaction force almost coincides with the abscissa. When β ≥ 25
◦
, due to the sharp

increase in the support reaction force, very strict requirements are imposed on the strength
and stiffness of the input shaft. If Rx′ and Ry′ are too large, significant additional bending
moments will be generated, leading to higher requirements for the strength and stiffness of
the input shaft, while wear and vibration are inevitable, causing damage not only to the
components themselves but also increasing the kinetic energy loss of the system.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 17 
 

the sharp increase in the support reaction force, very strict requirements are imposed on 
the strength and stiffness of the input shaft. If 𝑅௫ᇲ and 𝑅௬ᇲ are too large, significant ad-
ditional bending moments will be generated, leading to higher requirements for the 
strength and stiffness of the input shaft, while wear and vibration are inevitable, causing 
damage not only to the components themselves but also increasing the kinetic energy loss 
of the system. 

 

Figure 12. The relation curves of 𝑅௑ᇲ − 𝜑 when the β angle is a different value. 

 
Figure 13. The relation curves of 𝑅௒ᇲ − 𝜑 when the β angle is a different value. 

5. Conclusions 
(1) Through the analysis of the motion of the input and output shafts, it can be seen 

that when installing the output shaft with self-aligning bearings on the three-way univer-
sal coupling, due to the small angle difference, especially when the deviation angle is very 
small, the angle difference is extremely small. Therefore, the transmission of the three-
way universal joint at this time can be called a quasi-constant angular velocity transmis-
sion. 

(2) Through the analysis of the forces on the output shaft, it is observed that the mag-
nitude of the circumferential forces transmitted by the three link rods is equal. The output 
shaft is subjected only to axial forces, which exhibit periodic variation. The magnitude of 
the axial force increases with the increase of parameter 𝛽, proportional to the square of 
the angular velocity. When 𝛽 ≤ 25° is large, the change in axial force is slow. 

(3) Through the analysis of the forces on the input shaft, it is evident that the reaction 
force varies periodically, increasing with the value of parameter 𝛽 and proportional to 
the square of the angular velocity. When 𝛽 ≥ 25° is large, due to the sharp increase in the 
reaction force, stringent requirements are placed on the strength and rigidity of the input 
shaft. 

Figure 12. The relation curves of RX′ − φ when the β angle is a different value.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 17 
 

the sharp increase in the support reaction force, very strict requirements are imposed on 
the strength and stiffness of the input shaft. If 𝑅௫ᇲ and 𝑅௬ᇲ are too large, significant ad-
ditional bending moments will be generated, leading to higher requirements for the 
strength and stiffness of the input shaft, while wear and vibration are inevitable, causing 
damage not only to the components themselves but also increasing the kinetic energy loss 
of the system. 

 

Figure 12. The relation curves of 𝑅௑ᇲ − 𝜑 when the β angle is a different value. 

 
Figure 13. The relation curves of 𝑅௒ᇲ − 𝜑 when the β angle is a different value. 

5. Conclusions 
(1) Through the analysis of the motion of the input and output shafts, it can be seen 

that when installing the output shaft with self-aligning bearings on the three-way univer-
sal coupling, due to the small angle difference, especially when the deviation angle is very 
small, the angle difference is extremely small. Therefore, the transmission of the three-
way universal joint at this time can be called a quasi-constant angular velocity transmis-
sion. 

(2) Through the analysis of the forces on the output shaft, it is observed that the mag-
nitude of the circumferential forces transmitted by the three link rods is equal. The output 
shaft is subjected only to axial forces, which exhibit periodic variation. The magnitude of 
the axial force increases with the increase of parameter 𝛽, proportional to the square of 
the angular velocity. When 𝛽 ≤ 25° is large, the change in axial force is slow. 

(3) Through the analysis of the forces on the input shaft, it is evident that the reaction 
force varies periodically, increasing with the value of parameter 𝛽 and proportional to 
the square of the angular velocity. When 𝛽 ≥ 25° is large, due to the sharp increase in the 
reaction force, stringent requirements are placed on the strength and rigidity of the input 
shaft. 

Figure 13. The relation curves of RY′ − φ when the β angle is a different value.

5. Conclusions

(1) Through the analysis of the motion of the input and output shafts, it can be seen
that when installing the output shaft with self-aligning bearings on the three-way universal
coupling, due to the small angle difference, especially when the deviation angle is very
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small, the angle difference is extremely small. Therefore, the transmission of the three-way
universal joint at this time can be called a quasi-constant angular velocity transmission.

(2) Through the analysis of the forces on the output shaft, it is observed that the mag-
nitude of the circumferential forces transmitted by the three link rods is equal. The output
shaft is subjected only to axial forces, which exhibit periodic variation. The magnitude of
the axial force increases with the increase of parameter β, proportional to the square of the
angular velocity. When β ≤ 25

◦
is large, the change in axial force is slow.

(3) Through the analysis of the forces on the input shaft, it is evident that the reaction
force varies periodically, increasing with the value of parameter β and proportional to
the square of the angular velocity. When β ≥ 25

◦
is large, due to the sharp increase in

the reaction force, stringent requirements are placed on the strength and rigidity of the
input shaft.

(4) The optimal range of application angle for a three-pronged universal joint coupling
is β ≤ 25

◦
. At this point, the system exhibits excellent transmission and mechanical

performance. By reducing the angular velocity and adjusting the relevant dimensional
parameters, the applicable angle range can be further expanded.

The analysis methods used in this paper, such as the directional cosine matrix method
and the single force pairing method, are effective analytical methods and play an important
role in obtaining the correct analysis results. In addition, the consistency of torque and
torque was maintained throughout the paper by means of checks.

Applying the dynamics and kinematics models established in this study, our group has
developed a number of three-pronged equal-angular velocity universal couplings, which
have different new structures, but the kinematic principles and kinematic characteristics
reflect the guiding significance of this research result.

The new three-pronged sliding universal coupling as a new solution has significant ad-
vantages compared with the traditional solution. Especially in the application environment
of high speed and heavy load, it reflects unique advantages, and is expected to replace
traditional solutions and widely enter the application field.

The study, kinematics, dynamics analysis has achieved the research objectives. The
research results are mainly applied to the three-pronged universal coupling with constant
angular velocity transmission. It is of guiding significance for the development of new
structures and analytical mechanical properties in the future, and will be committed to
systematic research in the future to reflect a wider range of application value.
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