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Abstract: Fastener screws are critical components of rail fasteners. For the fastener screw maintenance
robot, an image-based fast fastener screw detection method is urgently needed. In this paper, we
propose a light-weight model named FSS-YOLO based on YOLOv5n for rail fastener screw detection.
The C3Fast module is presented to replace the C3 module in the backbone and neck to reduce Params
and FLOPs. Then, the SIoU loss is introduced to enhance the convergence speed and recognition
accuracy. Finally, for the enhancement of the screw detail feature fusion, the shuffle attention (SA)
is incorporated into the bottom-up process in the neck part. Experiment results concerning CIoU
and DIoU for loss, MobileNetv3 and GhostNet for light-weight improvement, simple attention
mechanism (SimAM), and squeeze-and-excitation (SE) attention for the attention module, and YOLO
series methods for performance comparison are listed, demonstrating that the proposed FSS-YOLO
significantly improves the performance, with higher accuracy and lower computation cost. It is
demonstrated that the FSS-YOLO is 7.3% faster than the baseline model in FPS, 17.4% and 19.5% lower
in Params and FLOPs, respectively, and the P, mAP@50, Recall, and F1 scores are increased by 10.6%
and 6.4, 13.4%, and 12.2%, respectively.

Keywords: fastener screw maintenance robot; rail fastener screw detection; light weight; YOLO

1. Introduction

As critical components of rail fasteners, the reliability of fastener screws is important
for railways. The workers’ eye is usually used for accurately positioning the internal
combustion power screw wrench and the fastener screw, which is extremely low efficiency.
Fastener screw maintenance robots that use computer vision technology can accurately
identify and locate fastener screws, as shown in Figure 1, which can considerably reduce
the work intensity and improve efficiency. The computing power of the equipment is
restricted by the light weight, small size, and limited battery capacity of the robot, and it is
challenging to keep high-performance devices working for a long time in various harsh
environments. Therefore, a light-weight and high-performance fastener screw detection
model is necessary to fulfill the detection task requirement.

The deep-learning method has been widely used for object detection applications [1–4].
Although two-stage approaches like R-CNN [5], Faster-RCNN [6,7], and Mask-RCNN [8,9]
can achieve high detection accuracy, the computation cost is high, which impedes the
usage in real-time fastener screw detection tasks. The one-stage methods, like the YOLO
series [10–14], can obtain a fast detection speed with high accuracy.

To date, the application of a fast fastener screw detection method using deep learning
in the railway maintenance field is rare. Mushtaq et al. [15] proposed a screw recognition
method based on deep learning and image processing, using the YOLOv5 algorithm to
classify and recognize bolts, nuts, etc. Zhuang et al. [16] proposed a two-stage target
recognition method based on deep learning, further improving the detection performance.
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The recognition task is on a railway and two kinds of fasteners. At the first stage, a modified
YOLOv3 model is developed to provide the initial detection information. In the second
stage, a domain logic-based hybrid model (DLHM) is introduced. The DLHM consists
of the problem region calibration module and the symmetric region calibration module.
He [17] proposed a nut localization and recognition method based on computer vision
technology to accomplish automatic bolt assembly in automatic production lines. An
industrial camera is used to supply the image of the nut, and then the image is processed
using edge detection and Hough circle transformation to obtain the coordinates of the nut.
Finally, the precise position of the target is obtained according to the nut’s coordinates.
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Figure 1. Fastener screw maintenance robot: The small picture in the upper left corner is the electric
screw wrench, which is adapted for disassembling and assembling the fastener screws. The small
picture in the upper right corner is the depth camera, which is used for the detection and location of
fastener screws.

In the field of model performance enhancement, Panigrahi et al. [18] proposed a DSM-
IDM-YOLO, which integrates depth-wise separable convolution modules (DSMs) and an
inception depth-wise convolution module (IDM) to capture a wide range of features of
the target. These modules are incorporated into different layers of YOLOv2 to enhance
the model performance. Based on YOLOv3, Ma et al. [19] proposed an AVS-YOLO, which
can improve the model performance by introducing a densely connected feature pyramid
and a scale-aware attention module. Jiang et al. [20] proposed a light-weight real-time
object detection model. In the backbone section, they introduced a receptive field-extended
backbone with a restricted number of convolution layers to extract informative features.
In the neck section, the feature pyramid network (FPN) incorporates additional lateral
connections to recycle features within each convolutional stage, and both the channel atten-
tion and spatial attention modules are introduced, thus boosting the model’s performance.
Yin et al. [21] proposed a fast detection technique for the condition of elderly fall action
based on an enhanced version of YOLOv5s. Asymmetric convolution blocks (ACBs) are
utilized in the backbone network instead of the original Conv to enhance the feature extrac-
tion process. Then, they introduced a spatial attention mechanism module to improve the
detection accuracy. Liu et al. [22] proposed a distracted driving detection model based on
YOLOv7. The modified model can boost the overall performance of YOLOv7 by adopting
the global attention mechanism and channel-based data augmentation. Yang et al. [23]
proposed an effective steel strip surface defect detection model. Its feature fusion process
is replaced with the de-weighted BiFPN structure, maximizes the utilization of feature
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information, and minimizes the loss of valuable data. Subsequently, the integration of the
ECA attention mechanism reinforces crucial feature channels. Finally, the SIoU is adopted
as a substitute for the conventional IoU to elevate the model’s performance.

Though the research regarding accuracy enhancement methods has obtained many
achievements, there remains vast space for improvement of the computation speed. In
this paper, a light-weight fastener screw detection model named FSS-YOLO is proposed.
Compared with other competitive models, our work demonstrates a huge performance
enhancement while significantly reducing the hardware requirements.

The key contributions of our work are summarized as follows:

(1) For the light-weight upgrade, based on the light-weight characteristics of FasterNet
and C3, a C3Fast module is proposed to replace the C3 module in the backbone.

(2) For the detection accuracy enhancement, the SIoU is adopted to replace the original
loss module. The concept of the vector angle and the redefined distance loss are
fully utilized to effectively accelerate the convergence of the network and improve
the detection performance of the model. Moreover, the SA with the shuffle and
reorganization mechanism is integrated into the neck part, which can effectively
improve the network feature expression and extract the important information in
the image.

(3) The data enhancement method is used to process the collected fastener screw im-
ages, including randomly flipped, cropped, and scaled at random. Meanwhile, the
parameters, such as the noise color and brightness, are adjusted appropriately to
establish datasets with different angles, different brightness, and different noise. Thus,
the real-time change in the environmental conditions in real situations can be truly
simulated, which enriches the diversity of the datasets and strengthens the recognition
ability of the algorithm under complex weather conditions.

(4) Compared with the baseline model, our work can reduce by 17.4% the Params and
19.5% the FLOPs, while the P, mAP@50, Recall, and F1 scores are improved by 10.6%,
6.4%, 13.4%, and 12.2%.

The rest of the paper is organized as follows. Section 2 describes the theories related
to deep learning; Section 3 describes the framework of the baseline and improvement
implementation of the proposed model; Section 4 introduces the dataset and experimen-
tal environment; Section 5 conducts the experimental comparative analysis and verifies
the effectiveness of the algorithm; and the full text work and future research focus are
summarized in Section 6.

2. Related Work
2.1. YOLOv5

Compared with earlier YOLO series methods, YOLOv5 significantly improves the
computation speed while the accuracy remains high. The feature extraction procedure is
handled by the backbone, the feature fusion step is managed by the neck, and the detection
task is performed by the head module.

The backbone module is formed by CBS, C3, and SPPF. CBS is designed for preliminary
feature extraction, which contains Conv [24], BatchNorm [25], and SiLU [26]. The C3
module is the main feature extraction structure of YOLOv5, which can achieve features
from feature maps through the convolution process. This structure can be replaced with
convolution nerve networks like RestNet [27], CSPNet [28], ShuffleNet [29], MobileNet [30],
GhostNet [31], and FasterNet [32] to reduce the computation cost. The function of SPPF is
for the multi-scale feature fusion.

The neck module of YOLOv5 is a feature pyramid network (FPN) [33] that can fuse
low-level features and high-level features of the input image to achieve comprehensive
features, improving the accuracy and robustness of detection. It can be replaced with other
FPNs, like PAN [34] and BiFPN [35]. The head module converts feature maps into detection
boxes and category probabilities to detect target categories and positions.
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2.2. IOU

The intersection over union (IoU) is an algorithm of the degree of overlapping between
the prediction box and the ground truth box. For the YOLO series, CIoU [36], GIoU [37],
DIoU [38], and SIoU [39] are commonly used for performance improvement. GIoU focuses
not only on overlapping regions but also on other non-overlapping regions. It presents
the degree of overlapping better than the original IoU. When one box is inside the other
box, GIoU will degrade to IoU. To deal with this problem, DIoU is introduced, which takes
the distance, overlapping rate, and scale between the anchor box and the bounding box
into account, accelerating the bounding box regression. But when both boxes’ central point
coincides, DIoU becomes IoU. CIoU introduces the length–width ratio into the loss function
based on DIoU, yet the actual length and width are not considered. SIoU can rapidly shift
the predicted box toward the nearest axis, allowing regression for only one coordinate
(X or Y), greatly increasing the computation speed through effectively reducing the time
cost in the convergence process.

2.3. Attention Model

The attention mechanism plays an important role in the field of computer vision.
Significant recognition accuracy promotion can be achieved by incorporating an attention
module into the critical feature extraction process, the mechanism of which is to focus
on the critical information of the current task and reduce the weight factor of irrelevant
information. This approach can improve the performance of the model, allowing it to
handle complex tasks more efficiently. There are many kinds of attention mechanisms, such
as CBAM [40], SENet [41] and SimAM [42]. We use shuffle attention (SA) [43], which can
significantly improve the model performance through a clever combination of the spatial
domain and channel domain. SA divides the channel features to obtain multiple groups
of sub-features and then uses the Shuffle Unit to process each sub-feature from the spatial
and channel aspects, respectively. Finally, all the processed sub-features are gathered, and
then a Channel Shuffle operation is used to fuse different groups of sub-features, which
can significantly improve model performance.

3. Methods
3.1. Proposed Model

We propose the FSS-YOLO model based on the YOLOv5n model, and the architecture
is shown in Figure 2. The network structure of YOLOv5n consists of several CBS and C3
modules. The proposed model replaces all the C3 modules with C3Fast. The loss function
for the bounding box regression is SIoU, instead of the original IoU. For the FPN in the neck
module, SA is added into the bottom-up process, increasing the model’s attention during
the up-sample pathway. Adopting these methods can significantly increase the model’s
efficiency and accuracy.
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3.2. FasterNet

In order to achieve a higher inference speed, Chen et al. proposed FasterNet [32]
(Figure 3) based on PConv [44]. It is a light-weight model that significantly enhances
efficiency and retains better performance. This module can considerably reduce the weight
of the network, while cutting down the computational redundancy and memory access
frequency. There are four stages in the top part of the FasterNet model, and each stage
has a FasterNet Block and an embedding/merging layer. The bottom three layers form a
classifier. In the FasterNet Block, a PConv layer is followed by two PWConv layers. Only
a batch normalization (BN) layer and an activity layer are placed between the PWConv
layers aiming to retain the feature diversity and achieve a faster speed. PConv undertakes
feature extraction through partial input channels. Thus, the FLOPs of PConv are:

h × w × k2 × c2
p (1)

where h is the height of PConv, w is the width of PConv, and k is the height and width of
the filter. The cp is set as 1/4 c , and PConv’s FLOPs are only 1/16 of normal Conv. Thus,
the PConv’s memory access is much smaller than that of regular convolution.
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3.3. SIoU

The IoU schematic is shown in Figure 4. The score of the IoU increases as the intersec-
tion between the ground truth box and the prediction box increases. This situation indicates
high accuracy, and vice versa.

The IoU is obtained through the following equation:

IoU =

∣∣∣∣A ∩ B
A ∪ B

∣∣∣∣ (2)

A represents the ground truth box, while B represents the prediction box. The corre-
sponding IoU loss function is:

LIoU = 1 − IoU (3)

Our work adopts the SIoU [39] as a loss function for accuracy promotion. This method
defines the prediction loss from three aspects: angle cost, distance cost, and shape cost.
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3.3.1. Angle Cost

This cost is introduced to reduce the variables in the distance calculation. As Figure 5
shows, the model brings the prediction box to the nearest axis and then moves to the
ground truth box along this axis.
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The angle cost Λ is calculated from the following equation (when the nearest axis is
the x axis):

Λ = 1 − 2 ∗ sin2
(

arcsin(x)− π

4

)
(4)

where the angle x is:

x =
chy1

σ
= sin(α) (5)

chy1 and σ are the centroid point offset in height and distance between the ground
truth box and the prediction box:

σ =

√(
bgt

cx − bcx

)2
+
(

bgt
cy − bcy

)2
(6)

chy1 = max
(

bgt
cx − bcy

)
− min

(
bgt

cy − bcy

)
(7)

where
(

bgt
cx , bgt

cy

)
and

(
bcx , bcy

)
represent the centroid point coordinates of the ground truth

box and prediction box.

3.3.2. Distance Cost

The distance cost ∆ is designed according to the angle cost:

∆ = ∑
t=x,y

(
1 − e−γρt

)
(8)

ρx =

(
bgt

cx − bcx

cwx2

)2

, ρy =

(
bgt

cy − bcy

chy2

)2

, γ = 2 − Λ (9)
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As Figure 6 shows, cwx2 and chy2 are the vertical and horizontal parameters of the
minimum bounding rectangle based on the ground truth box and prediction box. As the
value of angle α moves from 0 to π/4, the distance cost grows dramatically.
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3.3.3. Shape Cost

The function of the shape cost is:

Ω = ∑
(
1 − e−wt)θ (10)

ww =

∣∣wp − wgt
∣∣

max(wp, wgt)
, wh =

∣∣hp − hgt
∣∣

max(hp, hgt)
(11)

in which (wp, hp) and (wgt, hgt) represent the actual vertical and horizontal parameters of
the ground truth box and prediction box. The θ is a critical parameter that is unique for a
specific case.

3.4. Attention

The channel attention mechanism can enhance the weighting factor of important
channels, while the spatial attention mechanism can highlight important information in
the feature map. However, using these two mechanisms at the same time will increase the
computational cost of the model. To deal with this problem, the shuffle attention (SA) is
proposed by Zhang et al. [43], with the structure shown in Figure 7. The SA combines the
advantages of channel-wise attention and spatial-wise attention, while maintaining the
efficiency of the network. We introduce this light-weight attention mechanism module for
the higher feature extraction ability. The SA separates the input feature maps X ∈ RC×H×W

into G groups, which is X = [X1, . . . , XG], Xk ∈ RC/G×H×W . Each group splits the channel
and spatial attention pathways, i.e., Xk1, Xk2 ∈ RC/2G×H×W , and the outputs of both
attention mechanisms are:

X′
k1 = σ(Fc(s))·Xk1 = σ(W1s + b1)·Xk1 (12)

X′
k2 = σ(W2·GN(Xk2) + b2)·Xk2 (13)

where s indicates the global averaging pooling, GN is the group norm [45], and W1, b1,
W2, and b2 are within RC/2G×1×1. The results of the attention process are connected. The
whole G groups are processed parallelly and fused with the channel shuffle operator for
communication between each group. Note that the SA outputs are the same size as input
X, making it convenient for CNN integration.
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4. Experiment
4.1. Dataset

The fastener screw detection performance of the fastener screw maintenance robot
may be significantly interfered with when encountering unexpected environmental factors.
For example, the hexagonal contour of the fastener screw bears a resemblance to a few
ballast contours, making it challenging to differentiate between them against complex
environmental backgrounds. Additionally, foreground occlusions from other trash may
obstruct the complete exposure of the fastener screw, further complicating detection tasks.

Due to the datasets on the railway being predominately based on the defects of the rail-
way system, the lack of a suitable fastener screw dataset hinders our research. To enhance
the generalization capability of the FSS-YOLO, a fastener dataset that contains a broad
range of environmental conditions, i.e., sunny, snowy, mottled sun, rainy, and occluded
circumstances, is presented. The data enhancement methods involve flipping, cropping,
grayscale, color adjustment, brightness adjustment, noise adjustment, and sharpening,
expanding the dataset from the original 250 images to 1000 images.

4.2. Experiment Setup

Finally, the configuration of the dataset is shown in Table 1 to ensure a comprehensive
evaluation of the models tested in the experiment.

Table 1. Dataset.

Dataset Scale

Test 1
Train 8
Val 1

The experiment’s parameters and the environment adopted are listed in Tables 2 and 3.
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Table 2. Experimental environment: Parameter configuration.

Configuration Version

System Windows 11
CPU Intel Core i5-12500H @3.10 GHz
GPU NVIDIA GeForce RTX 3060

Language Python 3.8
Acceleration CUDA 12.0
Framework PyTorch 1.13.0

Table 3. Parameter configuration.

Parameters Details

Optimization algorithm SGD
Learning rate 0.01

Batch size 8
Img size 640 × 640
Epochs 100

4.3. Evaluation Indicators

We utilize the parameters (Params), floating-point operations per second (FLOPs),
precision (P), mean average precision (mAP@50), Recall(R), F1 score, and frames per second
(FPS) to assess the model’s performance. The high mAP@50, Recall, and F1 scores denote
the accuracy of the tested model. The miniature Params, FLOPs, and a considerable
FPS suggest a more satisfactory real-time model to have been presented. The formula is
as follows:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

where TP represents the count of correctly predicted positive class samples, FP represents
the count of negative samples incorrectly predicted as positive, and FN represents the
count of positive samples wrongly predicted as negative.

In general, mAP@50 is used as the most important evaluation criteria for models, and
its calculation functions are as follows:

AP =
∫ 1

0
P(R)dR (16)

mAP =
1
N

N

∑
i=1

APi (17)

where the N denotes the total number of categories in the detection task. For this study, the
N is set as 1, AP = mAP.

5. Discussion

To satisfy the fast detection requirement of the fastener screw maintenance robot, we
choose the YOLOv5n model with the smallest Params and lowest computation cost as
the baseline. Although YOLOv5m and YOLOv5s perform well in terms of the P, mAP,
Recall, and F1 scores, their network Params and FLOPs are too large, resulting in a huge
computation resource expenditure during operation. This means that these two models are
too slow to complete the real-time recognition job on devices with low capability.

Then, different IoU loss functions are adopted, and the results are shown in Table 4. It
shows that the SIoU loss function can achieve the best FPS with higher overall performance.
Therefore, the YOLOv5n with SIoU is used.
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Table 4. Comparison results of loss functions with the same baseline.

Model Params FLOPs (G) P mAP@50 Recall F1 Score FPS

YOLOv5n+CIoU 1760518 4.1 0.819 0.635 0.556 0.662 176
YOLOv5n+DIoU 1760518 4.1 0.942 0.675 0.534 0.681 184
YOLOv5n+GIoU 1760518 4.1 0.956 0.712 0.535 0.686 186
YOLOv5n+SIoU 1760518 4.1 0.917 0.752 0.623 0.741 192

Table 5 lists the light-weight modifications using MobileNetv3, GhostNet, and C3Fast.
The Params and FLOPs are significantly reduced, but the P, mAP@50, Recall, and F1 scores
are decreased simultaneously. The C3Fast achieves the best score within the three modules,
while its Params and FLOPs are acceptable. A great enhancement in the FPS appears
due to the hardware latency optimization ability of the FasterNet Block-improved C3Fast
module. Therefore, C3Fast is used for the light-weight upgradation. For higher detection
accuracy, an attention mechanism is introduced. As Table 6 shows, barely any difference
appears between the Params and FLOPs. The SA wins in terms of the P, mAP@50, and F1,
while there is only a slight lack in Recall. The combination of channel-wise attention and
spatial-wise attention has superior performance in this fastener screw detection task. Thus,
the adopted modules for performance enhancement are the C3Fast, SIoU, and SA.

Table 5. Quantitative indicators of different light-weight models.

Model Params FLOPs (G) P mAP@50 Recall F1 Score FPS

YOLOv5n 1760518 4.1 0.819 0.635 0.556 0.662 176
YOLOv5n+MobileNetv3 792044 1.2 0.655 0.318 0.296 0.407 137

YOLOv5n+GhostNet 1283706 2.9 0.737 0.413 0.377 0.498 148
YOLOv5n+C3Fast 1452886 3.3 0.76 0.466 0.418 0.539 199

Table 6. Comparison of the performance of various attention mechanisms.

Model Params FLOPs (G) P mAP@50 Recall F1 Score FPS

YOLOv5n+C3Fast+SIoU+SEAttention 1461078 3.4 0.853 0.624 0.573 0.685 166
YOLOv5n+C3Fast+SIoU+SimAM 1452886 3.3 0.803 0.59 0.634 0.708 185

YOLOv5n+C3Fast+SIoU+SA 1452982 3.3 0.906 0.676 0.631 0.743 189

We compare the metrics for each modification stage, and the results are presented in
Table 7. C3Fast significantly improves the computational speed, but the P, mAP@50, Recall,
and F1 scores appear to diminish. Then, SIoU and SA are adopted to compensate for the
loss in the P, mAP@50, Recall, and F1 scores.

Table 7. Indicator comparison before and after modification.

Model Params FLOPs (G) P mAP@50 Recall F1 Score FPS

YOLOv5n 1760518 4.1 0.819 0.635 0.556 0.662 176
YOLOv5n+C3Fast 1452886 3.3 0.76 0.466 0.418 0.539 199

YOLOv5n+C3Fast+SIoU 1452886 3.3 0.891 0.644 0.537 0.67 184
YOLOv5n+C3Fast+SIoU+SA 1452982 3.3 0.906 0.676 0.631 0.743 189

To quantitatively evaluate the overall performance of the FSS-YOLO, several light-
weight YOLO series models are trained and tested on fastener screw datasets. As shown in
Table 8, FSS-YOLO exhibits significantly improved performance in all the aspects compared
to the baseline. The mAP@50 of FSS-YOLO is 14.5% higher than that of YOLOv7-Tiny and
the F1 score is 13% higher. The mAP@50 of FSS-YOLO is 7.1% higher than that of YOLOv8
and the F1 score is 3.7% higher. In general, compared with YOLOv5n, YOLOv7-tiny, and
YOLOv8n, our work’s performance is the best. The FSS-YOLO not only has the smallest
Params and FLOPs but also improves the detection accuracy, which means that it is more
conducive to completing the detection task of the fastener screw maintenance robot. The
actual test results are shown in Figure 8.
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Table 8. Quantitative indicators of the YOLO series.

Model Params FLOPs (G) P mAP@50 Recall F1 Score FPS

YOLOv5n 1760518 4.1 0.819 0.635 0.556 0.662 176
YOLOv7-tiny 6007596 13.0 0.859 0.59 0.533 0.657 170

YOLOv8n 3005843 8.1 0.829 0.631 0.675 0.716 166
FSS-YOLO (Ours) 1452982 3.3 0.906 0.676 0.631 0.743 189
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6. Conclusions

Computer vision technology based on deep learning has been widely used in the indus-
trial field. Although existing algorithms can meet the basic needs of many practical applica-
tions, their performance can be further improved by optimizing existing models. Based on
the analysis of the current competitive one-stage detection algorithms (YOLOv5, YOLOv7
and YOLOv8), this paper focuses on the network structure upgrade of the YOLOv5, which
has good accuracy and fast inference speed.

We propose the FSS-YOLO model, which aims to enhance the real-time inspection
capability of a fastener screw maintenance robot, which can only offer limited computing
resources. The C3Fast module is proposed to substitute for the C3 module in the backbone
for the model’s efficiency promotion. This modification results in the computation speed
increasing while the P reduces. In our approach, the SIoU instead of the original CIoU is
utilized. The SIoU introduces the concept of the vector angle and redefines the distance
loss, which effectively reduces the degrees of freedom in the regression. This leads to the
faster convergence of the network and improves the regression accuracy, allowing the
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model to efficiently identify fastener screws. Additionally, we integrate the SA attention
mechanism (Shuffle Attention) in the sampling process of the neck network. The shuffling
and reorganization of input features effectively enhances the feature expression ability of
fastener screws.

Aiming at addressing the issue of insufficient datasets of fastener screws, a new dataset
of fastener screws based on various environments is built. The data enhancement method
is used to expand the samples, and images with different processing degrees are randomly
selected to simulate the images collected by the robot in different weathers, which can
effectively avoid the similarity of the image features and improve the generalization ability
of the model.

The experiment result shows that our work is 7.3% faster in terms of the FPS than
the baseline model, while reducing by 17.4% and 19.5% the Params and FLOPs, and the P,
mAP@50, Recall, and F1 scores are improved by 10.6%, 6.4%, 13.4%, and 12.2%. Extensive
evaluations demonstrate the superiority of the proposed model when compared with
some competitive models. Meanwhile, the fastener screw maintenance robot obtains a
substantial advancement in its competency for the fastener screw detection task. At present,
the fastener screw maintenance robot developed based on FSS-YOLO has conducted more
than 200 practical experiments and is about to be used for disassembly and assembly tasks
concerning type II fasteners. The performance of this robot is satisfactory.

In the future, we will conduct in-depth research on the adaptability of the model to
improve the recognition accuracy and reduce the false detection rate in more complex
actual environments, like dim conditions and partly covered by trash, so that the model
can perform better, thereby improving the fastener screw detection function of the fastener
screw maintenance robot.
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