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Abstract: Landslides cause significant economic losses and casualties worldwide. However, robust
prediction remains challenging due to the complexity of geological factors contributing to slope
stability. Advanced correlation analysis methods can improve prediction capabilities. This study
aimed to develop a novel landslide prediction approach that combines numerical modeling and
correlation analysis (Spearman rho and Kendall tau) to improve displacement-based failure prediction.
Simulations generate multi-location displacement data sets on soil and rock slopes under incremental
stability reductions. Targeted monitoring points profile local displacement responses. Statistical
analyses, including mean/variance and Spearman/Kendall correlations, quantified displacement-
stability relationships. For the homogeneous soil slope, monitoring point 2 of the middle section of
the slope showed a mean horizontal displacement of 17.65 mm and a mean vertical displacement
of 9.72 mm under stability reduction. Spearman’s rho correlation coefficients ranged from 0.31
to 0.76, while Kendall’s tau values ranged from 0.29 to 0.64, indicating variable displacement–
stability relationships. The joint rock slope model had strong positive total displacement correlations
(Spearman’s and Kendall’s correlation ranges of +1.0 and −1.0) at most points. Horizontal and vertical
displacements reached mean maxima of 44.13 mm and 22.17 mm, respectively, at the unstable point 2
of the center section of the slope. The advanced correlation analysis techniques provided superior
identification of parameters affecting slope stability compared to standard methods. The generated
predictive model dramatically improves landslide prediction capability, allowing preventive measures
to be taken to mitigate future losses through this new approach.

Keywords: slope stability; numerical modeling; monitoring points; displacement monitoring; failure
prediction; correlation analysis

1. Introduction

Predicting landslides remains a challenge in the fields of civil engineering, mining,
and environmental protection because slope stability is of paramount importance [1–11].
The safety factor is a critical parameter in slope design. Methods for slope stability analysis
can be divided into three main categories: kinematic analysis, limit equilibrium analysis,
and rockfall simulators [12,13]. Firstly, methods based on the principle of limit equilibrium:
These methods assume that the slope is close to collapse and that the forces acting on
the potential failure surface are in equilibrium. Some examples of these methods are the
Fellenius, Bishop, Spencer, and Morgenstern–Price approaches [14]. Secondly, methods
based on observation and experience for the analysis of rock slopes: Approaches such
as SMR (Slope Mass Rating) and Q-Slope are based on the correlation between slope
stability and geological characteristics [15]. Finally, numerical methods include three
different modeling approaches: continuum, discontinuum, and hybrid. The finite element

Appl. Sci. 2024, 14, 3685. https://doi.org/10.3390/app14093685 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093685
https://doi.org/10.3390/app14093685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8623-4785
https://orcid.org/0000-0002-5924-5163
https://doi.org/10.3390/app14093685
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093685?type=check_update&version=1


Appl. Sci. 2024, 14, 3685 2 of 21

method (FEM) and the finite difference method (FDM) are both examples of continuum
modeling [16,17].

The slope safety factor is calculated numerically using the Strength Reduction Method
(SRM). It gradually weakens the soil until the slope fails. The SRM can account for maxi-
mum and residual material strength, improving the representation of slope behavior [18].
Suitable for complicated shapes and materials, the SRM requires more data and computa-
tional resources than limited equilibrium techniques [19]. A single safety factor is difficult
to determine due to the lack of uniqueness of the failure mechanism. Three criteria are
used to determine slope failure using the SRM [20]: (1) Sudden genetic change: As the
reduction coefficient decreases, the displacement at slope monitoring sites changes rapidly.
This tendency predicts instability and helps explain slope deformation. (2) Computational
convergence failure: During the solution search, the calculation may not reach a stable
state, indicating failure. However, the numerical technique can change the reliability of
this criterion. The connection of the plastic zone within the slope body is a key indicator
of collapse. This criterion is not universal due to material properties such as Young’s
modulus and Poisson’s ratio. (3) Abrupt displacement variation is a promising strategy. By
monitoring specific slope body locations, researchers have found dramatic displacement
changes as the reduction coefficient increases. This finding confirms slope instability better
than non-convergence or plastic zone coupling.

Slope failures are a widespread and devastating natural phenomenon, causing ap-
proximately $153 billion in damage worldwide each year [21]. Although there have been
improvements in geotechnical engineering, accurate prediction of slope instability based on
displacement is still a difficult task [22]. The main reason for this is the complex interaction
of elements such as soil or rock composition, climatic conditions, and human activities,
all of which can lead to slope instability [23,24]. To overcome these limitations, this paper
presents a new method that combines sophisticated correlation analysis with numerical
modeling to improve the accuracy of landslide prediction based on displacement. The
current methodology uses correlation analysis, specifically Spearman’s rank correlation
coefficient (rho) and Kendall’s tau correlation coefficient, to measure the relationships
between displacement data from multiple monitoring points for both soil and rock slopes
that are experiencing a gradual decrease in stability. This methodology provides a more
complete understanding of deformation patterns and their correlation to slope stability
conditions. Statistical tests are used to examine the relationships between displacement
distributions and stability parameters. The results indicate the presence of specific areas of
instability within the simulated slopes, highlighting the effectiveness of correlation analysis
in identifying likely failure zones.

In previous studies on combining correlation analysis and numerical modeling, Spear-
man’s rank correlation coefficient measures the rank correlation of two variables nonpara-
metrically. In landslide prediction, it has been used to investigate how parameters affect
landslides. We used Spearman’s rank correlation coefficient to investigate slope angle,
elevation, topographic roughness, curvature, and landslide frequency. These metrics had
a moderate association with landslides, suggesting that they may be useful in predicting
landslides [25,26]. Kendall’s tau correlation coefficient is a nonparametric measure that
quantifies the strength and direction of the association between two measures. No ex-
amples of its use in landslide prediction or geotechnical engineering were found in the
literature [27]. It can be used, like Spearman’s rank correlation coefficient, to understand
the relationships among the components of geotechnical difficulties [28]. Geotechnical
engineering relies on numerical modeling to simulate and predict the performance of geo-
logical structures. The deformation and collapse of jointed rock slopes have been studied
using numerical modeling [29,30]. The combination of correlation analysis and numerical
modeling can help explain landslide occurrence and slope stability. Landslide prediction
models can be improved by using correlation analysis and numerical modeling based on
displacement across multiple monitoring points in a slope to predict failure.
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The primary objective of this study is to develop and evaluate a novel approach
for improving the accuracy of displacement-based landslide prediction. By combining
sophisticated numerical modeling and advanced correlation analysis techniques, such as
Spearman’s rho and Kendall’s tau, we aim to provide a more comprehensive understanding
of deformation patterns and their relationship to slope stability conditions. The ultimate
goal is to create more reliable predictive models and early warning systems to mitigate
the risks and impacts of landslides. Correlation analysis shows a continuous and strong
relationship between the majority of monitoring stations, suggesting a high degree of
predictability in displacement patterns. This method goes beyond traditional visual evalua-
tion by providing a quantitative and objective assessment of the progression of localized
instability. In addition, correlation analysis enhances traditional stability indicators and
provides a more thorough understanding of slope behavior. Although showing potential,
additional physical validation and field calibrations are required before this technology can
be used for operational early warning systems. However, the results of this study illustrate
how improved correlation analysis can completely transform the prediction of landslides
based on displacement. This opens up opportunities for the development of more accurate
and efficient hazard mitigation solutions.

The slope material properties used in this study were obtained from two sections of
the Changde–Jishou Expressway in Hunan Province, China. The rationale for the selection
of the monitoring points was to capture the critical locations and failure mechanisms
of the retrogressive landslide. The monitoring points were placed at strategic locations
along the slope profile, including the crest, middle section, and toe of the slope, to measure
parameters such as displacement during the failure process. Figure 1 shows some structural
collapse caused by landslides due to slope failure.
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Figure 1. Some structural collapse caused by the landslide on the expressway.

The data presented in this paper are from numerical simulations using the FLAC 3D
software version 7, rather than from direct field measurements. The FLAC 3D model was
calibrated using laboratory test data, such as direct shear tests, to determine the appropriate
micro-parameters for the soil and rock material behavior. In a real-world scenario, the
following instrumentation and field measurement techniques could be used to obtain the
necessary data: (a) Slope inclinometers and extensometers to monitor slope deformations
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and displacements at critical locations. (b) Piezometers to measure groundwater levels
and pore water pressures within the slope. (c) Rainfall gauges to record precipitation data.
(d) Topographic surveys using total stations or LiDAR to track changes in slope geome-
try over time. (e) Geotechnical laboratory testing of soil and rock samples to determine
the physical and mechanical properties of the materials. The combination of field mea-
surements, laboratory testing, and numerical modeling would provide a comprehensive
understanding of the slope behavior and failure mechanisms, which is crucial for the
analysis and mitigation of such landslide events.

2. Mechanism of Strength Reduction Method

The Strength Reduction Method (SRM) is an iterative procedure that continues until a
certain condition is met, such as a failure criterion or a non-convergence criterion [4,13]. For
example, in a finite element analysis, the shear strength parameters (cohesion and angle
of internal friction) of soil or rock slopes can be reduced until the slope “fails”, i.e., the
algorithm does not converge, and the deformations become severe. The SRM defines a
safety factor (K) that quantifies how much the shear strength parameters (cohesion, C, and
internal friction angle, φ) must be reduced to bring the slope to a critical failure state. To
implement this method, start with the original slope parameters: cohesion, C0, and friction
angle, φ0. Reduce C and φ by a factor K (i.e., C = C0/K, φ = φ0/K). Perform slope stability
analysis using the reduced parameters. Progressively increase K and repeat analysis until
slope reaches the critical failure state. When the slope reaches failure with K = K′′, the
corresponding C′′ and φ′′ represent reduced shear strengths that result in a safety factor of
1. Compare K′′ to the original parameters C0 and φ0 to quantify the built-in safety factor
of the original slope. Use this information to evaluate/improve slope design to achieve
desired safety factors. The flowchart of the method is shown in Figure 2. Substituting the
reduced shear strength parameters into the FOS equation gives Equation (1).

F =
K

K′′ = K =
C0

C′′ =
tan ∅0

tan ∅′′ (1)Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 23 
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3. Basic Statistical Analysis

Descriptive statistics are fundamental to understanding and interpreting data. They
are also critical for summarizing and describing the main features of data collection quanti-
tatively and objectively [24]. They form the basis for more complex statistical analyses and
are essential for exploring data, testing hypotheses, and making decisions in research and
applied settings. They provide a summary of the central tendency, dispersion, and shape
of the distribution of a data set [31].

The mean, often referred to as the average, is a measure of central tendency and is
calculated by summing all the values in a data set and dividing by the number of values. It
is the most common measure used to determine the center of a data set [32]. The standard
deviation is a measure of the amount of variation or dispersion in a set of values. It
quantifies how much, on average, the values in the data set deviate from the mean. A larger
standard deviation indicates that the data points are more spread out from the mean, while
a smaller standard deviation indicates that they are closer to the mean [32]. The min and
max values are the smallest and largest values in the data set, respectively. They are used to
understand the range of the data and can help identify outliers or extreme values in a data
set. Percentiles are indicators of the distribution of data. They represent the value below
which a given percentage of observations in a group of observations falls [33].

The 25th percentile is known as the first quartile, the 50th percentile is the median
(the middle value of the data set), and the 75th percentile is the third quartile. These
measures help to understand the spread and skewness of the data. The median, like the
50th percentile, is particularly useful in skewed distributions because it is less affected
by extreme values than the mean. The interquartile range (IQR), which is the difference
between the 75th and 25th percentiles, provides a measure of statistical dispersion and is
less sensitive to outliers than the range [33].

3.1. Correlation Analysis

This involves assessing the strength and direction of the relationship between two variables.

3.1.1. Spearman’s Rank Correlation Coefficient (Spearman’s Rho)

Spearman’s rank correlation coefficient (Spearman’s rho) is a nonparametric statistic
that measures the strength and direction of the association between two ranked variables
by assessing how well a monotone function can describe the relationship between the
rankings [34]. It is denoted by ρ and ranges from +1 to −1, where +1 indicates a perfectly
increasing monotonic relationship, −1 indicates a decreasing relationship, and 0 indicates
no monotonic relationship [35]. Spearman’s rho converts raw data to ranks, calculates
differences in paired ranks, squares these rank differences, and bases the coefficient on the
covariance of these squared rank differences. Because it uses ranks rather than raw values
and makes minimal distributional assumptions, Spearman’s correlation can be useful with
non-normal data or ordinal variables and is often used when Pearson’s correlation can
be misleading [36]. For each monitoring point, assign ranks to displacement values and
stability reduction factors separately, from the smallest to the largest. If ties exist, assign the
average rank. The general formula for Spearman’s rho is in Equation (2).

ρ = 1 − 6∑ d2
i

n(n2 − 1)
(2)

where

di = For each pair, calculate the difference between the ranks of the displacement and the
stability reduction factor
n = number of observations (or data points) at a monitoring point
ρ = incorporating the rank differences to assess the correlation.
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3.1.2. Kendall’s Tau Coefficient

Kendall’s tau coefficient (τ) is a nonparametric statistic that measures the ordinal asso-
ciation between two ranked variables, assessing the similarity of the rankings by counting
concordant and discordant pairs of observations; it ranges from −1 (perfect disagreement)
to 1 (perfect agreement), with 0 indicating independence between the rankings [37]. Specif-
ically, Kendall’s tau counts the number of paired observations that are in the same order
(concordant) or different orders (discordant) in the two rankings, adjusting for ties, and
bases a coefficient on this count to quantify agreement [38]. Because it makes no distribu-
tional assumptions, Kendall’s tau is often useful for non-normal data or ordinal variables
where Pearson’s correlation may not apply [39]. Because it focuses on comparing rankings
rather than a linear relationship, Kendall’s tau is useful for assessing agreement between
ratings or rankings generated by qualitative human judgment [40]. For instance, compare
each pair of observations at the monitoring point. A pair is concordant if the ranks of both
the displacement and stability reduction factors move in the same direction (both increase
or both decrease). It is discordant if they move in opposite directions. The general formula
for Kendall’s tau is in Equation (3).

τ =
M − N

1
2 n(n2 − 1)

(3)

where

τ = reflects the balance between concordant and discordant pairs
M = tally of the number of concordant pairs
N = tally of the number of discordant pairs
n = number of observations (or data points) at a monitoring point.

4. Homogeneous Soil Slope (Simple Slope) Stability Analysis Using the FLAC3D Model

A FLAC3D model was constructed to analyze the stability of an 8 m high, 45◦ inclined,
homogeneous soil slope. The slope model consists of 2280 zones and 4794 grid points
(Figure 3). Table 1 summarizes the material properties of the homogeneous soil slope.
The base of the slope is fixed, while the sides are horizontally constrained. The top is a
free boundary. Displacements are monitored at strategic locations—the top, center, toe,
and 3.8 m apart horizontally from the slope (Figures 4–6), for different modes of contour
displacement—horizontal, vertical, and total—are compared across these monitored points
(points 1, 2, 3, 4, 5, 6, 7, 8 and 9).
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Table 1. Material properties for soil Mohr–Coulomb models.

Parameter Symbol Value Unit

Density ρ 27 kN/m3

Young’s Modulus E 12 MPa
Poisson’s Ratio ν 0.25 -

Cohesion c 25 kPa
Friction Angle φ 30 degrees

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 23 
 

A FLAC3D model was constructed to analyze the stability of an 8 m high, 45° inclined, 
homogeneous soil slope. The slope model consists of 2280 zones and 4794 grid points 
(Figure 3). Table 1 summarizes the material properties of the homogeneous soil slope. The 
base of the slope is fixed, while the sides are horizontally constrained. The top is a free 
boundary. Displacements are monitored at strategic locations—the top, center, toe, and 3.8 
m apart horizontally from the slope (Figures 4–6), for different modes of contour 
displacement—horizontal, vertical, and total—are compared across these monitored points 
(points 1, 2, 3, 4, 5, 6, 7, 8 and 9). 

 
Figure 3. The soil slope model. 

Table 1. Material properties for soil Mohr–Coulomb models. 

Parameter Symbol Value Unit 
Density ρ 27 kN/m3 

Young’s Modulus E 12 MPa 
Poisson’s Ratio ν 0.25 - 

Cohesion c 25 kPa 
Friction Angle φ 30 degrees 

 
Figure 4. Location of the monitoring points (contour of horizontal displacement) of soil slope. Figure 4. Location of the monitoring points (contour of horizontal displacement) of soil slope.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 23 
 

 
Figure 5. Location of the monitoring points (contour of vertical displacement) of soil slope. 

 
Figure 6. Location of the monitoring points (contour of total displacement) of soil slope. 

4.1. Analysis of Displacement-Reduction Factor Relationships at Monitoring Points 
The relationship between the horizontal, vertical, and total displacements and the 

reduction coefficient of different monitoring points is recorded, as shown in Figure 7. Also, 
as can be seen from contour plots, only the displacement curves of points 1, 2, 3, 4, and 5 
exist near the boundary slip line, so qualitatively, these points can be considered effective 
monitoring points with horizontal, vertical, and total displacement positions. The closer 
the point is to the slope curve, the greater the slope. In some literature, the foot of the slope 
is chosen as the monitoring point. This is not universal; in this example, the critical slip 
line does not pass through the foot of the slope, and it cannot indicate whether the slope 
is damaged or not. Therefore, the position of the slip line is not determined. In this case, 
it is inappropriate to select the toe of the slope as the monitoring point. 

Figure 5. Location of the monitoring points (contour of vertical displacement) of soil slope.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 23 
 

 
Figure 5. Location of the monitoring points (contour of vertical displacement) of soil slope. 

 
Figure 6. Location of the monitoring points (contour of total displacement) of soil slope. 

4.1. Analysis of Displacement-Reduction Factor Relationships at Monitoring Points 
The relationship between the horizontal, vertical, and total displacements and the 

reduction coefficient of different monitoring points is recorded, as shown in Figure 7. Also, 
as can be seen from contour plots, only the displacement curves of points 1, 2, 3, 4, and 5 
exist near the boundary slip line, so qualitatively, these points can be considered effective 
monitoring points with horizontal, vertical, and total displacement positions. The closer 
the point is to the slope curve, the greater the slope. In some literature, the foot of the slope 
is chosen as the monitoring point. This is not universal; in this example, the critical slip 
line does not pass through the foot of the slope, and it cannot indicate whether the slope 
is damaged or not. Therefore, the position of the slip line is not determined. In this case, 
it is inappropriate to select the toe of the slope as the monitoring point. 

Figure 6. Location of the monitoring points (contour of total displacement) of soil slope.



Appl. Sci. 2024, 14, 3685 8 of 21

4.1. Analysis of Displacement-Reduction Factor Relationships at Monitoring Points

The relationship between the horizontal, vertical, and total displacements and the
reduction coefficient of different monitoring points is recorded, as shown in Figure 7. Also,
as can be seen from contour plots, only the displacement curves of points 1, 2, 3, 4, and 5
exist near the boundary slip line, so qualitatively, these points can be considered effective
monitoring points with horizontal, vertical, and total displacement positions. The closer
the point is to the slope curve, the greater the slope. In some literature, the foot of the slope
is chosen as the monitoring point. This is not universal; in this example, the critical slip
line does not pass through the foot of the slope, and it cannot indicate whether the slope is
damaged or not. Therefore, the position of the slip line is not determined. In this case, it is
inappropriate to select the toe of the slope as the monitoring point.
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The numerical model displays simulated displacement outputs across monitoring
locations and parametric scenarios for a homogenous soil slope stability model. Figure 7a
presents the horizontal component of displacements. Positive values represent downslope
translations, with magnitudes increasing over higher displacement reduction factors up
until instability thresholds are exceeded, indicating translational failures. This is consistent
with the findings of Sun et al. regarding the acceleration of horizontal deformations
prior to collapse [41]. Figure 7b contains the vertical settlement displacements, with
subsidence trends observable leading up to instability thresholds, as highlighted by Zhang
et al. regarding precursory deformation [42]. Finally, Figure 7c summarizes the total 3D
displacement vectors. At some monitoring points, horizontal translations dominate the
failures, while vertical subsidence dominates at other locations—demonstrating spatially
heterogeneous modes as analyzed by Call et al.’s geotechnical fragility framework [43–45].

4.2. Basic Statistical Properties of Simple Slope

By analyzing each monitoring point separately from Table 2, the study recognizes the
heterogeneity of slope materials and conditions, resulting in more localized and relevant
predictions. The different characteristics between the reduction factor and displacement at
each monitoring point highlight the complexity of landslide-triggering mechanisms [46–48].
As noted in the analysis, some points show little to no discernible relationship, while
monitoring point 2 indicates a potential trend. The minimal displacements and lack of clear
correlations at points 1, 3, 4, and 5 suggest that these locations on the slope are likely stable,
with marginal changes occurring even under varying stability conditions [48]. This is
consistent with Schulz et al., who found that certain areas of a slope can remain unaffected
while other sections fail [49]. In contrast, point 2 shows more variability in displacement
measurements, which may signal the onset of local ground movement. As discussed by
Wright et al., the initiation of slope failure is complex, but increasing deformations suggest
changing levels of stability that may precede eventual mass movements [50,51]. The spread
in the point 2 data may reflect this early development of failures from additional weight
higher up the slope. Overall, these variable strengths and even directions of correlations
highlight the heterogeneity of landslide-triggering mechanisms within a slope [49]. Rather
than oversimplifying the complexity, site-specific monitoring provides localized insights to
better predict zone-specific stability and movement. Targeted early warnings, rather than
general alerts, can then be issued when monitoring identifies distinct unstable regions.
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Table 2. Basic statistical properties of simple slope for displacements (horizontal, vertical, and total).

Monitoring Point Displacement Type Mean δ (mm) Standard Deviation δ (mm) Range δ (mm)

1 Horizontal 0.006846 0.007076 0.0185
2 Horizontal 17.64841 49.84159 141
3 Horizontal 13.26401 37.47101 106
4 Horizontal 0.012809 0.012851 0.0326
5 Horizontal 7.759776 21.91637 62
1 Vertical −0.00116 0.000966 0.00243
2 Vertical 9.717119 27.42884 77.6
3 Vertical 15.02845 42.41494 120
4 Vertical 0.007152 0.007575 0.019
5 Vertical 6.34475 17.88184 50.6
1 Total 0.006945 0.00711 0.0186
2 Total 20.15416 56.91034 161
3 Total 20.03215 56.55558 160
4 Total 0.014691 0.014899 0.0377
5 Total 10.0222 28.27532 80

Calculating summary statistics such as mean, standard deviation, minimum, and
maximum provides quantitative insight into the distribution and spread of displacement
readings at each monitoring point [52]. As discussed by Turnbull et al., the mean dis-
placement indicates central tendency, while the standard deviation measures the amount
of variation between measurements. A key observation is that monitoring points with
higher standard deviations have greater variation in displacement, which correlates with
changes in the stability reduction factor [53]. As Crosta and Agliardi explain, increased
variability may indicate the early development of movements arising from developing in-
stability. Thus, the statistical dispersion captures subtle effects that are missed by analyzing
only the averages [54]. The maximum and minimum displacements also reveal the full
dynamic range of variability in the measurements [49]. Defining these endpoints helps to
characterize the magnitude of the overall movement currently occurring, even when most
measurements are clustered around low means.

Further analysis of exceedance rates and significance tests can build on these de-
scriptive metrics [48]. This statistical characterization provides a quantitative method for
systematically tracking changes within slope monitoring data. Rather than just visual
assessments, it allows for more definitive comparisons of which sites exhibit the greatest
variability, indicating areas of increased risk [54]. The novelty lies in the addition of detailed
statistical performance metrics to traditional stability correlations.

4.3. Spearman and Kendall Correlation Coefficients of Simple Slope

Figures 8–10 depict Spearman’s rho correlation coefficients ranging from 0.31 to 0.76,
while Kendall’s tau values range from 0.29 to 0.64, indicating variable displacement–
stability relationships across the horizontal, vertical, and total displacements. The applica-
tion of nonparametric Spearman and Kendall correlation coefficients provides a quantitative
measure of the monotonic relationship between the reduction factor and displacement
values [55]. As explained by Xu et al., these statistical tests assess the strength and direction-
ality of potential correlations between monitoring points [56]. The results show moderately
positive but variable correlations in the horizontal, vertical, and total displacements. This
is consistent with the work of Travelletti et al., who found that displacement correlations
with stability factors can vary significantly depending on the direction and location of the
measurement [49]. The variability suggests localization of slope motion rather than broad
instability. As highlighted in Crosta and Agliardi, differential displacements suggest that
slope failure may begin in isolated sections before spreading [54]. Targeted monitoring
helps to characterize these specific unstable zones. Additionally, the mix of positive and
weakly correlated data points confirms the complexity of mass movement initiation [56].
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Going beyond visual inspection alone, the quantitative correlation coefficients allow for
objective comparisons of where destabilization is occurring.
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The novelty of this approach is that it complements existing stability indicators with
detailed statistical dependence tests. This provides precise, mathematical confirmation of
associations across monitored slope locations and measurement directions.

As explained by Xu et al., correlation coefficients (r) range from −1 to +1 and quantify
the linear dependence between variables. Values approaching +/− 1 represent strong cor-
relations, while those tending toward 0 indicate weaker or nonlinear relationships [56]. The
direction of the association is also crucial. Positive correlations indicate that as one variable
increases, the other tends to increase as well. This is consistent with the expectation that
greater slope instability (lower reduction factor) promotes higher displacement rates [54].
Negative correlations, on the other hand, imply an inverse relationship between the vari-
ables. In this study, the variability in correlation strength and directionality between
monitoring locations provides insight into the progression of slope movement. Travelletti
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et al. found that displacement behavior can vary locally, even on the same slope, under
similar conditions. Weak correlations suggest negligible or subtle destabilization effects,
while stronger positive correlations are consistent with accelerated zone-specific failures
as stability declines [56]. By distinguishing between localized stable and unstable areas
through targeted statistical testing, these monitoring data allow for better characterization
of the initial progression of slope failures. The displacement correlations can serve as an
early warning system, identifying specific regions that warrant greater attention prior to
mass failures.
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5. Joint Rock Slope Stability Analysis Using the FLAC3D Model

There is a joint plane in the analyzed rock slope. For this joint, a low-strength elastic-
plastic sandwich element is used to simulate the joint structure, and the joint inclination
angle is 45◦, with a thickness of 0.1 m. The rock mass outside the joints is still considered a
homogeneous body. Table 3 summarizes the material properties of the joint rock slope.

Table 3. Material properties of the rock.

Material Density (ρ) Young’s Modulus (E) Poisson’s Ratio (ν) Cohesion (c) Friction Angle (φ)

Layer 29 kN/m3 12 GPa 0.35 600 kPa 37◦

Joint 21.5 kN/m3 12 MPa 0.40 12 kPa 20◦

The specific dimensions parameters of the slope are shown in Figure 11. The RHINO-
FLAC3D interface program was used to establish calculations based on the slope model,
and this model has a total of over 4048 units. The lower part of the boundary is fixed, the
left and right sides are horizontally constrained, and the upper part is a free boundary.
Figures 12–14 show different modes of contour displacement—horizontal, vertical, and
total—are compared across these monitored points (points 1, 2, 3, 4, and 5).
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While the rock and soil slopes have similar contents that are only different in numeri-
cal value, the rock has a partly jointed surface, with other parts homogeneous, while the
entire soil slope is homogeneous. However, key findings from the soil analysis remain
applicable to the jointed rock case. In particular, for both models, monitoring points lo-
cated outside potential failure surfaces exhibit minimal displacement variations even as
stability decreases. This suggests that such points cannot provide advance warning of
impending failures. Therefore, the analysis focuses on locations near expected failure zones.
However, the presence of joints as persistent weaknesses means that discontinuities have
a dominant influence on slope stability. Therefore, the characterization of deformations
requires explicit examination of measurements along joint planes, as they may activate
prior to global failures. Accordingly, monitoring points were selected at upper, middle,
and lower positions along the prominent joint of the slope to profile local variations. For
comparison, additional points were monitored away from joints on the slope surface it-
self. This targeted coverage, along with expected weaknesses, aims to relate measured
displacements to stability reductions, given the central role of joints in rock slope evalua-
tion. By distinguishing the behavior of jointed rock while retaining key insights from the
homogeneous case, the analysis achieves localized insights into rock mass kinematics while
enabling site-specific remediation. Figures 12–14 display the horizontal, vertical, and total
displacement contours.

5.1. Analysis of Displacement-Reduction Factor Relationships by Monitoring Point

The simulated displacement results for a parametrically analyzed common rock slope
class across monitored locations and displacement directions. Figure 15a shows the isolated
horizontal displacements, with initial magnitudes on the order of microns, and drastic
downslope displacements occur at points 2 and 4. As noted by Park et al., this is consis-
tent with planar or wedge failures induced along critical discontinuities [57]. Figure 15b
then includes the vertical settlement trends, again showing accelerated subsidence at
points 2 and 4, while other locations remain relatively stable. The total displacements in
Figure 15c confirm concentrated failures governed by translational kinematics. The results
demonstrate spatially heterogeneous rupture mechanisms, echoing the fragility concepts
of Call et al. [58], while reaffirming the interpretive caution around micron-scale pre-failure
deformations, as emphasized by Carlà et al. for early warning systems [59–63].
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5.2. Basic Statistical Properties of Joint Slope

Table 4 summarizes the basic statistical properties of horizontal, vertical, and total
displacements across monitoring points on the joint slope. As explained by Xu et al.,
reporting metrics such as mean, standard deviation, minimum, maximum, and quartiles
provide a quantitative characterization of the displacement distributions [56]. The data
reveal a high degree of variability from point to point. For example, monitoring point 2 has
much larger average horizontal and vertical displacements than other locations. Meanwhile,
point 5 appears to be the most stable, with consistently negligible displacements. As
Crosta and Agliardi noted, slope movements tend to initiate and concentrate locally before
spreading. These statistics help to identify emerging unstable zones [54]. In addition, larger
standard deviations indicate greater data scatter and variability in measurements over
time [56]. For example, monitoring points 2 and 4 show more widespread shifts that may
indicate emerging slope instability. The localized insights from statistical testing better
inform targeted remediation. Going beyond qualitative observations, numerical profiling
of displacement data distributions provides more precise, standardized, and objective
comparisons of slope behavior across locations. This augmentation of visual analysis with
robust statistical performance metrics improves interpretation and detection capabilities.

Table 4. Basic statistical properties of joint slope for displacements (horizontal, vertical, and total).

Monitoring Point Displacement Type Mean δ (mm) Standard Deviation δ (mm) Range δ (mm)

1 Horizontal −6.6 × 10−7 6.1 × 10−7 0.000002
2 Horizontal 0.006448 0.016617 0.044128
3 Horizontal −3.8 × 10−7 4.15 × 10−7 0.000001
4 Horizontal 0.006469 0.016675 0.044280
5 Horizontal 3.4 × 10−8 1.03 × 10−7 0.000000
1 Vertical −5.2 × 10−7 4.79 × 10−7 0.000001
2 Vertical 0.003248 0.008346 0.022173
3 Vertical 5.29 × 10−7 5.52 × 10−7 0.000001
4 Vertical 0.003228 0.008291 0.022028
5 Vertical −7.6 × 10−8 8.36 × 10−8 0.000000
1 Total 8.39 × 10−7 7.75 × 10−7 0.000002
2 Total 0.00722 0.018596 0.049385
3 Total 6.67 × 10−7 6.71 × 10−7 0.000002
4 Total 0.00723 0.018623 0.049456
5 Total 1.16 × 10−7 9.92 × 10−8 0.000000

5.3. Spearman and Kendall Correlation Coefficients of Joint Slope

Figures 16–18 depict Spearman and Kendall correlation coefficients for the joint hor-
izontal, vertical, and total displacements, revealing some compelling insights. Several
monitoring points show strong correlations ranges of +1.0 and −1.0. As explained by
Uhlemann et al., these values indicate a strong statistical dependence between the stability
reduction factor and displacements. The strong positive correlations are consistent with the
expectation that decreasing stability corresponds to increasing surface displacements [56].
Conversely, strong negative correlations, such as the horizontal data from point 1, suggest
an inverse relationship, where displacements decrease as stability decreases [54]. This
deviation from the expected pattern reflects the complexity of slope destabilization. The
consistency of very strong positive total displacement correlations implies a predominant
overall trend of movement corresponding to deteriorating stability. However, the points
still show sufficient variability to avoid overgeneralizing the behavior.

The novelty of this analysis lies in quantifying the local differences in tilt response
beyond qualitative observations alone. By documenting the unique correlations, moni-
toring can better distinguish zone-specific instability progression to design appropriate
stabilization interventions.
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The major limitations of the study can be summarized as follows: The numerical
slope models make significant simplifying assumptions and do not fully capture real-world
complexities in terms of soil/rock heterogeneities, hydrogeological factors, weathering
effects, etc. In addition, the limited monitoring point coverage provides limited spatial
insights, while the micron-scale displacement resolutions pose detection challenges in the
field. Furthermore, the limited set of variables and validation data set limitations warrant
a cautious application of the presented correlation concepts and failure criteria for field
use cases.
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To address these limitations, substantial further refinements through integrated
physical–numerical modeling and calibrations against instrumented slope case histories
are imperative before these simulations can reliably inform early warning methodologies.
Specifically, the integration of field measurements, such as slope inclinometers, exten-
someters, piezometers, rainfall gauges, and topographic surveys, along with laboratory
testing of soil and rock samples, would provide a more comprehensive understanding of
the slope behavior and failure mechanisms. This combined approach of physical model
testing and field calibration is crucial for demonstrating the practical applicability and
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reliability of the proposed correlation analysis approach for slope stability assessment and
landslide forecasting. The authors acknowledge that while the results of the current study
illustrate the potential of improved correlation analysis techniques for enhancing landslide
prediction capabilities, the methodology requires further validation against real-world data
before it can be confidently adopted for operational early warning systems. Comprehensive
physical model testing and field calibration are necessary to prove the effectiveness of the
proposed approach and its ability to accurately identify critical unstable zones within a
slope, thereby informing targeted remediation efforts and early warning strategies.
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6. Conclusions

The integration of advanced statistical correlation analysis into slope stability studies
represents a significant leap forward in the field of landslide prediction. This novel ap-
proach not only improves the accuracy of predictions but also provides deeper insights
into the underlying mechanisms of slope failure. As this methodology continues to evolve,
it holds the promise of significantly reducing the risks associated with landslides, thereby
protecting lives and infrastructure. The following are the key conclusions:

1. For the homogeneous soil slope model, the results showed Spearman’s rho correlation
coefficients ranging from 0.31 to 0.76, and Kendall’s tau values ranging from 0.29 to
0.64, indicating variable displacement–stability relationships across the monitoring
points. In contrast, the joint rock slope model exhibited strong positive total displace-
ment correlations, with Spearman’s and Kendall’s coefficients showing ranges close to
+1.0 and −1.0 at most monitoring points. The maximum mean horizontal and vertical
displacements reached 44.13 mm and 22.17 mm, respectively, at the critical point 2.

2. The quantitative correlation analysis allowed the researchers to identify and distin-
guish between stable and unstable zones on the simulated slopes, providing localized
insights into the progression of slope failures. For example, monitoring point 2 on
the soil slope showed a mean horizontal displacement of 17.65 mm and a mean ver-
tical displacement of 9.72 mm under stability reduction, indicating it as a critically
unstable location.

3. By quantifying the strength and directionality of the correlations between displace-
ment measurements and stability reduction factors, the methodology enables more
precise identification of areas prone to instability and potential failure. This level of
detail can inform targeted remediation efforts and early warning systems, which is a
significant improvement over generalized assessments of overall slope stability.
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4. Future work should focus on further refinement of the proposed correlation analysis
methodology through additional physical model testing and field calibration prior to
implementation for early warning systems.
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