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Featured Application: This paper helps to summarize the most relevant information on reactive
transport models used to simulate the transport of hydrocarbons. The authors hope that this paper
will be very useful for future modelers, stakeholders, and scientists, and will help them to select
the most appropriate tools or to create new models.

Abstract: The pollution of groundwater and soil by hydrocarbons is a significant and growing global
problem. Efforts to mitigate and minimise pollution risks are often based on modelling. Modelling-
based solutions for prediction and control play a critical role in preserving dwindling water resources
and facilitating remediation. The objectives of this article are to: (i) to provide a concise overview of
the mechanisms that influence the migration of hydrocarbons in groundwater and to improve the
understanding of the processes that affect contamination levels, (ii) to compile the most commonly
used models to simulate the migration and fate of hydrocarbons in the subsurface; and (iii) to
evaluate these solutions in terms of their functionality, limitations, and requirements. The aim of this
article is to enable potential users to make an informed decision regarding the modelling approaches
(deterministic, stochastic, and hybrid) and to match their expectations with the characteristics of
the models. The review of 11 1D screening models, 18 deterministic models, 7 stochastic tools,
and machine learning experiments aimed at modelling hydrocarbon migration in the subsurface
should provide a solid basis for understanding the capabilities of each method and their potential
applications.

Keywords: quality assessment; machine learning; remediation; reactive transport; groundwater
contamination; risk analysis; deterministic models; probabilistic models

1. Introduction

Contamination of soil and groundwater by organic pollutants is a global problem that
needs to be addressed, especially at historically contaminated industrial areas, such as
brownfields or abandoned sites. Despite their tainted past, these areas, often located in
urban industrial regions and low-income communities, hold potential for revitalization
through remediation efforts. In 2016, 1.38 million potentially contaminated sites were
registered, 98% of them in 11 countries [1]. According to projections, this number is likely
to increase, as potentially polluting activities took place at a total of 2.8 million sites [2–4].
Mineral oils and heavy metals are the main contaminants, accounting for about 60% of
soil pollution.

In the EEA countries, around 235,000 contaminated sites have been remediated [4],
which corresponds to 17% of the potentially contaminated sites currently registered. The
cost of managing contaminated soils in Europe amounts to around 6.5 billion euros per
year [5]. The cost of a site investigation is usually between EUR 5000 and EUR 50,000 (60%
of reported cases), while the cost of remediation projects is usually between EUR 50,000
and EUR 500,000 (40% of reported cases) [3]. The cost of remediation and restoration can
be even higher, ranging from EUR 150,000 to EUR 2 billion, as it is difficult to separate
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these measures [6]. As hydrocarbon pollution is a widespread problem, many spatial
planners and decision-makers are faced with the problem of rapid and cost-effective
remediation. Decisions on remediation strategies require tools and guidelines that provide
a reliable estimate of the time and labour required to reduce the plume and source of
contamination [7,8]. Numerical modelling can be an important method to study the fate of
hydrocarbons in the aquatic environment [9–11]. It can precede any on-site action, estimate
the extent of contamination, and help select the most effective and economical remediation
methods. They can therefore help scientists, engineers, and decision makers to significantly
improve their knowledge and optimize site management. Numerical models can also
help to reduce the costs associated with long-term monitoring programs and sampling
campaigns by identifying biogeochemical processes and quantifying their long-term effects.

One of the first applications of computer modelling to estimate groundwater flow
dates back to the 1960s when Remson, together with Appel and Webster, proposed the use
of finite differences and digital computers to track water flow [12], but very few involved
hydrocarbon seeps. Since the 1970s, however, the number of journal articles describing
models for the transport of hydrocarbons in water has increased (Figure 1), with an abrupt
increase in recent years. There have been several breakthroughs in knowledge during
these decades, e.g., the involvement of microorganisms in oil spills was described in detail
as early as the 1970s [13], and in the same year a fundamental theoretical concept of the
chemical and biological processes associated with the presence of hydrocarbons in soil and
groundwater was formulated [14]. The theoretical and numerical definition and realisation
of multiphase transport of hydrocarbons can also be regarded as a fundamental advance in
knowledge in the 1980s [15,16].
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Figure 1. Number of articles in which the following keywords are mentioned: hydrocarbon, transport,
model, and water in scientific journals; data from Google Scholar.

The first numerical models were based on a single organic pollutant whose degra-
dation was simulated either by a single electron acceptor [17,18] or by several electron
acceptors [19]. In the 1990s, the groundwater flow model—MODFLOW—was coupled
with the reaction modules, and since then the term multispecies reactive transport has
become established [20,21]. An important part of the hydrocarbon studies has also been
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the development of standards for soil and water remediation based on the models and
their uncertainty and sensitivity analyses [22–25], timeframes for remediation [26–28], and
health risk assessments related to indoor and outdoor exposure [29–31]. These parameters
are of critical importance to practitioners and environmental engineers whose goal is to
revitalise polluted sites or return them to their natural state. The main turning points in
hydrocarbon research have been the introduction of new remediation methods such as
the use of nanoparticles [32,33], new devices/methods to measure pollutant concentra-
tions [34–36], detailed monitoring [37–41], or the coupling of other techniques such as
isotope measurements [42–44].

Remediation of hydrocarbon contaminated sites is an emerging field of research [45]. It
has been reported that the number of papers published annually on this topic is increasing
at an average annual growth rate of 9.22% [46]. Despite this large number of publications,
only a few of them mention the need for further progress, which still needs to be improved,
as hydrocarbons are among the most hazardous pollutants, posing a high risk to health
and the aquatic environment.

So what does the future of hydrocarbon research look like? Looking at the articles
from the last decades, one might conclude that some studies will continue to be site-specific,
focusing on high-risk sites [47,48], large-scale sites [48–52], or areas with extreme condi-
tions [53–57]. Certainly, some articles will refer to laboratory experiments and the dynamics
of reactions affecting the attenuation of hydrocarbons in soils and water [58–60]. When
it comes to studying the fate of hydrocarbons in the subsurface, there is still room for
mesoscale laboratory studies [61–63] or field experiments [64–67], as these types of studies
better reflect the ongoing processes in heterogeneous soils and the growth of bacterial
communities in the quasi-real environment. It is likely that new studies will be required to
address the remaining unresolved challenges in remediating hydrocarbon-contaminated
soils, such as heterogeneity [68,69], realistic representation of volatile compound trans-
port [70,71], accurate injection of oxidants or reductants [72,73], and modelling of these
processes with new modelling tools [74,75] or with models that are well known but applied
in novel ways [76,77]. Overviews of the fate and transport of organic pollutants and their
bioremediation with updated knowledge of the mechanisms, the dynamics of the processes,
and new modelling tools will also play an important role for future researchers to keep up
with the trends [45,78–80].

Stochastic models are particularly interesting and can be used to construct probable
scenarios, policy rules, guidelines, and risk assessments. They seem to be good solutions for
complex systems where heterogeneity and randomness play a crucial role in the distribution
of pollutants. These tools are described in the following sections together with examples of
their application. A brief description of the application of machine learning methods in
hydrogeological modelling is also included. This method, which offers high accuracy, is
dynamically integrated into hydrological and hydrogeological modelling [56,81,82].

The aim of this article is to provide a comprehensive overview of existing solutions
for modelling the transport and removal of hydrocarbons from the subsurface. This is
facilitated by several objectives: the description of the processes controlling hydrocarbon
migration and remediation required to build the conceptual model, the presentation of
the most common mathematical models with their characteristics and limitations, and the
presentation of the theoretical background of the different modelling approaches and their
weaknesses and strengths.

This article is aimed at several groups: practitioners and experts in the field who
opt for simpler solutions that are intuitive, have a user interface, and allow for a rich
visualisation that can be presented to stakeholders and decision makers. For this reason,
the deterministic 1D and 3D models are described in detail. In addition, this paper may
be useful for scientists and developers who need a strong theoretical background and are
interested in more sophisticated tools based on probability theory and machine learning
algorithms. The paper could also be useful for future users and modelers. Therefore, the
audience that can gain insights from reading this paper is broad, and the paper should help
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in selecting the optimal modelling tool or combination of different models when assessing
contaminated sites.

To summarize, this paper provides a roadmap for navigating between different ap-
proaches and models for predicting the fate of hydrocarbons in the subsurface. In addition
to a brief overview of the history of discoveries in the field of hydrocarbon migration and
removal from soils and groundwater, the paper provides insights into current and future
trends in modelling and research. The novelty of this paper lies in the wealth of infor-
mation to help future users make informed decisions and in the comparison of different
approaches, including the application of machine learning algorithms to reactive transport.
In addition, to the best of the authors’ knowledge, it provides the most detailed description
of stochastic models used to reproduce hydrocarbon migration in the subsurface.

2. Processes

As early as the 1970s, the fate of oil spills was described in terms of various processes,
including advection, spreading and dispersion, dissolution, biodegradation, evaporation,
and emulsification. However, due to the limited or lack of knowledge of analytical expres-
sions for many of these processes and associated factors, the mathematical models were
often simplified, resulting in several important processes being omitted [83]. In the early
1980s, the understanding of the fate and behaviour of spilled crude oil was extended to nine
processes: advection, dispersion, evaporation, dissolution, emulsification, auto-oxidation,
biodegradation, and sinking/sedimentation [84]. In the mathematical models, however,
the focus remained on advection, dispersion, and evaporation.

However, stochastic reactive 3D flow transport was developed as early as 1985, taking
into account first-order kinetics for degradation, adsorption, dispersion, spreading and re-
tardation through a doubly porous medium [85]. This method proved to be sophisticated,
cost-effective, and robust and enabled accurate calculations of pollutant concentrations in the
plume of chlorinated hydrocarbons. Almost simultaneously, the BIOPLUME model [17,86]
was developed, an early attempt to link 2D transport of dissolved hydrocarbons and
biodegradation under low-oxygen conditions. This model was applied in aerobic aquifers
to predict the release of organic pollutants by various processes such as convection, disper-
sion, mixing, and biodegradation.

In the 1980s, when computing power was still relatively modest, two parallel branches
of modelling (deterministic and stochastic) were successfully formulated and implemented
(Figure 2). At that time, however, modelling was primarily the preserve of engineers,
scientists, and professionals who had the necessary knowledge and tools. After almost a
decade, in response to the needs of practitioners, screening tools were developed to facilitate
the use of these models in a user-friendly spreadsheet environment [87–89]. Another
significant advance was the introduction of the modular open-source 3D groundwater flow
model MODFLOW, together with MT3D and RT3D, which enabled the simulation of the
transport of multiple species in water.

In the following sections, the processes controlling the migration of hydrocarbons
are described in detail to improve the understanding of the underlying theory behind
the algorithms incorporated into the mathematical models. While most models had to
account for transport in the saturated zone, a few also can consider infiltration through the
vadose zone. In addition, key processes such as dispersion, sorption, and biodegradation,
which play a central role in controlling the concentrations of solutes in the subsurface,
are explained in detail. Furthermore, lesser-known processes pertaining to the removal
of contaminants, such as biodegradation or chemical oxidation, which are modelled by
the included tools, are also discussed. Some additional processes that are not explicitly
considered in the models but are important for the natural attenuation, leakage, and
transport of hydrocarbons can be found in the cited literature [46,90–93].
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2.1. Transport

Despite numerous studies and years of research into hydrocarbon migration, the process
remains in the discovery phase. When hydrocarbons enter an aquifer, they move downward
under gravity through a vadose zone and partition into subsequent phases [99–102]:

• mobile fluid—the mobile free product, mobile non-aqueous liquid phase (NAPL);
• residual liquid—an immobile, trapped portion of the hydrocarbons that occurs above

and/or below the water table and is an additional, persistent source of contamination;
• aqueous—dissolved in groundwater and soil moisture;
• sorbed—adsorbed to soil particles;
• volatile—hydrocarbons in the gaseous state, which have evaporated (depending on

Henry’s constant) from the free product layer and/or dissolved phase and occur
mainly in the unsaturated zone.

Once NAPLs reach the water table, they can form a visible free-product layer that
floats on the surface of the groundwater—LNAPLs (Figure 3). The soluble compounds are
dissolved while they are denser than water. DNAPLs migrate vertically downwards into
the saturated zone.
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Both phases, the dissolved and the free, migrate or spread laterally in the direction of
the decreasing hydraulic gradient [103]. Long-term studies of the free-product plume have
shown that it is not a continuous phase of hydrocarbons, its content rarely reaches 50%, and
the remaining pore space is filled with water and air; this phenomenon is called partition-
ing [101]. In addition, recent studies have suggested replacing the image of an elongated
contaminant plume with a characteristic oval smooth redox zone with the concept of a
plume fringe, where the shape of the contaminated zone is sharp and pointed [104]. The
mobility and transport of NAPL are controlled by several parameters, including water
abstraction near the leak, groundwater fluctuations, properties of the liquid phase (density,
viscosity, solubility, vapor pressure, volatility, and interfacial tension), properties of the
soil in which it spreads (pore size distribution, initial moisture content), structural and
geological conditions, and saturation functions (residual saturation and relative perme-
ability) [105,106]. The fate of a contaminant plume is also determined by the nature of
the medium. The transport of dissolved substances in karstified fractured environments
usually occurs through favourable tectonic structures and fracture networks [107].
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The forces that drive DNAPL movement are in turn dependent on the density and
viscosity of the DNAPLs (Figure 4), the permeability of the aquifer, i.e., the heterogeneity,
the groundwater velocity, and the DNAPL saturation and distribution [108].
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Both low flow velocities and the likelihood of DNAPLs becoming trapped in pore
spaces lead to the formation of residual bubbles and ganglia [109,110]. When the degree of
DNAPL saturation in the soil is greater than the residual DNAPL saturation, the DNAPL
plume is referred to as a pool [111]. The distribution of DNAPL sources among pools and
ganglia leads to the use of the simple metric of the ratio of ganglia to-pool to quantify mass
distribution (GTP) [112]. This parameter has been used in many environmental studies to
determine the relationship between source zone geometry, dissolution rate, release time,
and mass recovery [113,114]. In a homogeneous porous medium, mass transfer from a pool
is expected to be proportional to the flow rate through the DNAPL and to the interface
between the DNAPL and the aqueous phase. The low saturation of the DNAPL in the
pool caused the groundwater to circulate through the pool, allowing the contaminants to
escape at an early stage of contamination. The transfer of contaminants from a pool zone
is again mainly due to the dispersive component. Since the advective flow through the
pool is suppressed by the high DNAPL saturation, it is responsible for the accumulation of
contaminants in the mature contamination phase [113,115,116].

Even within macroscopically homogeneous porous media, migrating hydrocarbons are
presumed to follow narrow and irregular pathways. The movement along these favoured
flow paths is dictated by competing driving and drag forces. When the driving force is
relatively weak, hydrocarbons will migrate along paths where the hydraulic conductivity
is relatively high [117]. Moreover, the transition of heavy hydrocarbons into the aqueous
phase and subsequent transport with the flow is severely limited due to low solubility,
high retardation, and a propensity for sorption and precipitation [118,119]. Consequently,
heavy hydrocarbons are unlikely to migrate over long distances, except perhaps in karstic
or fractured media.

2.2. Dissolution

When a hydrocarbon is mixed with water, it theoretically dissolves up to its solubility
limit, and the excess is present as a free product. Solubility is also related to a parameter
known as the soil saturation limit. This is the pollutant concentration at which the pore air
and water in the soil are saturated with the chemical and the adsorption limits of the soil
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particles are reached. Above this limit, the pollutant can be present in the free phase. If the
hydrocarbon concentration is below the saturation limit, all pollutants present in the subsoil
are distributed in three phases: dissolved, in vapor, and sorbed. The saturation limit in the
soil depends on the water solubility, the dry bulk density of the soil, the soil-water partition
coefficient, the porosity, and the Henry constant [120]. Understanding the dissolution
processes in the source zone is crucial for a valid assessment of the mass balance for solvent
transport models and for what follows after the lifetime of the pollutant source.

Ideally, equilibrium dissolution is expressed by Raoult’s law of mass transfer in porous
media [121], where the aqueous equilibrium concentration of a component in a mixture of
NAPL is the result of phase mole fraction and solubility. In a non-ideal multicomponent
mixture, which is usually the NAPL source at a heterogeneous contaminated site, Raoult’s
law may not be valid because the transfer to the aqueous phase depends on the abundance
and intermolecular interactions between the components in the non-aqueous and aqueous
phases [122,123]. These interactions are computed using a thermodynamic approach and
parameterized by an activity coefficient, which factors in the non-ideal distribution [124,125].

The activity coefficient and molar fraction undergo variation as the dissolution pro-
cess unfolds, influenced by changes in the composition of the remaining NAPL and the
solubility of individual components within the mixture [126,127]. Approximations for
the activity coefficients can be made using the universal quasi-chemical functional group
activity coefficient (UNIFAC) method, which has demonstrated strong agreement with
experimentally derived ternary phase diagrams [128,129].

The rate-limited, or non-equilibrium, mass transfer of NAPL becomes more realistic
for multicomponent mixtures, particularly when the compounds are thermodynamically
distinct. This process unfolds in three phases: initially, there are constant concentrations
at or near equilibrium; then, this is followed by a rapid decline from the equilibrium
concentration to levels three orders of magnitude below; and finally, tailing occurs when
only about 0.5% of the original charge remains [130–132]. The non-ideal dissolution of
NAPL residues and the dilution of effluent have been the subjects of numerous fundamental
studies [131,133–143].

The solubility of hydrocarbons decreases with higher molecular weight, attributed
to factors such as longer chain length (>C20) or an increase in aromatic rings (more than
three aromatic rings) [144,145]. Generally, hydrocarbons with higher molecular weights are
less prone to volatilization or dissolution. Instead, they tend to disperse into NAPL and
soils, where they can be adsorbed by organic material or minerals [78,146]. This process
results in the depletion of more soluble compounds and the enrichment of residues with less
soluble ones, potentially leading to their precipitation as solids—a phenomenon known as
solidification [147]. Additionally, the solubility of hydrocarbons is influenced by factors such
as the temperature of the medium and the salinity of the groundwater [78,148,149]. The size
of a plume (dissolved phase) is typically determined by the transfer of hydrocarbon-soluble
compounds from the free product and/or residual phase, along with the hydrogeological
properties of the aquifer [150].

2.3. Dispersion

The elimination of pollutants in soil and groundwater is the result of several processes
in which dispersion plays an important role. In groundwater, two processes are associated
with dispersion: molecular diffusion, and mechanical dispersion. Mechanical dispersion is
defined as the spreading of a plume of contaminants as dissolved substances move through
porous media. This process has long been recognised as a component of monitored natural
attenuation (MNA) of contaminant plumes [151,152]. Mechanical dispersion, as defined
by Domenico and Schwartz (1990) [153], is the mixing/spreading (depending on scale) of
solutes caused by local displacements about the mean velocity. The differences in flow
directions and velocities are naturally caused by the heterogeneity of a porous aquifer and
the pore-scale bifurcation of groundwater flow lines consisting of clean and contaminated
groundwater. This phenomenon occurs at all scales, from the microscopic (pore to pore) to
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the megascopic (aquifer, catchment). On the small scale, three factors can influence the flow
velocity: different pore sizes, tortuosity, and friction. On the large scale, the flow velocity is
influenced by stratification, folds, faults, etc. Dispersion is therefore scale-dependent, but
even at a given scale, the data published by Gelhar [154,155] show considerable differences
with scale length (more than three orders of magnitude) (Figure 5). Dispersion reduces
the concentration of the pollutant in groundwater, but not the total mass of the pollutant
in the aquifer. The process in which molecular diffusion and mechanical dispersion come
together is referred to as hydrodynamic dispersion [156–158].
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The hydrodynamic dispersion coefficient, a key parameter in solute transport, char-
acterizes this process and is known to vary with the Peclet number. The Peclet number
compares the timescales of diffusion and advection over an average pore length. Despite
its significance, the hydrodynamic dispersion coefficient remains incompletely known and
understood, yet it is indispensable for numerous solute transport investigations. The hydro-
dynamic dispersion coefficient is a parameter that is not yet fully known and understood,
but is crucial for many solute transport studies. In general, there are two basic approaches
to hydrodynamic dispersion: the Eulerian, and the Lagrangian [159]. The first method may
not be entirely efficient, since hydrodynamic dispersion is also a parameter at the pore scale,
and Euler’s approach is tied to the macroscale and an advection-diffusion equation [160–162].
The curve obtained is fitted to the analytical solution of Ogata–Banks [163] to obtain the
dispersion value [164–168]. The Lagrangian approach adjusts the conservation of mass as
the movement of the deformable fluid volume along the streamline according to the local
velocity so that only the local dispersion and reaction are responsible for the instantaneous
change in concentration [169]. In this way, global conservation of mass is guaranteed, while
local conservation depends on the accuracy of the velocity estimation method. The most
common Lagrangian methods are Random Walk Particle Tracking (RWPT) and Smoothed
Particle Hydrodynamics (SPH). The first group of algorithms captures the motion and
dispersion of a large set of particles representing a plume of fluid in an advancing flow
field, while the element of Brownian motion is added to reproduce the effect of local
dispersion [170–172]. Smoothed particle hydrodynamics is a mesh-free method that uses
interpolation to obtain smooth field variables. The fluid is represented by particles, which
in turn carry all the physical properties associated with the forces (gravity, rotation, and
pressure) of the system to be reproduced. By interpolation, these properties are estimated
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from all neighbouring particles within the range of this function, the so-called smoothing
kernel. The collective motion of all particles then describes the flow pattern [173–175].

Hydrodynamic propagation has been and continues to be the focus of numerous studies
across various levels. Among the unresolved questions are anomalies such as anomalous
dispersion [176–178], negative dispersion, and solute dispersion under initial conditions [179],
as well as issues regarding the apparent dispersion coefficient [180,181] and the challenging
problem of the non-existent hydrodynamic dispersion coefficient [182,183]. Alongside labo-
ratory investigations and theoretical considerations, there is a growing field of practical
solutions for meso- and macro-scale remediation sites, aiming for accurate prediction of
the plume fate [184,185].

2.4. Sorption

Adsorption is a mass transfer process where substances accumulate at the interface of
two phases, such as liquid–liquid or liquid–solid (aquifer matrix). Adsorbents play a vital
role in immobilizing certain pollutants from groundwater [186]. The sorption of organic
chemicals in soils is a highly intricate process influenced by both matrix properties and
contaminant characteristics, which dictate interactions between the sorbed contaminant
and the solid surface. Binding to the solid is contingent upon factors like reactive groups,
specific surface area, electrostatic charge, hydration sphere, ionic radius, steric effects,
hydrophobicity, and more [187]. Various forces attract solute molecules to the solid surface,
with electrostatic binding predominating in physical or chemical sorption scenarios [188].
Despite numerous studies on pollutant adsorption across various materials, including
within remediation frameworks, there remains a need for deeper understanding of these
complex mechanisms, often overlooked in favour of remediation efficacy [189].

There are several interactions that are responsible for the removal of pollutants from
water by sorption, such as physical absorption, surface adsorption, ion exchange, complex-
ation, chelation, acid–base interactions, proton displacement, precipitation, pore filling, van
der Waals forces, electrostatic attraction, hydrogen bonding, hydrophobic interactions (π-π
interactions, Yoshida interactions), inclusion complexes, diffusion into the network of the
material, and covalent bonds [190,191].

Physisorption is inherently non-specific and involves interactive forces that are rela-
tively weak. This process has been studied with regard to the immobilisation of organic
pollutants on activated carbon [192]. Adsorption of organic compounds on porous materi-
als, i.e., pore filling, is a recognised mechanism [193–195] and the maximum sorption by
this process is explicitly related to the volume of micropores of the sorbent and is expressed
by the Dubinin–Polanyi equations [196]. Van der Waals forces, also known as London
dispersion forces, refer to the interactions between two neutral atoms, molecules or particles
separated by a distance greater than their dimensions. Despite the weakness of the bond,
these forces play a crucial role in understanding the mechanism of adsorption and the trans-
formation processes of hydrocarbon molecules [197,198]. The mechanism of electrostatic
attraction involves the interactions between the adsorbed substance (e.g., an organic pollu-
tant) and the sorbent based on their electrical charges. Sorption by electrostatic interaction
depends on the pH of the solution and the point of zero charge (PZC) of the sorbent [199].
Modelling studies have shown that π–π interactions and H-bonding interactions play an
important role in the sorption of PAHs (polycyclic aromatic hydrocarbons) [200–203]. π-π
interactions are weak non-covalent interactions that influence the chemical structure by
providing significant stabilisation and strengthening of the bonds. In general, hydrogen
bonds can form A-H-B type complexes, where A is any atom that is more electronegative
than H because it removes an electron from H, making the hydrogen electron-deficient,
and atom B is another electronegative atom, such as oxygen, nitrogen, halogens, etc. [204].
Sorption is a recognised effective technique for the removal of organic pollutants using acti-
vated carbon [205], resins [206], nanomaterials [207–209], zeolites [210,211], goethite [212],
and stable organic substances [213].
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The sorption and retardation of pollutants can be estimated by laboratory experiments
in which contaminated water is mixed with aquifer materials containing different amounts
of adsorbents. The sorption capacity of these materials is analysed by equilibrating known
quantities of a solid with solutions of the compound in question. A diagram showing
the relationship between the amount of sorbed compound per unit mass of solid and the
concentration in the solution phase under equilibrium conditions is called an isotherm [188].
Sorption isotherms often exhibit non-linear behaviours (Figure 6). A comprehensive classi-
fication is provided in the works of Giles et al. [214,215] and Voice and Weber [188]. Some
models, such as Langmuir [216], BET (Brunauer–Emmett–Teller [217]), and Gibbs, may
not be suitable for describing sorption in the water phase. Therefore, only Freundlich and
linear models appear suitable for characterizing pollutant reabsorption in the aqueous en-
vironment [218,219]. Given that the sorption process can also immobilize microorganisms
(forming biofilms), isotherms can also be utilized to simulate the movement and attachment
of microbes to soil particles. For simplicity, microorganism sorption is assumed to be linear.
Detailed findings regarding microorganism sorption in porous media are available in the
works of Mills [220], Aal et al. [221], and related references. Conversely, organic pollutants
may be sorbed by various biological materials in a process termed biosorption [222,223].
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2.5. Volatilisation

Volatilisation is the transition from a liquid to a gaseous state and is crucial for the fate
of organic compounds in the water–soil environment [224,225]. This process dominates
the removal of low molecular weight aliphatics and is the most significant change in
petroleum, leading to an enrichment of the high molecular weight fraction of residual
hydrocarbons [79].

A comprehensive understanding of the factors governing the evaporative transport
of organic compounds is crucial for estimating the quantity and composition of chemicals
entering and exiting soils and water bodies. The transport of organic compounds from
water to the atmosphere is influenced by several factors, including the chemical and
physical properties of the pollutant (such as solubility, molecular weight, vapor pressure,
Henry’s law constant, and Raoult’s law parameter), the presence of other pollutants and
their physical properties, water body turbulence, and air–water interface conditions, as well
as soil properties and environmental factors such as temperature [226,227]. Hydrocarbons
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volatilize from residues bound to soil grains and the free phase, resulting in a depletion
of lighter fractions from the remaining pool of organic chemicals, making it less mobile.
Consequently, the vapor phase can travel long distances along preferred flow paths [228].
Vapor phase constituents in the soil may undergo biodegradation by microorganisms or re-
volatilization into the atmosphere due to lower atmospheric concentrations, a characteristic
feature of PCBs [229]. The release of volatile compounds into the atmosphere or soil gases
follows a diffusion process. Two methods can be employed to calculate diffusion fluxes:
the Stefan–Maxwell equations, which merge gas fluxes and express concentration gradients
of each component in terms of the fluxes of other components; and the less stringent but
less accurate first Fick equation, which posits that the diffusion flux density of a gas is
proportionate to its concentration gradient and independent of other gases [230,231].

2.6. Biodegradation/Bioremediation

When organic pollutants enter the groundwater, they are subject to various processes
that change their composition and physical properties. One of these is biodegradation,
a process carried out mainly by fungi and bacteria, which is also an important process
controlling the fate of organic pollutants in the subsurface [232–236].

The ability of bacteria to degrade even recalcitrant petroleum hydrocarbons has been
known for many years [237–239]. The reasons why some organic pollutants are not bioavail-
able to organisms include their high hydrophobicity and their tendency to bind to soil
particles in heterogeneous aquifers, the ageing of pollutant sources that are more solidified
(amorphous forms are favoured for enhanced microbial degradation), aerobic or anaerobic
conditions, pH, etc. [240,241]. The effects of biodegradation also depend on the types of
microbial strains, as different microorganisms react differently to pollution, and also on the
level of pollution, as this process is dose-dependent [242,243].

This adaptation could be achieved by selecting the most efficient strains [244–246],
entrapment [247,248] or encapsulation [249–251], genetic modification or engineering of
microorganisms by spontaneous or induced mutation, gene cloning, the removal of cell
walls, or the insertion of genes from other species [252]. It should be emphasised that both
dead and living bacteria can be used to remove pollutants. In the case of dead biomass, the
target pollutants can be immobilised by biosorption [253] (Section 2.4).

The ultimate outcome of biodegradation/bioremediation processes is the conversion
of organic pollutants into either simpler organic structures or into environmentally be-
nign inorganic compounds such as carbon dioxide, water, and salts [254]. However, the
biodegradation of certain organic substances, such as crude oil, can result in the formation
of toxic carboxylic acids [255]. Bioremediation is widely regarded as a safe and relatively
cost-effective method for removing pollutants from soil and groundwater. It is a versatile
field technology that can be implemented either in situ or ex situ, characterized by rapid
progress and a propensity for innovation [77,256,257].

Monitoring the effectiveness of bioremediation is critical to the successful treatment of
contaminated sites, i.e., assessing when and how target concentrations are reached. It is also
crucial from an economic and management perspective, as it enables authorities to make
informed decisions about the management of contaminated sites. Ongoing bioremediation
monitoring includes chemical measurements of contaminant degradation in soil and/or
groundwater, including at the contaminant plume, but may also include measurements of
soil respiration and potential metabolites. Microbiological techniques can also be used for
microbial enumeration and biomarker assessment, as it is important to monitor bacterial
activity during microbially enhanced processes [258–260].

Biological degradation and bacterial activity can be simulated with analytical and
numeric models [75,261]. The biokinetic models of biodegradation should include several
processes, such as bacterial growth, decay, and respiration. The biokinetic parameters are
usually derived from laboratory experiments, for example, from batch reactors. Since the
biodegradation process is kinetic, it can be modelled as zero-order, first-order, instanta-
neous, Michaelis–Menten and Monod reactions. However, it is clear that the parameter
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values determined at laboratory scale are not readily transferable to full-scale groundwater
modelling, as bacterial growth in reactors is rapid and limited by substrate depletion,
and in full-scale models, other factors such as temperature, pH, substrate quality, toxicity,
electron acceptor availability, and biosorption influence microbial growth [103,262–264]. A
novel approach to modelling biological processes is the use of artificial intelligence, such as
neural networks. For example, replacing Monod kinetics with gene regulatory network
kinetics agreed very well with experimentally observed biomass production [265,266].

2.7. Isotope Fractionation

As early as the late 1960s, Lebedev et al. [267] demonstrated that the oxidation of
hydrocarbons leads to an accumulation of δ13C in the remaining substrate. Stahl [268] inves-
tigated the biodegradation of crude oil and observed a similar trend, indicating significant
isotope fractionation during the degradation of the aliphatic fraction. Additionally, matu-
ration processes can influence the isotopic composition of organic compounds [269,270].
In recent years, isotopic fractionation has been the focus of numerous studies aimed at
monitoring and quantifying the outcomes of biodegradation processes under both aero-
bic and anaerobic conditions [271,272]. Findings from these studies have indicated that
even in laboratory settings, different isotope fractionation factors can be obtained for the
same substrates but with different enzymes, suggesting that predicting this process is
challenging [273]. Furthermore, while the isotopic fractionation of aromatic hydrocarbons
is relatively well understood, similar bond cleavage reactions in the degradation of volatile
alkane chains present more complexities [274–276].

In general, the isotopic signature undergoes kinetic and equilibrium fractionation.
While both processes can impact the isotopic fingerprint of hydrocarbons, kinetic frac-
tionation tends to have a more pronounced effect on residues, resulting in an enrichment
of substrates with heavier isotopes and products with lighter isotopes (known as kinetic
isotope effect—KIE) [277]. The most significant isotope effects are associated with substi-
tutions that influence reaction rates [278,279]. Determining KIE has become a standard
measurement, with a wealth of KIE data available in the literature [280]. The disparity
between theoretical and observed KIE aids in confirming or rejecting reaction pathways, in-
cluding their rates, mechanisms, and intermediates [281]. However, in many cases, neither
theoretical nor observed KIE is conclusive enough to support or refute hypotheses regard-
ing reaction mechanisms. In such instances, complementary calculations with density
functional theory (DFT) are necessary [280,282].

The extent of fractionation depends on geological conditions, including species, geo-
chemical background, temperature, nutrients, and electron acceptors [272,283]. Isotope
fractionation also depends on the nature of the chemical reaction, the mass of the respective
isotopes, and molecular factors such as uptake of the reactant into the cell, transport of the
reactant to the enzyme, or binding to the enzyme [42].

2.8. In Situ Chemical Oxidation (ISCO)

In situ chemical oxidation (ISCO) involves the injection of chemical oxidants into
the subsurface to oxidise contaminants of emerging concern (COECs) such as chlorinated
hydrocarbons, fuels, phenols, etc. This dynamic and aggressive process can be applied
to both sorbed and dissolved hydrocarbons [284]. Several oxidants are being used or
tested in practice today, such as Fenton, activated persulphate, permanganate, hydrogen
peroxide, calcium peroxide, percarbonate, ozone, and peroxene. ISCO laboratory tests
and field trials began in the 1990s. The results have been published in numerous articles,
reports, and books, e.g., [59,285–291]. Most ISCO studies focused on the use of ozone
in the vadose zone [292–295], permanganate, Fenton, and persulphate in the saturation
zone [296–305]. ISCO is a flexible cost-effective method that can be applied to light and
dense recalcitrant hydrocarbons such as aromatic hydrocarbons [306,307]. As with other
remediation techniques, there are several challenges with ISCO, including optimal esti-
mation of dose rate [290,308], accurate injection [309,310], ensuring safety [311,312], and
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modelling, as few modelling tools are currently available [299,313,314]. ISCO was modelled
using the computer code ISCO3D, which was adapted to simulate the oxidation of chlo-
rinated hydrocarbons by permanganate [296], MITSU3D, and modified MIN3P to mimic
the movement of permanganate in the 3D domain and under variable flux density [315];
DNAPL3D-RX simulated reactions between potassium permanganate and chlorinated
ethenes [316], CDISCO, and CORT3D, and was developed as a decision support tool for
permanganate oxidation planning [297,299,317].

2.9. In Situ Chemical Reduction (ISCR)

Similar to ISCO, In Situ Chemical Reduction (ISCR) has been developed since the
1990s. This is a technique involving the targeted liquid injection or placement of solid and
chemically reducing reagents in the path of the contaminant plume or near the contaminant
source. By adding ISCR reagents to the subsurface environment, a sequence of different
processes can create very strong (e.g., Eh < −550 mV) reducing conditions that stimulate
the reduction of contaminant concentrations of interest to a desired level [318]. In general,
the process is equivalent to In Situ Chemical Oxidation (ISCO), although this method has
only been applied to the treatment of contaminant plumes, particularly through the use
of permeable reactive barriers [319–321]. Injections upstream of the contaminant source
have also been developed in the last decade [322]. Today, three types of natural and
abiotic reducing agents are most commonly studied and used: minerals derived from a
reducing form of iron [323–325], minerals that are composed of a reducing form of iron and
sulphur [326,327], and molecules derived from organic material, quinones, or self-made
soybean oil emulsion [328,329].

2.10. Air Sparging

Air sparging is an innovative and successful remediation technique that uses physical
stripping (volatilisation) to remove volatile organic compounds (VOCs) and promote
aerobic biodegradation in groundwater and soil by pumping a gas, usually air, into an
area below the water table via injection wells [330–332]. The process of volatilisation is
intensified by diffusion and mixing with aerated water [333,334]. The use of air sparging
has grown rapidly since its testing in the mid-1990s under the auspices of the U.S. Air Force
Research Laboratory, Airbase and Environmental Technology Division, and Tyndall AFB.
These entities funded a project that encompassed both laboratory and field testing to refine
the concept of air sparging [335].

Since its introduction, it has been the most widely used method for hydrocarbon
contaminated sites, and is still popular today. However, there are still unresolved issues
that pose challenges and affect performance, such as the accurate distribution of air in the
target treatment zone and the relationship between the size of the contaminant source and
air distribution, as well as reducing the risk associated with working with compressed air,
which can have serious consequences if not handled properly. Normally, macro-bubbles
are used for air purification, but the use of micro- and nano-bubbles (MNB) opens a new
chapter in improving the effectiveness of air purification and leads to higher concentrations
of dissolved oxygen [336,337]. Incorporating short pulses of high air pressure also improves
the overall treatment by increasing the zone of influence and air permeability [338]. A
number of mathematical models can be found in the literature that simulate the transport
of air and pollutants by air sparging [339–345].

2.11. Bioslurping

Bioslurping is a combination of two in situ remediation processes: bioventing, and
the recovery of free-floating products using vacuum pumps. It enables the removal of
contaminants from capillary zones, vadose zones, and groundwater by promoting aerobic
bioremediation [346,347]. It is a good method to remove both volatile organic compounds
from the vadose zone and light non-aqueous phase liquids (LNAPLs), which are insoluble
in water and float on the water table [348,349]. The system is composed of one or more small
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diameter boreholes, a slurp pipe, and a vacuum pump. It should only be installed where
the contaminants are close to the surface, at a maximum depth of 7 m, as the vacuum pump
is inefficient in sucking up LNAPLs at greater depths. Bioslurping is also not recommended
for the treatment of soils with low permeability [350].

2.12. Capping/Isolation

In situ capping involves covering the contaminated soil volume with one or more
layers of sand, gravel, silt, or even geomembranes [351] to chemically or physically isolate
and immobilise the contaminants and eliminate the risk of their dispersion into the aquatic
environment [352]. If the cover does not fulfil the remediation objectives, certain additives
can be added to the cover material. These additives reduce water infiltration through the
cap, increase the sorption capacity, and improve the removal of contaminants. Reactive
components added between the layers include apatite [353], zeolites [354], organophilic
clays [355], and activated carbon [356], which also leads to improved stability [357]. Numer-
ical simulations of contaminant transport through confining materials have been carried out
since the 1980s [358–363]. These models consider both common processes of contaminant
transport, such as advection and dispersion, as well as less common processes such as
bioturbation, consolidation, or ion exchange.

3. Modelling

The fundamental equations governing flow and solute transport were pivotal for the
advancement of modelling tools [364]. However, accurately modelling the fate of solutes
presents significant challenges, as classical equations often fail to represent reality at the
field scale [365]. Factors such as variable water velocity, soil heterogeneity (including
double porosity), and variations in the transport equation arising from the predominance
of advection or hydrodynamic dispersion contribute to substantial uncertainty in the initial
deterministic solute models.

At this stage, the modelling of solute transport, particularly reactive transport, starts
to diverge from expectations and needs. One approach is to simplify the process to
make it more accessible for modelers and users. 1D screening models with intuitive
user interfaces have been developed based on highly simplified site conditions. These
tools have aided in comprehending the fundamental processes influencing hydrocarbon
transport. While they may not precisely replicate all contaminant concentrations, these
models offer practitioners a rough understanding of contamination extent and timing with
minimal computational effort.

In cases requiring more intricate models, modular 3D flow models with reaction
modules have been employed. These models offer greater accuracy in describing the plume,
and account for the variability of parameters affecting flow and reactivity across space and
time. Another method that effectively captures the sub-surface’s randomness distribution
is stochastic modelling. Initially, this approach was reserved for modelers with a profound
understanding of the mathematical intricacies of solute transport. However, it is now gaining
recognition for its high predictive accuracy. Between these approaches—simple 1D screening
tools, complex deterministic models, and stochastic models—there exists an opportunity
for hybrid models that leverage and integrate the best attributes of each approach.

3.1. Screening Models

A screening process can be broadly defined as a decision-making step to either proceed
with a comprehensive environmental assessment or to conclude with no further action [366].
During this initial screening phase, information regarding the contaminated site, sensitive
environmental receptors, presence and concentrations of hazardous pollutants, and their
potential migration pathways is gathered. When a detailed quantitative risk assessment
(DQRA) is warranted, modelling tools are often utilized to replicate the fate of contaminants
in media such as groundwater, as well as exposure parameters [367–369]. Hence, screening



Appl. Sci. 2024, 14, 3675 16 of 65

models should furnish a framework for a detailed description (including quantity and size)
of chemical sources in the environment and the probable migration pathways.

Screening models can take into account different processes that take place either in
the vadose or in the saturated zone. However, the potential user should be aware that
these tools are often based on a simplification of the local flow conditions and do not take
into account, for example, the heterogeneity of the soil. Most of the simple models use the
advection-dispersion equation (ADE1) and assume steady-state transport conditions [367].
Simplification of some processes and properties may be intentional and desirable, as models
used in the initial environmental assessment and regulatory process should not be overly
complicated [370,371]. Most screening models are analytical, so they do not require much
computational power and the calculations are usually fast. The small and well-structured
input data, embedded functions, and a very intuitive user interface ensure that these
models are easy to use and check.

The use of mathematical modelling provides the scientific basis for regulation and
policy and can support both early decisions on risk reduction and further remedial ac-
tion [119,370,372,373]. The utility and validation of some screening models are reviewed by
the Council for Regulatory of Environmental Modelling (CREM). In addition, the National
Research Council (NRC) established the Committee on Models in the Decision Process
in 2005 to address all scientific and technical issues related to the selection and use of
computational and statistical models in EPA’s decision-making processes.

Additional efforts to disseminate knowledge about environmental assessment models
and the behaviour of chemicals in the subsurface include initiatives such as the US EPA
Chemistry Dashboard. This platform offers data from numerous external databases and
predictive models. Another resource is SMaRT Search (EPA Science Models and Research
Tools), a searchable database of environmental modelling tools. Furthermore, the advance-
ment and utilization of environmental fate models have been promoted in recent decades
through collaborative efforts between model developers and users in working groups, as
well as through the organization of workshops and knowledge-exchange platforms.

In summary, the simple screening tools are used for a number of listed reasons:

• Limited data requirements that do not compromise the accuracy of the mathematical
representation. Screening models require little data per se, and the representation
of even large systems is accurate in simple models, as the statistical relationships
required to assess uncertainty can often be expressed more realistically at the aggregate
level [374].

• Lower implementation costs. Simpler models are more cost-effective in terms of time
and resources [375].

• Computational simplicity. Simplicity is favoured by some practitioners and decision
makers who need an approximate time frame for remediation and the mass to be
relocated. Screening models are parsimonious, i.e., these models achieve the expected
level of explanation or prediction with as few parameters as possible [376].

• Transparency makes it easy to understand the relationships between the parameters
because the assumptions are made from the outset and are encapsulated in a few
mathematical formulae rather than buried in the complex computer codes. This rule
can lead to the development of simple and effective strategies [377].

• The instructive nature of these tools. The simple and intuitive interface, the technical
support, the visualisation, and the availability of manuals make them the first choice
for beginners [378].

• The ease of development and modification, advances in understanding the mecha-
nisms of mass transfer, and access to open source codes are leading these modelling
tools to be created and shared with potential users [76,379].

• Screening models are excellent for minimising risk and are favoured by practitioners
and stakeholders. Involving these two groups in the risk mitigation process can lead
to better feedback. In addition, these models are less likely to produce catastrophic
errors and can serve as an early warning system [380].
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The routine use of screening tools in remediating contaminated sites may not foster
innovation. Moreover, the fragmented information and limited overviews of various
models highlight the urgent need for a detailed analysis of existing contaminant transport
screening models. Such an analysis would aid future users in making informed choices and
identifying areas for further development by model developers. The selection of a screening
tool depends on various factors including availability, constraints, and input data. Figure 7
provides a simple flowchart to assist in making an optimal choice, considering factors such
as in situ treatment or natural attenuation, model characteristics, and recent applications.
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Model Dimension Flow Transport Biodegradation Kinetics SorptionCost 
BioBalance 

Toolkit  
1D flow Vad, S, 

S-S 
3D dispersion +(AN) F-O + Free 

BIOCHLOR 1D flow, 2D transport S, S-S 1D advection, 3D 
dispersion 

+ (AN) F-O + Free 

BIOSCREEN 1D flow, 2D transport S, S-S 1D advection, 3D 
dispersion 

+ (AN, AE) F-O, I + Free 

CapSim 1D flow  S, S-S, 
T 

1D transport + F-O + Free 

CDISCO 1D transport S, S-S, 1D transport, - F-O + Free 

Figure 7. The simple flow chart on screening tools, their features, available support, and recent novel
applications.

Below are the most commonly used screening tools for modelling the distribution and
removal of hydrocarbons in variable saturated media. These solutions are briefly described
to avoid copying their manuals. Their properties are listed in Table 1. The limitations, as
well as input and output data for the models, can be found in the Supplementary Materials
(Tables S2 and S3).
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Table 1. Screening tools and modelled processes.

Model Dimension Flow Transport Biodegradation Kinetics Sorption Cost

BioBalance
Toolkit 1D flow Vad, S, S-S 3D dispersion +(AN) F-O + Free

BIOCHLOR 1D flow, 2D
transport S, S-S 1D advection, 3D

dispersion + (AN) F-O + Free

BIOSCREEN 1D flow, 2D
transport S, S-S 1D advection, 3D

dispersion + (AN, AE) F-O, I + Free

CapSim 1D flow S, S-S, T 1D transport + F-O + Free

CDISCO 1D transport S, S-S, 1D transport, - F-O + Free

HSSM

1D flow, 1D
transport in

vadose zone, 2D
transport in

saturated zone

Vad, S, S-S, T
1D transport in

Vad. zone, and 2D
in saturated zone

- - - Free

NAS 1D flow, combined
transport S, S-S, T 2D analytical 3D

numerical + (AN, AE) F-O + Free

REMChlor 1D flow, 2D
transport S, S-S 1D advection, 3D

dispersion + (AN, AE) F-O + Free

REMFuel 1D flow, 2D
transport S, S-S 1D advection, 3D

dispersion + (AN, AE) Zero-O; F-O,
M + Free

RT1D 1D flow, 1D
transport S, S-S 1D transport + (AN, AE)

F-O, M, or
other

user-defined
+ Free

SourceDK 1D S, S-S 1D advection and
dispersion + F-O + Free

Vad—vadose zone, S—saturated zone, S-S—steady state condition, T—transient condition, AN—anaerobic biodegra-
dation, AE—Aerobic biodegradation, F-O—first order, I—instantaneous, M—Monod, M—Michelis–Menten.

3.1.1. BioBalance Tool Kit

The Biobalance Toolkit is designed as a user-friendly Excel spreadsheet, incorporating
a series of analytical solutions and routines implemented through Visual Basic code. It
facilitates the calculation of electron donor and acceptor mass balances in chlorinated
solvent plumes emanating from the source [381]. For more detailed information on this
model, refer to the article by Kamath et al. [382].

3.1.2. BIOCHLOR

This tool operates within the environment of a Microsoft Excel spreadsheet. It utilizes
calculations derived from Domenico’s analytical solvent transport model (equation) to
simulate various processes including 1D advection, 3D dispersion, linear adsorption,
and biotransformation through reductive de-chlorination, the primary biotransformation
process observed at most chlorinated solvent sites [88,383].

BIOCHLOR can be successfully and reliably applied to sites for which general as-
sumptions apply (e.g., steady groundwater flow, a vertical, planar source, and first-order
decay). Examples of its application can be found in the work of Clement et al. [384] and
Kuchovsky and Sracek [385]. The recently developed BIOCHLOR-ISO is an add-in to
BIOCHLOR. This tool is based on an analytical solution, and is able to reproduce both
the natural attenuation processes and the isotope fractionation that occurs in biological
radiation [76]. BIOCHLOR-ISO is a dual isotope approach, which means that carbon and
chlorine isotopes are included in the calculations [386].



Appl. Sci. 2024, 14, 3675 19 of 65

3.1.3. BIOSCREEN

Similar to the tool mentioned above, BIOSCREEN is designed as a user-friendly Mi-
crosoft Excel spreadsheet. Based on Domenico’s analytical model (equation), it can simulate
aerobic and anaerobic reactions and processes along the flow path. This tool can simulate
natural attenuation processes with three options: transport without decay, first-order de-
cay, and solute transport with immediate biodegradation and multiple soluble electron
acceptors [86]. Examples of its use can be found in the work of Khan and Husain [387] and
Akins et al. [388]. An improved version of BIOSCREEN-AT, based on the exact analytical
solution for reactive transport from a point source in three dimensions, is also available as
an MS EXCEL-based spreadsheet [389]. This well-known and user-friendly latest version
of BIOSCREEN has been extended to allow the analysis of two isotopes (e.g., 13C and 2H)
in each compound. The dual isotope approach is sensitive to reaction mechanisms, and
allows for the prediction of isotope ratios in groundwater as a function of time and space.
This provides the user of BIOSCREEN-AT-ISO with information on the degradation and/or
sorption of contaminants in the aquifer [379].

3.1.4. CapSim

CapSim was developed entirely in the Python programming language [390], utilizing
additional libraries such as NumPy, SciPy, and Matplotlib for visualization purposes. It
is a multi-layered 1D model designed to simulate processes occurring in heterogeneous
soil materials during in situ capping. CapSim provides users with the flexibility to modify
soil properties and layer thickness. Moreover, it encompasses common processes in porous
environments including advection, diffusion, dispersion, sorption, and reaction. Addition-
ally, CapSim enables more intricate simulations such as bioturbation, deposition, or water
exchange [360].

3.1.5. CDISCO

CDISCO is a spreadsheet-based model that can be very helpful in the development of
efficient and cost-effective in situ chemical oxidation (ISCO) remediation using perman-
ganate [299,317]. In addition, one of the functions of CDISCO is an economic analysis
that can help in estimating the preliminary cost of injection performance. This tool was
extensively tested in the Massachusetts Military Reserve case study [391].

3.1.6. HSSM

The HSSM model was specifically crafted to simulate the transport of LNAPL through
homogeneous mediums [392]. It is important to interpret the simulation results with a
degree of caution, considering the model relies on numerous site-specific assumptions. The
model encompasses the 1D vertical flow of LNAPL in the vadose zone, its movement to
the water table, dispersion at the water surface, and the 2D vertically averaged flow of
LNAPL through the aquifer towards various uptake points, such as in the groundwater.
Although the model is available for download, it is no longer updated or supported.
Despite its lack of ongoing technical support and aging, this model continues to be utilized
and even customized to meet specific user needs. For instance, a modified version of
HSSM has been adapted to accommodate the rectangular shape of a leak and simulate the
infiltration and redistribution of NAPL from leaking tankers [393]. Present applications
of this model include its integration with other models like MT3DMS [394], predicting
pollutant concentration in surface waters [395], and tracking pollutants like benzene leaking
from pipelines [396].

3.1.7. NAS

The Natural Attenuation Software (NAS) serves as a screening tool developed to
assess the effectiveness of various remediation methods, complemented by supervised
natural attenuation [397]. NAS enables the estimation of remediation timeframes for
monitored natural attenuation (MNA) [398], during which pollutant levels decrease to
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acceptable levels, processes addressed by NAS encompass sorption, NAPL dissolution,
and biodegradation. The efficacy of NAS has been validated through successful testing at
multiple sites, including NAES Lakehurst, NJ, USA (natural source degradation), Seneca
Army Depot, NY, USA (source dredging), and NSB Kings Bay, GA, USA (chemical oxidation
of the source zone) [399–402].

3.1.8. REMChlor

REMChlor is designed to simulate the transient effects of remediating contamination
sources and plumes [403,404]. This model utilizes a power function relationship between
source mass and source depletion, providing users with the flexibility to simulate partial
source remediation. Users can choose to simulate three processes: complete or partial
plume remediation, natural attenuation, and source decay. Applications of REMChlor can
be found in studies by Tyre [405] and Henderson et al. [406]. Although this tool remains
available to users, it is no longer updated or supported. A more recent development is
the incorporation of diffusion through the matrix into this analytical tool, resulting in
the REMChlor-MD model, which was employed for the attenuation of perfluoro-octane
sulfonate. The model effectively replicated field data for concentration, mass release, and
total mass. Furthermore, when used to analyse long-term transient effects over 40 years of
groundwater transport, the REMChlor-MD model demonstrated that the majority of the
measured contaminant mass leaving the source areas accumulates in downgradient zones
with low permeability [407].

3.1.9. REMFuel

REMFuel is an analytical solution designed to simulate the remediation of hydrocarbon
sources and plumes under dynamic transient conditions. Similar to REMChlor, REMFuel
allows users to estimate the timeframe for remediation, specifically the time required
to reach a target concentration at a site, while considering various methods of source
removal. The release of pollutants is calculated based on a power function for multiple fuel
constituents. These pollutants can be removed at any time post-release through natural
attenuation and/or enhanced degradation. The model accommodates concentrations
within the plume with up to three degradation zones and three degradation times, each
with different degradation rates [408]. While this tool remains accessible to users, it is no
longer updated or supported.

3.1.10. RT1D

RT1D is a comprehensive solution developed in Visual Basic, designed to operate
directly within an Excel spreadsheet. It excels in simulating biochemical and geochemi-
cal reactive transport scenarios, making it particularly well suited for laboratory experi-
ments [409]. Notably, RT1D stands out for its capability to tackle advanced biogeochemical
challenges, including rate-limited sorption, bioaugmentation, microbial transport, denitrifi-
cation, and sequential batch reactor dynamics. This model’s sophistication and versatility
set it apart from other screening tools.

3.1.11. SourceDK

The Microsoft Excel-based software SourceDK [410] offers three distinct methods for
estimating pollutant mass within the source zone: the simple volume concentration calcula-
tion, detailed volume concentration calculation, and NAPL relation method. The simple
volume concentration method relies on the average soil concentration within the saturated
source zone. However, this approach may underestimate the total contamination mass,
since it does not consider the mass of residual NAPL and dissolved phase. The accuracy of
the soil concentration estimation technique directly impacts the final results. Conversely,
the detailed volumetric concentration calculation utilizes actual average groundwater and
soil concentration data in each phase (residual NAPL, dissolved mass based on the extent
of the source zone, and adsorbed mass in the downgradient). The estimation method based
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on NAPL relationships incorporates the residual NAPL mass, which is generally acceptable
as it represents the majority of the contaminant mass in the source zone.

3.2. Stochastic Models

Stochastic hydrogeology operates on the concept of probability, which is inherently
subjective and reflects the level of understanding or confidence in the actual state of affairs
within a system that exhibits randomness [411–414]. Hence, stochastic hydrogeological
models must address the probable distribution of input parameters and their associated
uncertainties: theoretical uncertainties arising from limited knowledge about the processes
impacting model outcomes; measurement uncertainties stemming from instrument ac-
curacy; and uncertainties attributed to spatial and temporal non-uniformity or missing
data [415,416].

The use of stochastic processes to visualise hydrological and subsurface processes
is not a new concept. The first publications and reports on this topic appeared in the
late 1960s and early 1970s [417–424]. In the early days of stochastic subsurface research,
many efforts were made to realise mathematical equations for effective parameters such
as effective conductivity and macrodispersivity in an elegant way, under the premise that
these parameters could be used in large-scale flow and transport models.

Matheron [419], for instance, is renowned for developing the theory of regionalized
variables, which elucidates the statistical relationships among sample points by considering
not only their values, but also their spatial arrangement. Consequently, observed values
are outcomes governed by specific probability density functions. The framework of linear
geostatistics has served as a foundational framework for many geostatisticians and mod-
elers [425,426]. Beran [420] and Todorovic [422] accurately forecasted and delineated the
mathematical modelling of solute transport at the molecular level. Chow and Prasad [423]
asserted that natural hydrological systems, such as watersheds, and hydrological processes
inherently exhibit stochastic behaviour, implying that their dynamics vary over time in
accordance with probabilistic occurrences. The modelling of stochastic processes at the
watershed scale has been the focus of numerous investigations [427–429].

In recent decades, stochastic studies have addressed various topics due to environ-
mental concerns and interest in subsurface contamination: the modelling of structures,
unsaturated soil properties, the spatial propagation of fall heights and velocities, and the
transport of reactive solutes [430]. It should be emphasized that, thanks to stochastic
subsurface hydrology, many processes have been better understood, the most important
mechanisms have been identified, and a new paradigm—heterogeneity—has been intro-
duced in subsurface transport studies.

The theoretical progress and a deepening of the understanding of subsurface pro-
cesses as stochastic has been greatly aided by the dynamic development of computers
and programming, access to high-resolution data, and the performance of large-scale
experiments [154,411,431–433].

Despite their extensive development history, a discrepancy persists between stochastic
approaches to subsurface hydrology and practical application [434]. Stochastic models
appear to be less favoured compared to the more prevalent deterministic models, possibly
due to their inherently complex mathematical nature or, as some researchers suggest, an
aura of esotericism and abstraction [415]. The reluctance to embrace stochastic methods
more widely in routine site assessments may also stem from the increased economic burden
associated with stochastic analyses and a shortage of professionals equipped with the
requisite training and qualifications [435]. For instance, until 2016, university courses
addressing stochastic methods in hydrogeology were notably absent [414].

Some problems related to the economic feasibility of stochastic methods have been
solved by incorporating new innovative field techniques that allow for the tracking of
changes in soil conductivity and the collection of large data sets. Meanwhile, the devel-
opment of open-source stochastic tools, the addition of stochastic modules to common
modelling tools, information platforms, webinars, and general advances in computer lan-
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guages and machine learning have facilitated the training and education of experts in
stochastic modelling methods.

The shortcomings that may hinder the broader application of stochastic models in
reactive transport were extensively outlined in the work of Cirpka and Valocchi [436].
Among these, inadequate consideration of the processes and properties governing system
behaviour stands out as a significant challenge. For instance, stochastic modelling of the
plume tends to underestimate the mass in the tail by focusing solely on the arrival of
contaminant peaks. This approach may seem unrealistic to many remediation practitioners
and experts who are aware that pollutants are released over extended periods, resulting
in the formation of elongated plumes. Moreover, models focusing on local pollution
should also account for mixing and its dependence on small-scale heterogeneity [437].
However, incorporating this process into stochastic models poses a notable mathematical
challenge. Additionally, stochastic tools, much like screening models, rely on simplified
flow conditions, such as a uniform and steady mean flow and permeability characterized by
a multi-Gaussian distribution with low variance. Consequently, this approach appears to
fall short in accurately describing the intricate hydrogeological formations and modelling
the long-term fate of pollutants.

But from another perspective, the advantages of stochastic approaches are the following:

• Dealing with large and small data sets. For large data sets, the law of large numbers
and the central limit theorem state that a large number of samples converge to the
expected value/mean and that this sample mean tends to the standard normal distri-
bution. This justifies the use of the Gaussian normal distribution and the mean value
in the stochastic models. Depending on the specific modelling approach, the type of
data, and the research question, stochastic models can be applied to small data sets
when the researcher is faced with the greatest uncertainty [438–441].

• Dealing with multiple uncertainties at different levels requires a complex approach and
the involvement of experts from the fields of statistics, computer science, and domain-
specific knowledge. This is an emerging and challenging field of research [415,442,443].

• The probabilistic approach offers a range of equally probable solutions instead of a
single (approximate) solution, and can provide better information for risk managers
and policy makers [428,444–446].

• Dealing with the plume is possible, but can be more difficult to calculate using travel
time and breakthrough curves in a given plane at a given distance from the source.
However, with increasing distance, the travel time moments become less sensitive to
the variability of the parameters responsible for transport, and can be expressed by
simple statistical moments such as mean, variance, and correlation function [447–449].

• Rapid progress is being made through the general development of computational
methods, and this is likely to become increasingly important, supported by the recog-
nition of population inference from big data and data validation [450,451].

• Simplifications are justified in stochastic models, as local heterogeneities have only
limited long-range effects. Furthermore, simplifications can make the simulations
more manageable and still capture the essential behaviour of the system [452–454].

• Conceptualisation: Since many stochastic models have a solid mathematical basis, it
is common to start modelling on the basis of detailed mathematical and theoretical
knowledge and then transfer the results of the conceptual work into one or more
mathematical models. For deterministic models with GUI, it is easier to forget the
initial modelling phase [455].

3.2.1. ART3D

ART3D v. 2.0 is an independent FORTRAN code that operates using straightforward
text files and has the capability to address numerous coupled reactive transport equations.
This versatile software offers three distinct modes of operation: forward mode, enabling the
prediction of concentrations within a plume; backward mode, facilitating the estimation of
parameter data from monitoring wells; and stochastic mode, allowing for the evaluation
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of the probability of exceedances at specified locations within the plume [456,457]. The
code incorporates modules designed for automatic parameter estimation and stochastic
analysis, employing Monte Carlo methods. Additionally, the output file generated by
ART3D can be converted into a 3D image for visualization using compatible software
tools. The ART3D code encompasses a comprehensive set of equations, including those
representing one-dimensional advection, three-dimensional dispersion, linear sorption,
first-order biodegradation, and multiple chemical reactions [458]. Optimization within
ART3D is facilitated through the utilization of the PORT library, originally developed
by David M. Gay at Bell Laboratories [459]. The parameters subjected to optimization
include the retardation factor, percolation rate, dispersion coefficients, decay constants,
and concentrations in the source zone. In the Monte Carlo analysis, these parameters
can be randomized, with options to specify either a uniform distribution or a normal
distribution for each randomized parameter. The ART3D tool underwent testing at a
Superfund site in Louisiana, where it was also compared to the results obtained from
modelling with BIOCHLOR. This comparison allowed for a meaningful assessment of
deterministic and probabilistic approaches [460]. During the testing phase, ART3D was
executed over a simulation period spanning several hundred years, with a time step of
25 years. Both simulations with and without the natural attenuation option were conducted.
The model provided insights into the declining concentrations of tetrachloroethene (PCE),
trichloroethylene (TCE), dichloroethane (DCE), and vinyl chloride (VC). Notably, vinyl
chloride emerged as the most problematic substance in the analysed area, presenting a
contamination risk to the soil for the next 300 years. ART3D is integrated into the GMS
software package and can be downloaded along with the source code as a standalone model.

3.2.2. Factorial-Design-Based Stochastic Approach

The Factorial Design-Based Stochastic Modeling System (FSMS) integrates a mass
transfer model, factorial analysis, and Monte Carlo simulations to address single and
multiple uncertainties within the mass transfer model. This system employs a factorial
approach, which can be viewed as a specialized form of sensitivity analysis, allowing for
the simultaneous assessment of multiple parameters’ effects on the outcome [461]. In a
study by Qin et al. [462], this approach was applied to a laboratory experiment involving a
tank reactor filled with heterogeneous materials (clay, sand, and arable soil) contaminated
with benzene. Four parameters were identified as uncertain: the mean and variance
of permeability and porosity. Subsequently, the Monte Carlo method was employed to
simulate the stochastic processes associated with groundwater flow and benzene transport
within the heterogeneous medium. A physical model was created on a pilot scale to
validate the stochastic method. It was found that the uncertainty of the input parameters,
especially the mean porosity, has an influence on the outcome of the model. The results
showed that simple statistics such as mean, standard deviation, and percentiles should be
considered when analysing the risk of oil spills. Furthermore, factorial design and Monte
Carlo simulations are integral parts of the hybrid stochastic design for modelling NAPL
contaminated aquifers [463]. This approach is based on the deterministic numerical 3D
model BioF&T, and uses stochastic methods for parameterisation.

3.2.3. Fuzzy Stochastic Approach

A fuzzy stochastic approach offers a method to evaluate the risks associated with
BTEX contamination of groundwater under various uncertainties. Li et al. [464] utilized
a stochastic fuzzy approach, employing a modified fuzzy vertex method alongside a
Monte Carlo simulation to forecast petroleum contamination in the subsurface. Their
study, conducted using a 3D model of a petroleum-contaminated aquifer, underscored
the significance of integrating uncertainties in critical hydrogeological parameters like
permeability and porosity into the calculations to accurately depict the contamination extent.
Maqsood [465] introduced this approach to quantify the relationships among uncertain
hydrogeological parameters. Similarly, Zhang and Huang [466] adapted an integrated
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3D multiphase and multicomponent model, UTCHEM, in conjunction with an interval
fuzzy modelling system for the subsurface (IIFMS) to project benzene concentrations over
a 20-year simulation period, incorporating uncertainties in variables such as porosity,
longitudinal dispersivity, and permeability.

3.2.4. HPS-PROBAN

The HPS-PROBAN approach combines the semi-analytical transport model (Hori-
zontal Source Model) with a probability analysis program—PROBAN. The HPS model
was proposed by Galya [467]. It is a semi-analytical 3D model that solves the transport
equations of advection and dispersion, and can simulate first-order decay and sorption. The
numerical output of the model proposed by Galya is the concentration distribution at each
point down gradient from the contamination source. PROBAN [468] is a software package
developed to perform the complex probability analyses. The link between PROBAN and
HPS is established via user-defined FORTRAN 77 subroutines. This approach was vali-
dated using data from the Environmental Protection Agency (EPA) [469] and findings from
a review in the work of Newell et al. [470]. In this case study, the probability of not reaching
target concentrations of o-xylene downstream of the spill was estimated. The random
variables included the aquifer, the source, and the chemical parameters. The results, partic-
ularly the probability of not reaching the target contaminant concentration, were largely
related to the velocity, length of the source, and the kinetic rate of biodegradation. The final
results were compared with Monte Carlo simulations, and showed good agreement with
relatively low computational effort.

3.2.5. Null Space Monte Carlo

In the realm of numerical groundwater modelling, outcomes are inherently approxi-
mate due to the inherent uncertainties. However, techniques exist to complement deter-
ministic groundwater models by identifying and assessing these uncertainties. One such
method is the Null Space Monte Carlo method (NSMC), which leverages the Monte Carlo
approach and calibration-constrained parameters to compute parameter fields for model
validation [471]. NSMC implementation can be facilitated through the PEST code [472],
which is integrated into the GMS software. Consequently, users typically start by acquiring
the deterministic groundwater model (e.g., MODFLOW) alongside flow-path delineation
(particle tracking method). Subsequently, they employ PEST for parameter calibration and
uncertainty evaluation. The method has been effectively used to identify areas potentially
contaminated by chlorinated hydrocarbons, and to determine the most likely sources of
contamination in the vicinity of water stations in Milan [473].

3.2.6. LaSAR-PHREEQC Approach

LaSAR (Lagrangian Stochastic Advection Reaction) is an analytical stochastic approach
for modelling coupled transport and reaction processes in heterogeneous flow media [474,475].
According to the LaSAR approach, transport takes place between the injection layer, in
which the solute (pollutant) enters the system, and the control layer. Several assumptions
must be made along the flow path. The solute is injected uniformly, transport between the
two layers occurs along single and independent flow paths (streamlines) that do not cross
each other, water flow is assumed to be steady and unidirectional, advection is the domi-
nant transport mechanism, and diffusion and dispersion in the pore space are generally
neglected [431]. The heterogeneity of the soil means that moving particles have different
probabilities of reaching the control plane. The variability of the flow is therefore reflected
in the differences in travelling time along the individual streamlines, while the statistics
of the residence time can be represented by a PDF (probability density function), which
can follow one of the usual statistical distributions (e.g., lognormal or bimodal). Geochem-
ical and biochemical processes take place along the streamlines, e.g., the dissolution or
precipitation of minerals, the sorption or biodegradation of organic pollutants, or even
radioactive decay. These reactions are simulated using the PHREEQC code [476] and the
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one-dimensional transport option. This approach has been tested in environmental studies,
including the modelling of acid mine drainage [477] and the transport and biodegradation
of hydrocarbons [478].

3.2.7. PREMChlor

PREMChlor is a probabilistic model that accounts for uncertainties in all key param-
eters required to simulate the remediation of chlorinated solvents. This tool can support
the optimal remediation strategy based on the results of source and plume treatment
scenarios. PREMChlor is the result of coupling the analytical model REMChlor with the
Monte Carlo modelling package GoldSim. All input parameters are considered stochastic
and are represented by probability density functions (PDFs). With PREMChlor, source
remediation is simulated as partial removal of a mass by dissolution, advection, and decay,
while plume remediation is modelled by time- and distance-dependent decay using the
first-order sequential decay chain [404]. The results of the model include concentrations,
mass release, cancer risk, and remediation costs. Although PREMChlor is a relatively
new tool, it has been successfully tested, with the results published in the papers of Liang
et al. [479,480]. The PREMChlor model was evaluated for its ability to predict the impact
of remediation on the TCE plume, taking into account uncertainties in seven key reactive
transport parameters: initial source mass and concentration, correlation between source
mass removal and concentration, source remediation effectiveness, groundwater velocity,
background plume degradation rate, and plume treatment effectiveness.

It requires the installation of the GoldSim player, which can also be downloaded free
of charge.

3.3. Machine Learning Paradigm

The machine learning paradigm is not inherently stochastic, but in many application
areas, it relies on stochastic methods that deal with well-known and classical statistical
problems, such as regression, classification, decision, clustering, etc. The difference is
not in the problem itself, but in the approach, i.e., analysing huge amounts of sometimes
complex and unstructured data and using a large number of algorithms and computational
resources [481–483].

Recently, the ease of data acquisition and storage forces scientists to face the paradox
of data abundance or the curse of dimensionality, i.e., the difficulty of finding a structure
when there are too many variables [484,485]. Machine learning (ML) seems to be the
perfect method for all ecological data mining problems, as it is able to find hidden patterns,
relationships, and correlations in large amounts of data [486–489]. Machine learning also
focuses on the development of algorithms and models that can learn from data and perform
predictive analyses [490–493]. The primary limitations or failure to meet expectations
in machine learning methods may result from poor data quality, e.g., missing values,
mislabelling, duplicates, and interpretability of results. The researcher must have basic
knowledge to explain the high or low accuracy of the model. The greatest challenge in
model-based interpretability arises when models characterised by high predictive accuracy
are so simple that they can be easily understood by modelers or reviewers [494,495].

Machine learning (ML) consists of two primary phases: the induction of the model,
which involves processing vast amounts of data in various forms (structured, unstructured,
semi-structured, metadata, or time series data), and the efficient representation of the
model and inference. Stochasticity can manifest in the first phase during data generation,
augmentation, or resampling [496,497]. The behaviour and performance of numerous ma-
chine learning algorithms are characterized as stochastic, as many optimization algorithms
operate in stochastic domains, while others rely on randomness or probabilistic decisions.

Two processes should be considered in the context of stochastic methods and machine
learning: optimization, and generalization. Many optimization algorithms must operate in
stochastic domains, while others rely on randomness or probabilistic decisions. Although
optimization has a complex computational background, its function is simple and practical:
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to enhance functionality, and address real-world problems. Furthermore, optimization
and machine learning can be examined from two perspectives: first, the contribution of
optimization to enhancing the performance of machine learning [498–501]; and second, the
optimization of processes facilitated by the outcomes of machine learning algorithms [502,503].
Another crucial aspect of machine learning is generalization: during generalization, we
assume that the algorithm has identified the pattern and captured the regularity.

A common algorithm employed in optimization is stochastic gradient descent (SGD),
where the gradient of a loss function is computed repeatedly and randomly for a single
training sample or for mini-batches of samples, and the model parameters are updated
accordingly [501,504]. Some other machine learning models, such as Gaussian Naive Bayes,
Gaussian Mixture Models, and Bayesian Networks, are probabilistic and utilize stochastic
principles to represent data and make predictions. Gaussian Naive Bayes, for instance, is
among the best-performing probabilistic classifiers based on Bayes’ theorem, and tends
to perform very well even under unrealistic assumptions, particularly on small training
datasets [505]. In summary, stochastic machine learning models find applications in pattern
recognition, data mining, image analysis, and risk analysis [506–508].

Environmental studies, particularly those addressing the fate of pollutants, often
rely on time-series data to make predictions based on observed trends. It is widely ac-
knowledged among machine learning practitioners that accurate predictions derived from
time-series data are immensely valuable. The reliability of these predictions hinges on
factors such as the quality and size of the time series dataset, as well as the time horizon
for which the prediction is needed; typically, short-term predictions entail lower uncer-
tainties [509]. Deep learning techniques and time series analysis methods encompass
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long
Short-Term Memory (LSTM) models [510–512].

In recent years, machine learning has also been adapted for water science studies, with
many publications focusing on the applicability of algorithms for modelling water quality
in different environments [513–520] and water treatment [521–526]. Machine learning
methods have also been successfully applied in the identification, tracking, and removal
of pollutants [527–533]. In the context of the numerous studies on water quality, machine
learning can predict the amount and fate of pollutants, taking into account complex pro-
cesses and interactions between different control parameters. Particular attention is paid
to organic pollutants and the assessment of contaminated sites, including through the
application of image recognition technology [533–539].

Sprocati and Rolle [534] focused on the electrokinetically assisted bioremediation
(EK-Bio) of organic pollutants (chlorinated ethenes) in porous media with low permeability.
They simulated the complex processes in a simplified horizontal 2D domain between a
cathode-anode doublet. Reactive transport was simulated using the code NP-Phreeqc-
EK [540], which combines the flow and transport software COMSOL Multiphysics with the
geochemical code PHREEQCRM, which performs seven kinetically controlled reactions
and six equilibrium reaction calculations. The surrogate model approach, a neural network
utilising a stacked MLP (multilayer perceptron), was then adapted to investigate the
response of the system for different input combinations.

Xia et al. [538] used Long Short-Term Memory (LSTM) and Extreme Gradient Boost-
ing (XGBoost) to predict DCE degradation at the contaminated site. The variables from
3 months of data were used for training and prediction of DCE concentrations. This means
that the input variables for the models were the data from one sampling process, and the
prediction was made for the next sampling process. The performance of the model was
evaluated using three common assessment measures: mean absolute error (MAE), mean
absolute percentage error (MAPE), and root mean square error (RMSE). XGBoost was more
accurate at high DCE concentrations, and reproduced DCE variations better.

Chen et al. [539] combined numerical models such as WOFOST, HYDRUS, and MOD-
FLOW with a machine learning model. In this application example, the saturated zone flow
model MODFLOW is replaced by a neural network with radial basis function, which re-
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duces the computational cost, but does not reduce the accuracy. The paradigm is validated
using an eco-hydrological model that couples WOFOST and an unsaturated flow model
HYDRUS. This solution requires real data (meteorological, soil, and crop data), and the
observed data can also be used as a training set for an RBF neural network. This paradigm
could later be further developed by replacing two physically based numerical methods, i.e.,
WOFOST and HYDRUS, with machine learning models.

3.4. Deterministic Models

Deterministic approaches to the flow and transport of solutes assume that the parame-
ters responsible for the movement of water and solutes are known and identifiable. If the
parameters are known, their spatial distribution can be outlined and their heterogeneity
can be captured. This is a classical extrapolation method that assumes that the hetero-
geneity can be deterministically captured by interpreting all field data. The main work
that precedes deterministic modelling is therefore the identification of the parameters and
the collection of all information about them from available sources and from experts in
the field.

The collaboration of many experts from different disciplines and the approach that
everything can be defined give the nice aspects of multidisciplinarity and certainty. And
it is only natural that people demand certainty. For example, probability predictions of
rainfall were received with scepticism because people wanted to know if it was going to
rain, not how likely it was to rain [541]. This could be one explanation for the widespread
use of deterministic approaches.

Our society and science in general rely on deterministic technical systems. For example,
the emails we receive are the emails that were sent, the files on our computers are the
files we put there, and we can be sure it is nothing else. This is because we expect correct
behaviour for a certain input pattern [542,543]. This certainty can be a blessing in a highly
mechanised world where we rely on accurate responses. Surprisingly, determinism even
exists in quantum physics [544] and in AI algorithms [545,546].

The deterministic paradigm of ordinary differential equations (ODEs) is undoubtedly
highly valuable, as it adheres to the law of mass action and serves as a mathematical foun-
dation for solute transport models. Employing a deterministic solution offers numerous
benefits, foremost among them predictability and repeatability [543]. Advocates of deter-
ministic models cite their user-friendly nature, richness, and the availability of graphical
user interfaces, technical support, and detailed manuals as key advantages. Moreover,
deterministic models are generally easier to comprehend and interpret, they boast efficiency,
and have a proven track record in numerous environmental studies. Notably, the relation-
ship between input and output parameters does not require governing equations [547]. The
visualisation of results, often in the form of animations—a common feature in deterministic
software—can also be more engaging for decision-makers and stakeholders compared to
outcomes of probabilistic representations [548].

The use of deterministic models is not always possible or advisable, especially when
unknown or unknowable parameters are crucial for the model [542]. Indeed, the main
disadvantage of determinism is that it cannot deal with uncertainty, and additive uncer-
tainty is analysed using probabilistic methods. Many deterministic codes are equipped
with intuitive user interfaces, and the untrained modeler starts with the construction of
the numerical form rather than the assumptions of the conceptual model. Furthermore,
the mathematical core is hidden in the computer code, which is inaccessible or difficult to
access for the average user.

There is no strict and fast scheme for building an accurate deterministic solute trans-
port model. However, most should meet the following requirements and rules:

1. When collecting all available data, pay particular attention to the patterns of spa-
tial variability of the controlling parameters (e.g., hydraulic conductivity and/or
permeability) and the scarcity of the data, as this determines the complexity of the
model. It is also important to assess the representativeness of the available samples.
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High-quality input data play a key role in ensuring the accuracy and reliability of
predictions and effective decision-making [549–551].

2. Preprocessing, data may need to be pre-processed to ensure that the input is free of
missing values and anomalies before it is included in a model [496,552,553].

3. Conceptual design, any analytical or numerical modelling should start from a concept.
The conceptual model (or models) is based on the generalisation of the site-specific
conditions and the physico-chemical processes involved in solute transport. The main
problem of a deterministic approach arises precisely at this stage of modelling when
trying to represent reality, as it is well known that data rarely represent complete
phenomena and trends [554]. Conceptual uncertainties, for example, those related to
model structure or inappropriate simplifications, have been identified as one of the
main causes of uncertainty in deterministic modelling of fluxes and reactive solute
transport, and this problem is receiving increasing attention [555–558]. Ultimately,
much is left to the creativity and experience of the modeler. This dependence on
the human factor can be both a strength and a weakness of the model. Predictive
or fate models are prone to immeasurable conceptual errors because the future is
largely unknown and based on projections. However, predictive models can provide
feedback and data that was not previously known [559] and can subsequently be used
to create different (optimistic and pessimistic) scenarios [560]. In addition, predictive
models contribute to continuous learning and adaptation, as models can be updated
and improved over time as more data become available [561].

4. When selecting or developing one or more numerical models, it is difficult to give
guidelines due to the subjective nature of the conceptual model, but it should be
possible to put the concept into a solvable, usually numerical, form. Once the ex-
pert has an overview of the processes and the desired level of accuracy or, as the
modelers would say, model complexity, they need to decide which numerical tool
is best suited to their needs. Model complexity is again a term for which there is
no clear definition [562]. However, the study by Baartman et al. [563] agrees that
model complexity takes into account the number of explicitly included processes and
feedback loops. The size and completeness of the data set should also determine the
level of complexity. It is also important to adhere to the principle of model parsimony, i.e.,
reflecting variability but not leading to overfitting, which is often the case with complex
models. It is also recommended to start with a simple model and carefully increase the
complexity [564–566]. However, users must be aware that oversimplification can also
be a problem, as a very simple model can also have detrimental consequences for the
prediction of future system behaviour [567]. Furthermore, adapting the cross-checking
approach, i.e., constructing simple (surrogate, emulators) and complex models, could
support future decisions [567–572];

5. Discretisation, when choosing a numerical model, the user must consider the issue of
discretisation of the domain. Numerical deterministic models of reactive transport
must be discretised due to the principle of conservation of mass. For one-dimensional
models, this is comparable to dividing the domain into a chain of tank reactors.
There are two common methods of spatial discretisation: finite differences, and
finite elements. Unstructured geometry (finite element method) should be used
where the consideration of heterogeneity has the greatest impact on flow and mass
transfer, as it allows the user to adjust the resolution if necessary without having to
refine the entire model. However, the first choice for modelling reactive transport is
usually structured, as it is easier to implement biogeochemical processes in the model
and mass-conservative calculations are available [573]. In recent decades, advances
in computing power (more powerful CPUs) and new modelling approaches have
enabled the inclusion of more complex geometries for solute transport [573–578].
In any case, the quality or resolution of the mesh influences how fast the model
runs and how accurate it will be. Poor mesh quality leads to further errors in the
model [573,579,580]. To correct the discretisation of the model, the user should be
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able to meet certain quality criteria [581,582]. Furthermore, if the reactive transport
calculations include complex reactions such as precipitation, dissolution, oxidation,
etc., the model needs a very accurate temporal resolution, i.e., many time steps.

6. The calibration of the numerical model is based on the many model parameters that
control the processes that take place along the flow. The parameter set can be adjusted
to maximise the fit of the model to a set of experimental data [583]. Therefore, the focus
is often on the differences between observed and modelled values, i.e., the residuals.
However, calibration must also consider whether the assigned parameters are appro-
priate (an experienced modeler is a great advantage here). It is therefore important not
only to compare the model predictions with the observed data, but also to quantify
and explain the uncertainty associated with the model and the data, as calibration and
uncertainty analysis are closely linked, and no calibration results should be presented
without quantifying the predictive uncertainty of the model [584]. Freyberg [585],
for example, conducted an experiment with students who calibrated a groundwater
model by trial and error using a series of observed heads. It was found that models
with small residuals between simulated and observed data did not make better predic-
tions than models with larger residuals. This problem is of great importance for highly
parameterised models, as although they provide an excellent fit, they are also prone to
overfitting as the parameter estimation lags behind the noise of the observations [586].
Furthermore, the worst predictions were made by models where the hydraulic con-
ductivity was different in each cell of the model. Therefore, for groundwater flow
models, the accuracy of the prediction must be weighed against the complexity of
the model, especially the distribution of hydraulic conductivity/transmissivity [587].
The estimation of hydraulic conductivity is extremely important, as it is a key mod-
elling parameter that controls water movement and usually only a fraction of the
total investigated area is sampled [588]. The trial-and-error method is monotonous,
time-consuming, and also judgmental, as the modeler is responsible for finding an
acceptable level of agreement between simulated and observed data. To reduce the
time required for calibration and to make this process more systematic and transpar-
ent, additional numerical tools can be used [589–591]. Recently, several calibration
methods have been presented, including global optimisation methods [592], Bayesian-
based calibration methods using Gaussian process error models [593], and pilot point
calibration methods [594,595]. A promising alternative to the existing optimisation
tools included in the modelling software are algorithms written in modern scientific
languages such as R and Python, e.g., FloPy [596], ogs5py [597], RedModRPhree [598],
toughie [599], and r2ogs5 [600]. It should be emphasised that model calibration can
be even more challenging than model construction, as it requires an understanding of
phenomena beyond hydrogeology and relies on disciplines such as algebra, geostatis-
tics, geophysics and programming [472,601–603]. In addition to the choice of method,
another important aspect is the data used in the calibration. A number of studies have
concluded that calibration using observed hydraulic heads and surface water levels or
discharges may not be sufficient, and that to improve the quality of the model it may
be necessary to use a range of different data sources such as temperature, temporal
information, exchange fluxes, and concentrations [604–606]. Another question that
has been raised is whether steady state calibration is sufficient for predictive models
and their accuracy for long-term decision support when it is known that hydrogeo-
logical processes never occur in steady states. This question also involves a trade-off
between the time and labour required to run and calibrate complex transient models
and the benefits of such predictive analysis [588,607]. During the calibration process,
the modeler may fall into a non-uniqueness or equifinality trap, where different sets
of fitted parameters lead to the same results. In general, this phenomenon is due to
a lack of knowledge about the actual structure and the processes occurring in the
subsurface. Equifinality can also be caused by a larger number of parameters than
available observations or by correlations between parameters [586,608];
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7. Analysing uncertainties, together with calibration and uncertainty reduction, is crucial
for the accurate representation and prediction of systems. Some uncertainties can
be removed, such as epistemic uncertainty, which arises from missing or imperfect
knowledge [609–612]. Sources of uncertainty include: input data (from input data
and external forces on the system), technical (related to codes, software constraints,
etc.), structural (related to the conceptual model and simplification of the system),
parameters (related to parameter distribution, parameter estimation, and constraint
variables), prediction uncertainty, and calibration data uncertainty [613,614]. Uncer-
tainty can be reduced by adding additional data on current and historical system
behaviour (data assimilation, e.g., through high-resolution monitoring and hydro-
geophysical screening [615]), by comparing different parameterisation methods and
models, and by changing model resolution and other modelling measures based on
experience. Statistical methods dedicated to the broad field of uncertainty analy-
sis can be divided into six classes: Monte Carlo sampling, response surface-based
methods including polynomial chaos expansion and machine learning, multi-model
approaches, Bayesian statistics, multi-criteria analysis, and least-squares-based in-
verse modelling [614]. Methods successfully applied in water-related studies in-
clude generalised likelihood uncertainty estimation (GLUE) [616,617], differential
adaptive evolution (DREAM) [532,618], parameter estimation code (PEST) [619,620],
the Bayesian approach including total error analysis (BATEA) [621–625] and multi-
objective analysis [626,627], machine learning methods [628], and the Null-Space
Monte Carlo method (NSMC) [629,630]. Some helpful guidelines for successful cali-
bration and uncertainty analysis, even under the pressure of climate change, can be
found in the work of Mai [631].

8. Sensitivity analysis (SA) aims to examine how uncertainty in the results of a model
or performance measure is distributed across different sources of uncertainty in the
inputs [632–635]. Some researchers define SA as drawing a conclusion when/where
uncertainty has an impact [636]. Therefore, sensitivity analysis helps to focus efforts
on the most critical parameters when collecting additional data or refining parameter
estimates. When conducting a SA, the objective should be defined first. Depending
on this, samples for selected parameters/factors (probabilistic approach) or discrete
values for the entire parameter range (global methods) are selected. Local methods
investigate the effects of variability of the input data around the nominal values, while
global methods aim to investigate the uncertainty of the results caused by changes
in the input data over the entire range [637]. The model results are evaluated by
examining, for example, the variance or distribution of the model results, which
should allow the identification of the parameters that influence the results the most.
The uncertainty analysis is not part of the sensitivity analysis, but both should be
performed in parallel, as they are essential parts of the model development. In the best
case, the uncertainty analysis should precede the sensitivity analysis, as the uncertainties
should be estimated before linking to input data and parameters [638,639]. Reviews of
SA methods in environmental and water modelling can be found in the following
works: Saltelli et al. [640], Hall et al. [641], Perz et al. [642], Gao et al. [643], Pianosi
et al. [644], Koo et al. [645], and Razavi et al. [646];

9. Maintenance and preservation: Knowledge is a resource, so if we consider models as
a source of knowledge, we should use and protect them carefully [647]. Once a model
exists and has been validated and verified, it can be used in the future for different
purposes and for conditions that are now unknown and go beyond those for which the
model was developed. Therefore, it is important to maintain it until it can be replaced
or rewritten [648,649]. It should be noted that many of the models mentioned in this
overview have been changed or overwritten over time. It is important to regularly
check that the model is running, that it is still fit for purpose, that documentation is
available and relevant, and that even modest technical support is provided to users.
It is important to remember that the model must be available for future open-ended
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access, which should not be dependent on institutional and technical factors. For this
reason, many people, especially independent developers and researchers, choose to
use open source platforms (GitHub, CoMESES, OpenModelica, PyDSTool, etc.) to
disseminate and test models.

Below are brief descriptions of the most common numerical models with examples of
their application in practice. Tables S4 and S5 of the Supplementary Material show the most
important features of the most common deterministic models to help the reader make their
choice. In some cases, price is a decisive factor in users’ choices, so the prices of commercial
solutions are also given.

3.4.1. BIOPLUME III

BIOPLUME III is a 2D model for simulating the sequential biodegradation of hy-
drocarbons in groundwater using a series of aerobic and anaerobic electron acceptors:
oxygen, nitrate, iron (III), sulphate, and carbon dioxide. It was developed by modifying
a two-dimensional transport model using the method of characteristics (MOC) [96]. The
output of the model is the distribution of oxygen and pollutant concentrations. This tool
has already been described and used in detail. For more information, see [150,387,650–654].
Raei et al. [653], for example, coupled BIOPLUME III and the Non-dominating Sorting
Genetic Algorithm (NSGA-II) to optimise the remediation of groundwater contaminated by
hydrocarbons, taking into account stakeholder feedback. The model and algorithm enabled
the localisation of extraction and injection wells in the hypothetical BTEX-contaminated
area. The optimisation function was used to minimise the fragmentation of the contaminant
plume and increase the integration of the plume for the desired contaminant concentrations.

3.4.2. BIOREDOX-MT3DMS

Bioredox was developed in 1998 by Carey et al. [655] based on the public domain
code of MT3D. This model can be used to predict the results of enhanced bioremediation
of petroleum hydrocarbons and chlorinated solvents. Bioredox allows the simulation of
by-product and halogen transformations and coupled oxidation-reduction reactions. It has
been used to evaluate the natural attenuation of BTEX and chlorinated ethenes at a former
fire training site at Plattsburgh Air Force Base in New York [655].

3.4.3. Bioslurp

Bioslurp is a finite element model for the simulation of three-phase flow (water, oil,
and gas) and multi-component transport in heterogeneous porous and fractured media
with varying saturation. This tool can be used to simulate the bioslurping process, which
is a vacuum-enhanced recovery of NAPL. This tool has already been tested several times.
Its application has been described by Lundy et al. [656], Tkaczyk and Pietrzak [657], and
Sharmin and Gabr [658]. In the latter study, Bioslurp was combined with the MATLAB
genetic algorithm toolbox to optimise remediation by achieving targets related to time,
vacuum level, and placement of the extraction well.

3.4.4. Bioventingplus

Bioventingplus is a computer program that calculates the cost and effectiveness of
remediation from the air, taking into account site-specific conditions and the type of
pollutants [659]. Functions include airflow, mass recovery, and cost analysis. The airflow
module aims to determine the air pressure, flow rate, pore volume turnover rate, and
extraction efficiency. These parameters are calculated taking into account the injection
conditions, i.e., pressure and soil properties. Mass removal is estimated based on the
multicellular, multiphase, and multicomponent model. The model was successfully tested.
The results can be found in Parker and Islam [660], Johnson and Parker [659], and Benner
et al. [661]. The study by Benner et al. was conducted at the site of the former drum storage
facility where several releases of LNAPL occurred, resulting in contamination of soils with
a total mass of 4600 ± 2300 kg, of which about 350 ± 175 kg were identified as toluene,
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ethylbenzene, and total xylenes (TEX). Using Bioventingplus simulations, it was estimated
that in situ air sparging during the 1113-day remediation could result in the removal of
140 kg of petroleum hydrocarbons. If biodegradation is also taken into account, the mass of
contaminants removed increases to 760 kg. The numerical modelling of the total pollutant
removal using volatilisation and biodegradation agreed with the results on site.

3.4.5. Chain_2D

Chain_2D is a predecessor of HYDRUS-2D v. 2 [662]. Since the model uses chain
reactions in reactive transport equations, it is possible to predict not only the concentration
of the impurities—the parents—but also the concentration of the reaction products—the
daughters [663]. The flow in porous media with different saturation, i.e., at the boundary
between the vadose and the saturated zone, is simulated with the Richards equation, while
the transport of solutes is calculated with the convection-dispersion approach. The software
can handle flow in irregular heterogeneous aquifers. The flow and solute transport can
take place in the vertical plane, in the horizontal plane, and in a three-dimensional domain
characterised by radial symmetry about a vertical axis [662]. The CHAIN _2D code was
applied to a heavily polluted site (chlorinated hydrocarbons) near the city of Tilburg in the
Netherlands [663].

3.4.6. CORT3D

The CORT3D model helps to assess the impact of site-specific conditions on the
effectiveness of chemical oxidation and to make decisions and plan injection (site, oxidant
concentration) [297]. This tool is based on the widely used and well-tested code RT3D
version 2.5 [20,384,664]. CORT3D simulates the dissolution of NAPLs using the stagnant
film model [665], equilibrium or rate-limited sorption, second-order kinetic contaminant
oxidation, kinetic oxidation of NOD considering a fast and a slow kinetic part, and diffusion
simulated using different effective diffusion coefficients for each mobile species. The code
simulates three aqueous mobile components (contaminant, aqueous chloride, and aqueous
oxidant) and five immobile components (NAPL, sorbed contaminant, manganese oxide,
fast NOD, and slow NOD). The CORT3D calculations account for velocity changes caused
by time-varying permeability due to the dissolution of NAPL and the precipitation of
manganese dioxide due to permanganate consumption. This code has been tested at the
Navy Training Centre site in Florida [666].

3.4.7. Feflow

Feflow is an intuitive and complementary model for the flow and transport of fluids. It
can simulate many phenomena related to fluid flow, groundwater ageing, contaminant and
heat transport, and density-driven processes in differently saturated porous and fractured
media at different spatial scales (from local to regional). Feflow uses the finite element
method to solve many problems related to groundwater management, e.g., the impact of
hydromechanical infrastructure, tunnelling, creation of retention zones, seepage through
dams and dykes, remediation scenarios, etc. Feflow is widely used in practice and in science.
Examples of its application to the reactive transport of organic material can be found in the
work of Blake and Taffet [667], Kühlers et al. [668], Söderberg [669], Innocenti et al. [301],
Kouamé et al. [670], and Praseeja and Sajikumar [671]. Kouamé et al. investigated the flow
of a hypothetical release of benzene through the simulated Abidjan aquifer. The initial
concentrations of dissolved benzene of 43.12 mg/L and 14.37 mg/L were simulated to
enter the aquifer injected at the Shell petrol stations. Adding the results of the vertical and
horizontal transport time gives a global transport time of 38 to 47 years. The results show
that there is a risk of pollution for 14 wells, and that possible air entrapment can allow the
formation of pollution pools that represent a secondary source of hydrocarbons.
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3.4.8. Hydrus

Hydrus is a Windows-based 2D/3D finite element model for simulating the flow
and transport of multiple species in differently saturated, heterogeneous, porous media.
The model enables the optimisation of soil and hydrogeological parameters. One of the
functions of Hydrus is to define good agricultural practice in relation to water management.
Other environmental applications include risk assessment of contaminant plumes from
landfills, infiltration of wastewater, and the interaction between groundwater and surface
water. Since many environmental problems cannot be solved without insightful analyses
of the fate of pollutants and their interactions, the hydrogeochemical model PHREEQC
has been integrated into the basic version of Hydrus. The coupling of PHREEQC with
Hydrus leads to a considerable extension of the functionality with regard to reactive
transport, and enables the simulation of surface complexation, sorption, precipitation, and
dissolution, as well as other mixed equilibrium and kinetic biogeochemical reactions. For
the application of Hydrus in hydrocarbon transport studies, we refer to the work of Casey
and Šimůnek [672], Ngo et al. [673], Mallants et al. [674]. The latter study reproduced the
fate and transport of biocides in soil as a result of their accidental release. The simulation
included the degradation chain of the biocide bronopol, the delay, and the convective-
dispersive transport of the biocide bronopol and its degradation products.

3.4.9. MT3D/MT3DMS

MT3D is a modular 3D model for simulating the transport of pollutants in groundwa-
ter [675]. MT3D is capable of simulating flow in both unconfined and confined aquifers,
including variable layer thicknesses and different hydraulic and chemical boundary con-
ditions. The MT3D code has been used extensively for contaminant transport modelling
and remedial assessment studies. Some examples can be found in the articles [676–680].
The next generation product, MT3DMS [681], improves several aspects of the transport
model. The adaptation of a structure that allows the addition of user-defined reactions
could be useful in modelling complex biological and geochemical processes. MT3DMS,
like its predecessor MT3D, has been tested in a number of environmental studies. Recent
examples can be found in references [682–685]. MT3D and MT3DMS can be downloaded
for free, with the latter embedded in other software such as Visual Modflow and GMS. Gao
et al. [685] simulated the migration of organic pollutants from a trench filled with a tank of
liquid waste with a volume of 600 m3. The numerical simulation includes fluctuations in
the groundwater level, which were crucial for the migration of pollutants, adsorption in
the soil, and biodegradation.

3.4.10. PFLOTRAN

The PFLOTRAN computer code [603,686] solves the mass and energy conservation
equations for a range of aqueous phases, supercritical carbon dioxide, black oil, and a
gaseous phase in variably saturated porous media in one, two, or three dimensions. It
couples two modules, PFLOW and PTRAN, which represent flow and reactive transport.
The PFLOW module solves the mass conservation equations for water and carbon dioxide
and an energy balance equation, while the PTRAN module solves mass conservation
equations for a multi-species reaction system. The latter includes homogeneous aqueous
speciation reactions, heterogeneous gaseous speciation, mineral precipitation, dissolution
reactions, ion exchange, and sorption reactions. PFLOTRAN was tested to simulate the
movement of LNAPL through the vadose zone [687] and to identify factors influencing the
migration of methane near oil and gas wells [688].

3.4.11. PHREEQC

PHREEQC [476,689] is a computer program for the simulation of reactions and trans-
port processes in pristine and polluted waters. The calculations include reactions with
minerals, gases, solid solutions, and exchangers. Advanced users can use specialised
modules to simulate more complex processes defined in the BASIC language. 1D transport,
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which includes diffusion, advection, and dispersion, also allows for the diffusion into
stagnant zones, known as double porosity. Recently, new tools have been released that
add Python programming and plotting capabilities [690,691]. Due to its availability and
flexibility, PHREEQC is widely used. It is not only popular, but also reliable. Its modelling
results have been compared with those of other codes several times [692–695]. PHREEQC
has also been used to model the migration and biodegradation of hydrocarbons [478,696–698].
For example, Bailey et al. modelled the migration of hydrocarbons through sandstone
formations at Rainbow Rocks in the USA. The presence of bitumen changed the colours of
the sandstone and led to changes in trace elements and mineral assemblage.

3.4.12. PHT3D

PHT3D is a 3D multicomponent code for reactive transport in saturated porous me-
dia [699]. The reactive transport equation is solved with MT3DMS using the sequential
operator splitting technique [700–704] with a slight modification described by Walter
et al. [705]. All concentration changes of aqueous components and immobile species
resulting from reactive processes are calculated using PHREEQC. PHT3D has been inte-
grated into the PMWIN package and Visual Modflow since version 4.1. PHT3D has been
successfully used in various fields: controlled groundwater recharge, water quality in
catchment areas of water abstraction points, fate of oxidisable organic compounds, fate of
brominated/chlorinated compounds, dispersion-controlled transport, reactive transport
under different density conditions, and the transport of pesticides. This tool has been
used by both experts and beginners. Recent examples can be found in references [706–711].
Ng et al. [711] investigated the fate of a historical hydrocarbon plume at the Bemidji site,
where the secondary effects were the subject of simulations. In addition to the anaerobic
biodegradation of BTEX, the outgassing of carbon, the input of dissolved inorganic carbon
(DIC), pH buffering, and the immobilisation of Fe(II) were also included in the calculations.

3.4.13. RT3D

RT3D (Reactive Transport in 3-Dimensions) simulates the reactive flow and transport
of various mobile and/or immobile species in aquifers [664]. RT3D is based on the code
MT3D, but has considerably extended the possibilities for reaction modelling. RT3D offers
an operator splitting strategy [20,712] for the contaminant transport equation. RT3D is
equipped with several pre-programmed reaction modules and one user-defined reaction
module. The list of ready-to-use modules includes: aerobic instantaneous degradation of
BTEX, kinetically limited degradation of BTEX, a double-monod model, sequential degra-
dation reactions, an aerobic/anaerobic model for the degradation of PCE/TCE, natural
and enhanced attenuation of chloroethanes, chloroethenes, chloromethanes, and daughter
products [713,714]. Similar to MT3D, RT3D uses a separate model, usually Modflow [715],
to determine the velocity and groundwater pressure distribution. As the RT3D code can be
customised to simulate various processes, including microbially mediated responses, it has
been used in several laboratory and pilot bioremediation experiments [716]. It can, and has,
been used in many regional environmental studies on the fate of pollutants [23,717–721].
Joo et al. [721] tested the RT3D model in a lumped approach to simulate the transport of
12 organic compounds in mixtures through a column filled with sands containing different
proportions of organic carbon, generating new breakthrough curves and evaluating sorp-
tion capacity. RT3D is also integrated into the Visual Modflow program, the GMS package,
and the Groundwater Vistas tool.

3.4.14. SEAM3D

The concept behind the SEAM3D (Sequential Electron Acceptor Model 3-Dimensional)
model is biodegradation by sequential electron acceptors and solute transport in a three-
dimensional heterogeneous system [722]. A key feature of the code is its compatibility
with the MODFLOW model. The reactively transported solutes can be biodegradable
substrates, nutrients, and electron acceptors for microbial growth, products of biodegra-
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dation, daughter products of the substrates, or non-reactive tracers. In general, SEAM3D
is equipped with four chemical packages: biodegradation, NAPL dissolution, reductive
de-chlorination, and co-metabolism. SEAM3D has been used to predict the dispersion of
chlorinated solvents at Little Creek Naval Amphibious Base in Virginia Beach for the US
Navy, to simulate a controlled release of jet fuel at an air force base in Mississippi, and
to model simulations of a gasoline-contaminated site near Beaufort, South Carolina, to
explain why natural attenuation was ineffective [723]. More recently, SEAM3D has been
used to study benzene transport in shallow coastal groundwater [724] and the dissolution
of DNAPL [725].

3.4.15. SUTRA

SUTRA uses both finite element and finite difference methods to simulate density-
dependent groundwater flow in variable saturated media and reactive solute transport,
including sorption and decay reactions. SUTRA also allows the simulation of heat transport
in liquid and solid media (aquifer and its matrix). SUTRA can be used for areal and cross-
sectional modelling, and reactive simulations can be used for pristine areas and brownfields.
The latter makes Sutra useful for solving contaminant transport problems and remediation
scenarios. Examples of the use of Sutra in reactive transport studies can be found in the
works of Koch and Zhang [726], Beneš and Eliáš [727], Rashid and Kaluarachchi [728],
El-Kadi [729], and Plampin and Provost [730].

3.4.16. TMVOC

TMVOC is a FORTRAN model developed for simulating and analysing VOC flows [731].
This tool can simulate the flow from one to three dimensions in porous or fissured media
with different saturation. It can therefore be used to study the fate of NAPLs in the vadose
zone and in groundwater. In addition, the model can simulate the formation of oil lenses
at the groundwater surface, the dissolution and transport of VOCs into the groundwater,
the evaporation and migration of VOCs in the interstitial air of the unsaturated zone, and
the reversible sorption of VOCs on the rock matrix. The main application of TMVOC
could be NAPL outfall sites and remediation alternatives in the va-dose zone and below
the water table. It has been tested and the results have been published by Batistelli [732],
Erning et al. [733], MacKenzie [734], and Guo et al. [55]. The latter study was related to the
assessment and prediction of the effects of bioremediation on chlorinated hydrocarbons in
a very large fractured karst aquifer in Zibo City, China. In the modelling study, the effects
of hydrocarbon compounds on the chemical status of groundwater were reproduced using
ions: NO3

−, SO4
2−, HCO3

−, Cl−, and an isotope δ13C(DIC).

3.4.17. TOUGH

TOUGH is basically a series of programs that can be used to simulate flows in fissured
and porous media. TOUGH2 is a basic program for multiphase flows and heat transport.
The flow takes into account the transitions between liquid and vapour states and various
forces that influence the fluid movement (gravity, pressure, and viscosity). Several modules
from the Tough software family can be used for the reactive transport of hydrocarbons,
T2VOC, TMVOC, and TOUGHREACT. The first two modules are designed for three-
phase flows (water, air, and VOCs) in heterogeneous porous media. The last module is
more suitable for reactive transport studies where chemical interactions between solutes
need to be considered. These chemical transformations include kinetic processes such as
precipitation or dissolution reactions. There are many papers dealing with the transport of
hydrocarbons using TOUGH or one of its modules. Many of these have been published in
TOUGH conference proceedings and articles, for example Hodges et al. [735], Fagerlund
and Niemi [736], Falta [737], Fagerlund et al. [738], Yang et al. [739], and Zhou et al. [740].
The latter combined two models, HYDRUS-1D and TOUGH, to simulate the influence
of the freeze–thaw process in the soil on the water flow and the redistribution of NAPL
(toluene in this study) with the water fluctuations.
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3.4.18. UTCHEM

UTCHEM is a 3D model for multiphase flow and reactive transport of multiple
compounds that can simulate a variety of processes in differently saturated media [741].
Accordingly, this multidisciplinary approach can be applied to many applications, espe-
cially surfactant enhanced aquifer remediation (SEAR). In addition, physical, chemical, and
biological processes associated with the fate and transport of NAPLs were included in the
model. These processes include the dissolution and/or mobilisation of NAPLs by undi-
luted remediation fluids, chemical and microbiological transformations, and changes in
fluid properties during site remediation. UTCHEM enables the simulation of remediation
fluids with variable density, temperature, and viscosity. The GMS software can provide the
interface to UTCHEM. Some recent applications relate to oil/water partitioning (Huynh
et al. [742]) and transport of DNAPL in deep aquifers (Wenyi et al. [743]).

4. Discussion and Conclusions

The decision-making process at the outset of modelling involves choosing between
a deterministic or stochastic approach. Traditionally, these approaches were viewed as
competing strategies [744], but contemporary practice recognizes their potential as com-
plementary tools across various stages of a remediation project. This acknowledgment
stems from the understanding that reality falls between complete determinism and total
randomness [745]. Thus, selecting a modelling framework becomes an exercise in compro-
mise, even among scientific circles. Deciding whether to adopt a simpler model, grounded
in expert knowledge, or opting for a more intricate approach involving multiple models
presents a challenge. Some experts advocate for simpler solutions due to their accessibility
to end-users, who may lack hydrological or programming expertise [564], while others
advocate for more complex models [746]. A relatively recent framework gaining traction is
the hybrid approach, which combines surrogate emulators with more intricate models [572].
It is crucial for potential users to recognize that even simple screening models can be potent
and suitable for practitioners [747]. Moreover, the pivotal step of conceptual modelling and
prioritizing remediation objectives is often overlooked by newcomers, leading to potentially
unrealistic outcomes.

In the decision-making process regarding the choice of modelling approach, a bound-
ary between science and practice undoubtedly emerges. The modeler must consider the
preferences of decision-makers, who often favour simple and transparent tools. They may
only resort to more complex and inherently costlier models when supported by experts
capable of ensuring credibility and quality assurance. In theory, the expectations of pol-
icy makers and environmental managers may be lower compared to those of scientists.
However, this dynamic could shift if science uncovers difficult problems or unexpected
phenomena that are challenging to address [748].

This underscores the importance of collaborative efforts in assessing contaminated sites
and their subsequent remediation using numerical tools. Dialogue between stakeholders
and modelers is essential to establish a systematic framework supporting management
decisions [749,750]. An enhanced understanding of the processes underlying the conceptual
model and the code is crucial for achieving better results. Therefore, users and beneficiaries
of environmental modelling should be actively engaged throughout the modelling process
from conception to validation. Selecting appropriate modelling tools demands experience,
creativity, knowledge, and, at times, intuition. To meet the expectations of stakeholders,
a modeler must possess not only a deep understanding of the model itself, but also the
methodologies for its validation.

Paradoxically, forecasting the future of modelling reactive transport presents chal-
lenges. Simple models are expected to remain essential due to their usefulness and the ease
with which their elegant analytical solutions can describe extensive systems. Additionally,
they can be readily adjusted for new tasks and integrated with more advanced tools, such
as machine learning models [751]. Deterministic models, still predominant, are likely to
persist, particularly in situations requiring process-based understanding and consideration
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of complexity [752]. However, stochastic approaches may offer greater reliability for long-
term solute fate predictions, particularly in heterogeneous media with varying saturations.
Consequently, stochastic models or their hybrid variants are anticipated to gain traction.
In many instances, stakeholders versed in pollution risk assessment will prefer a range
of probable values with an acceptable level of confidence. The accessibility of data and
open-source solutions will undoubtedly facilitate the development of new models, with
machine learning techniques and emulators increasingly applied in pollution transport
studies at the operational and field levels.

This article aims to provide an overview of the various approaches used for simulating
hydrocarbon migration in groundwater. It covers simple screening models, stochastic
methods, and common deterministic models, along with a brief discussion of machine
learning and its relevance to hydrocarbon migration. Additionally, the authors outline the
advantages and limitations associated with each modelling approach. For deterministic
modelling, basic guidelines for model construction are provided to aid in selecting appro-
priate tools, particularly for sensitivity or uncertainty analyses. Mathematical formulations
are omitted, as they are not essential for this overview. Furthermore, the availability of
these models and their applications in experimental and field studies are also discussed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14093675/s1, Table S1: Summary of the models used for
the transport of hydrocarbons; Table S2: Screening tools and their limitations; Table S3: Screening
tools with their input and output data; Table S4: Deterministic models, area of usage, processes
and method of modelling; Table S5: Deterministic models, their availability and reactions that can
be modelled.
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Abbreviations

3DFATMIC 3-Dimensional Subsurface Flow and Fate and Transport of Microbes and
Chemicals model

ART3D Analytical Model for Simulating Reactive Multi-species Transport in
3-Dimensional Groundwater Systems

BIOREDOX-MT3DMS A Coupled Biodegradation-Redox Model with Modular Transport
3 Dimensional Model Simulator

CDISCO Conceptual Design for In Situ Chemical Oxidation
COEC Contamination Of Emerging Concern
CORT3D Chemical Oxidation Reactive Transport in 3 Dimensions
DFT Density Functional Theory
DNAPL Dense Non-Aqueous Phase Liquid
EEA European Environment Agency
EPA Environmental Protection Agency
ES&T Environmental Services & Technologies
ESTCP Environmental Security Technology Certification Program
FEFLOW Finite Element subsurface Flow system
FEHM Finite Element Heat and Mass Transfer Code
GMS Groundwater Modelling System
HPS-PROBAN Horizontal Plane Source—Probabilistic Analysis
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HSSM Hydrocarbon Spill Screening Model
ISCO In Situ Chemical Oxidation
ISCR In Situ Chemical Reduction
KIE Kinetic Isotope Effect
LaSAR Lagrangian Stochastic Advection Reaction
LNAPL Light Non-Aqueous Phase Liquid
ML Machine Learning
MNA Monitored Natural Attenuation
MNB micro and nanobubbles
MOC/MOC3D Method of Characteristics
MT3D Modular Transport in 3 Dimensions
MT3DMS Modular Transport 3 Dimensional Model Simulator
NAPL Non-Aqueous Phase Liquid
NAS Natural Attenuation Software
NOD Natural Oxygen Demand
NSMC null space Monte Carlo
PAH polycyclic aromatic hydrocarbons
Pdf Probability Density Function
PHREEQC pH-Redox-Equilibrium C programming language
PREMChlor Probabilistic Remediation Evaluation Model for Chlorinated solvents
REMChlor Remediation Evaluation Model for Chlorinated solvents
REMFuel Remediation Evaluation Model for Fuels
ROI Radius of Influence
RT1D Reactive Multispecies Transport in 1-Dimensional groundwater systems
RT3D Reactive Multispecies Transport in 3-Dimensional groundwater systems
RTF Remediation Time Frame
RWPT Random Walk Particle Tracking
SEAM3D A Sequential Electron Acceptors Model for 3-Dimensional Solute

Transport
SERDP Strategic Environmental Research and Development Program
SPH Smoothed Particle Hydrodynamics
SUTRA Saturated and Unsaturated Transport Model
SWMS 3D Simulator of Water flow and Movement of Solute in 3-D variably

saturated media
TMVOC Transport of Multicomponent VOCs model
TOUGH Transport Of Unsaturated Groundwater and Heat
UTCHEM University of Texas Chemical Compositional Simulator
VOCs Volatile Organic Compounds
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Water Quality Using Machine Learning: A 20-Year Study. Appl. Sci. 2023, 13, 11217. [CrossRef]
494. Malik, M.M. A hierarchy of limitations in machine learning. arXiv 2020, arXiv:2002.05193.
495. Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine

learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [CrossRef] [PubMed]
496. Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 2022,

3, 91–99. [CrossRef]
497. Lu, Y.; Wang, H.; Wei, W. Machine Learning for Synthetic Data Generation: A Review. arXiv 2023, arXiv:2302.04062.
498. Bertsimas, D.; Dunn, J. Machine Learning under a Modern Optimization Lens; Dynamic Ideas LLC.: Operations Research Center

Massachusetts Institute of Technology: Cambridge, MA, USA, 2019.
499. Song, H.; Triguero, I.; Özcan, E. A review on the self and dual interactions between machine learning and optimisation. Prog.

Artif. Intell. 2019, 8, 143–165. [CrossRef]
500. Abolghasemi, M. The intersection of machine learning with forecasting and optimisation: Theory and applications. In Forecasting

with Artificial Intelligence: Theory and Applications; Springer Nature: Cham, Switzerland, 2023; pp. 313–339.
501. Yi, D.; Ahn, J.; Ji, S. An effective optimization method for machine learning based on ADAM. Appl. Sci. 2020, 10, 1073. [CrossRef]
502. Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of

production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [CrossRef]
503. Garzón, A.; Kapelan, Z.; Langeveld, J.; Taormina, R. Machine Learning-Based Surrogate Modeling for Urban Water Networks:

Review and Future Research Directions. Water Resour. Res. 2022, 58, e2021WR031808. [CrossRef]
504. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. In Proceedings of the

International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Proceedings of Machine Learning Research:
Cambridge, MA, USA, 2016; pp. 1225–1234.

505. Ampomah, E.K.; Nyame, G.; Qin, Z.; Addo, P.C.; Gyamfi, E.O.; Gyan, M. Stock market prediction with gaussian naïve bayes
machine learning algorithm. Informatica 2021, 45, 243–256. [CrossRef]

506. Fan, Y.R.; Huang, W.W.; Huang, G.H.; Li, Y.P.; Huang, K.; Li, Z. Hydrologic risk analysis in the Yangtze River basin through
coupling Gaussian mixtures into copulas. Adv. Water Resour. 2016, 88, 170–185. [CrossRef]

507. Viroli, C.; McLachlan, G.J. Deep Gaussian mixture models. Stat. Comput. 2019, 29, 43–51. [CrossRef]
508. Andrei, A.T.; Grigore, O. Gaussian Mixture Model Application in Deforestation Monitoring. In Proceedings of the 2022

International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 20–22 October
2022; pp. 26–31.

509. Yoon, T.; Park, Y.; Ryu, E.K.; Wang, Y. Robust probabilistic time series forecasting. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, Virtual, 28–30 March 2022; Proceedings of Machine Learning Research: Cambridge, MA,
USA, 2022; pp. 1336–1358.

510. Ahmed, N.K.; Atiya, A.F.; Gayar, N.E.; El-Shishiny, H. An empirical comparison of machine learning models for time series
forecasting. Econom. Rev. 2010, 29, 594–621. [CrossRef]

511. Nielsen, A. Practical Time Series Analysis: Prediction with Statistics and Machine Learning; O’Reilly Media: Sebastopol, CA, USA, 2019.
512. Garg, R.; Barpanda, S. Machine Learning Algorithms for Time Series Analysis and Forecasting. arXiv 2022, arXiv:2211.14387.

https://doi.org/10.1016/j.ecolmodel.2012.03.001
https://doi.org/10.1021/acs.est.1c01339
https://doi.org/10.3390/app12136753
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1111/2041-210X.13901
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1016/j.compchemeng.2017.10.026
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.3390/app132011217
https://doi.org/10.1073/pnas.1900654116
https://www.ncbi.nlm.nih.gov/pubmed/31619572
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1007/s13748-019-00185-z
https://doi.org/10.3390/app10031073
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1029/2021WR031808
https://doi.org/10.31449/inf.v45i2.3407
https://doi.org/10.1016/j.advwatres.2015.12.017
https://doi.org/10.1007/s11222-017-9793-z
https://doi.org/10.1080/07474938.2010.481556


Appl. Sci. 2024, 14, 3675 57 of 65

513. Dogo, E.M.; Nwulu, N.I.; Twala, B.; Aigbavboa, C. A survey of machine learning methods applied to anomaly detection on
drinking-water quality data. Urban Water J. 2019, 16, 235–248. [CrossRef]

514. Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J.; et al. Comparative analysis of surface
water quality prediction performance and identification of key water parameters using different machine learning models based
on big data. Water Res. 2020, 171, 115454. [CrossRef] [PubMed]

515. Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A review of the artificial neural network models for water quality prediction. Appl. Sci.
2020, 10, 5776. [CrossRef]

516. Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Artificial intelligence for surface water quality monitoring and assessment: A systematic
literature analysis. Model. Earth Syst. Environ. 2021, 7, 669–681. [CrossRef]

517. Azrour, M.; Mabrouki, J.; Fattah, G.; Guezzaz, A.; Aziz, F. Machine learning algorithms for efficient water quality prediction.
Model. Earth Syst. Environ. 2022, 8, 2793–2801. [CrossRef]

518. Kadkhodazadeh, M.; Farzin, S. Introducing a novel hybrid machine learning model and developing its performance in estimating
water quality parameters. Water Resour. Manag. 2022, 36, 3901–3927. [CrossRef]

519. Gorgan-Mohammadi, F.; Rajaee, T.; Zounemat-Kermani, M. Investigating machine learning models in predicting lake water
quality parameters as a 3-year moving average. Environ. Sci. Pollut. Res. 2023, 30, 63839–63863. [CrossRef]

520. Tian, S.; Guo, H.; Xu, W.; Zhu, X.; Wang, B.; Zeng, Q.; Mai, Y.; Huang, J.J. Remote sensing retrieval of inland water quality
parameters using Sentinel-2 and multiple machine learning algorithms. Environ. Sci. Pollut. Res. 2023, 30, 18617–18630. [CrossRef]

521. Fan, M.; Hu, J.; Cao, R.; Ruan, W.; Wei, X. A review on experimental design for pollutants removal in water treatment with the
aid of artificial intelligence. Chemosphere 2018, 200, 330–343. [CrossRef] [PubMed]

522. Heddam, S. Extremely randomized tree: A new machines learning method for predicting coagulant dosage in drinking water
treatment plant. In Water Engineering Modeling and Mathematic Tools; Elsevier: Amsterdam, The Netherlands, 2021; pp. 475–489.

523. Li, L.; Rong, S.; Wang, R.; Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis
and process control in drinking water treatment: A review. Chem. Eng. J. 2021, 405, 126673. [CrossRef]

524. Lowe, M.; Qin, R.; Mao, X. A review on machine learning, artificial intelligence, and smart technology in water treatment and
monitoring. Water 2022, 14, 1384. [CrossRef]

525. Imen, S.; Croll, H.C.; McLellan, N.L.; Bartlett, M.; Lehman, G.; Jacangelo, J.G. Application of machine learning at wastewater
treatment facilities: A review of the science, challenges and barriers by level of implementation. Environ. Technol. Rev. 2023, 12,
493–516. [CrossRef]

526. Ray, S.S.; Verma, R.K.; Singh, A.; Ganesapillai, M.; Kwon, Y.N. A holistic review on how artificial intelligence has redefined water
treatment and seawater desalination processes. Desalination 2023, 546, 116221. [CrossRef]

527. Mo, S.; Zabaras, N.; Shi, X.; Wu, J. Deep autoregressive neural networks for high-dimensional inverse problems in groundwater
contaminant source identification. Water Resour. Res. 2019, 55, 3856–3881. [CrossRef]

528. Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Using a low-cost sensor array and machine learning techniques to detect complex
pollutant mixtures and identify likely sources. Sensors 2019, 19, 3723. [CrossRef] [PubMed]

529. He, S.; Wu, J.; Wang, D.; He, X. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors
using random forest. Chemosphere 2022, 290, 133388. [CrossRef] [PubMed]

530. Kontos, Y.N.; Kassandros, T.; Perifanos, K.; Karampasis, M.; Katsifarakis, K.L.; Karatzas, K. Machine learning for groundwater
pollution source identification and monitoring network optimization. Neural Comput. Appl. 2022, 34, 19515–19545. [CrossRef]

531. Taoufik, N.; Boumya, W.; Achak, M.; Chennouk, H.; Dewil, R.; Barka, N. The state of art on the prediction of efficiency and
modeling of the processes of pollutants removal based on machine learning. Sci. Total Environ. 2022, 807, 150554. [CrossRef]

532. Yang, R.; Yin, L.; Hao, X.; Liu, L.; Wang, C.; Li, X.; Liu, Q. Identifying a suitable model for predicting hourly pollutant
concentrations by using low-cost microstation data and machine learning. Sci. Rep. 2022, 12, 19949. [CrossRef] [PubMed]

533. Li, H.; Zhou, Z.; Long, T.; Wei, Y.; Xu, J.; Liu, S.; Wang, X. Big-data analysis and machine learning based on oil pollution
remediation cases from CERCLA database. Energies 2022, 15, 5698. [CrossRef]

534. Sprocati, R.; Rolle, M. Integrating process-based reactive transport modeling and machine learning for electrokinetic remediation
of contaminated groundwater. Water Resour. Res. 2021, 57, e2021WR029959. [CrossRef]

535. An, Y.; Zhang, Y.; Yan, X. An integrated Bayesian and machine learning approach application to identification of groundwater
contamination source parameters. Water 2022, 14, 2447. [CrossRef]

536. Du, Y.; Xu, X.; Liu, Q.; Bai, L.; Hang, K.; Wang, D. Identification of organic pollutants with potential ecological and health risks in
aquatic environments: Progress and challenges. Sci. Total Environ. 2022, 806, 150691. [CrossRef]

537. Li, X.; Yi, S.; Cundy, A.B.; Chen, W. Sustainable decision-making for contaminated site risk management: A decision tree model
using machine learning algorithms. J. Clean. Prod. 2022, 371, 133612. [CrossRef]

538. Xia, F.; Jiang, D.; Kong, L.; Zhou, Y.; Wei, J.; Ding, D.; Chen, Y.; Wang, G.; Deng, S. Prediction of dichloroethene concentration in
the groundwater of a contaminated site using XGBoost and LSTM. Int. J. Environ. Res. Public Health 2022, 19, 9374. [CrossRef]
[PubMed]

539. Chen, C.; Zhang, H.; Shi, W.; Zhang, W.; Xue, Y. A novel paradigm for integrating physics-based numerical and machine learning
models: A case study of eco-hydrological model. Environ. Model. Softw. 2023, 163, 105669. [CrossRef]

https://doi.org/10.1080/1573062X.2019.1637002
https://doi.org/10.1016/j.watres.2019.115454
https://www.ncbi.nlm.nih.gov/pubmed/31918388
https://doi.org/10.3390/app10175776
https://doi.org/10.1007/s40808-020-01041-z
https://doi.org/10.1007/s40808-021-01266-6
https://doi.org/10.1007/s11269-022-03238-6
https://doi.org/10.1007/s11356-023-26830-8
https://doi.org/10.1007/s11356-022-23431-9
https://doi.org/10.1016/j.chemosphere.2018.02.111
https://www.ncbi.nlm.nih.gov/pubmed/29494914
https://doi.org/10.1016/j.cej.2020.126673
https://doi.org/10.3390/w14091384
https://doi.org/10.1080/21622515.2023.2242015
https://doi.org/10.1016/j.desal.2022.116221
https://doi.org/10.1029/2018WR024638
https://doi.org/10.3390/s19173723
https://www.ncbi.nlm.nih.gov/pubmed/31466288
https://doi.org/10.1016/j.chemosphere.2021.133388
https://www.ncbi.nlm.nih.gov/pubmed/34952022
https://doi.org/10.1007/s00521-022-07507-8
https://doi.org/10.1016/j.scitotenv.2021.150554
https://doi.org/10.1038/s41598-022-24470-5
https://www.ncbi.nlm.nih.gov/pubmed/36402807
https://doi.org/10.3390/en15155698
https://doi.org/10.1029/2021WR029959
https://doi.org/10.3390/w14152447
https://doi.org/10.1016/j.scitotenv.2021.150691
https://doi.org/10.1016/j.jclepro.2022.133612
https://doi.org/10.3390/ijerph19159374
https://www.ncbi.nlm.nih.gov/pubmed/35954730
https://doi.org/10.1016/j.envsoft.2023.105669


Appl. Sci. 2024, 14, 3675 58 of 65

540. Sprocati, R.; Masi, M.; Muniruzzaman, M.; Rolle, M. Modeling electrokinetic transport and biogeochemical reactions in porous
media: A multidimensional Nernst–Planck–Poisson approach with PHREEQC coupling. Adv. Water Resour. 2019, 127, 134–147.
[CrossRef]

541. Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Taieb, S.B.; Bergmeir, C.; Bessa, R.J.; Bijak, J.;
Boylan, J.E.; et al. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871.

542. Lee, E.A. The past, present and future of cyber-physical systems: A focus on models. Sensors 2015, 15, 4837–4869. [CrossRef]
[PubMed]

543. Lee, E.A. Determinism. ACM Trans. Embed. Comput. Syst. 2021, 20, 38. [CrossRef]
544. ‘T Hooft, G. Deterministic quantum mechanics: The mathematical equations. Front. Phys. 2020, 8, 253. [CrossRef]
545. Goldfus, Y.; Eder, N. Determining Our Future: How Artificial Intelligence Creates a Deterministic World. SSRN Electron. J. 2023,

4534217. [CrossRef]
546. Shah, R.; Sands, T. Comparing methods of DC motor control for UUVs. Appl. Sci. 2021, 11, 4972. [CrossRef]
547. Esene, C.; Zendehboudi, S.; Shiri, H.; Aborig, A. Deterministic tools to predict recovery performance of carbonated water injection.

J. Mol. Liq. 2020, 301, 111911. [CrossRef]
548. Streeb, D.; El-Assady, M.; Keim, D.A.; Chen, M. Why visualize? Arguments for visual support in decision making. IEEE Comput.

Graph. Appl. 2021, 41, 17–22. [CrossRef]
549. National Research Council. Toxicity Testing in the 21st Century: A Vision and a Strategy; The National Academies Press: Washington,

DC, USA, 2007. [CrossRef]
550. Sun, J.; Hu, L.; Li, D.; Sun, K.; Yang, Z. Data-driven models for accurate groundwater level prediction and their practical

significance in groundwater management. J. Hydrol. 2022, 608, 127630. [CrossRef]
551. Wang, X.; Li, Y.; Qiao, Q.; Tavares, A.; Liang, Y. Water Quality Prediction Based on Machine Learning and Comprehensive

Weighting Methods. Entropy 2023, 25, 1186. [CrossRef]
552. Kalteh, A.M. Improving forecasting accuracy of streamflow time series using least squares support vector machine coupled with

data-preprocessing techniques. Water Resour. Manag. 2016, 30, 747–766. [CrossRef]
553. Vu, M.T.; Jardani, A.; Massei, N.; Fournier, M. Reconstruction of missing groundwater level data by using Long Short-Term

Memory (LSTM) deep neural network. J. Hydrol. 2021, 597, 125776. [CrossRef]
554. Enemark, T.; Peeters, L.J.; Mallants, D.; Batelaan, O. Hydrogeological conceptual model building and testing: A review. J. Hydrol.

2019, 569, 310–329. [CrossRef]
555. Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; Abramowitz, G.; Ye, M. Towards a comprehensive assessment of model structural adequacy.

Water Resour. Res. 2012, 48. [CrossRef]
556. Enemark, T.; Peeters, L.J.; Mallants, D.; Batelaan, O.; Valentine, A.P.; Sambridge, M. Hydrogeological Bayesian hypothesis testing

through trans-dimensional sampling of a stochastic water balance model. Water 2019, 11, 1463. [CrossRef]
557. Brunetti, G.; Šimunek, J.; Glockler, D.; Stumpp, C. Handling model complexity with parsimony: Numerical analysis of the

nitrogen turnover in a controlled aquifer model setup. J. Hydrol. 2020, 584, 681. [CrossRef]
558. Peach, D.; Taylor, A. The development of a hydrogeological conceptual model of groundwater and surface water flows in the

Silala River Basin. Wiley Interdiscip. Rev. Water 2023, 11, e1676. [CrossRef]
559. Knutti, R. Climate model confirmation: From philosophy to predicting climate in the real world. In Climate Modelling: Philosophical

and Conceptual Issues; Springer: Cham, Switzerland, 2018; pp. 325–359.
560. Afan, H.A.; Ibrahem Ahmed Osman, A.; Essam, Y.; Ahmed, A.N.; Huang, Y.F.; Kisi, O.; Sherif, M.; Safelnasr, A.; Chau, K.;

El-Shafie, A. Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques. Eng. Appl.
Comput. Fluid Mech. 2021, 15, 1420–1439. [CrossRef]

561. Beven, K.J. On hypothesis testing in hydrology: Why falsification of models is still a really good idea. Wiley Interdiscip. Rev. Water
2018, 5, e1278. [CrossRef]

562. Höge, M.; Wohling, T.; Nowak, W. A primer for model selection: The decisive role of model complexity. Water Resour. Res. 2018,
54, 1688–1715. [CrossRef]

563. Baartman, J.E.; Melsen, L.A.; Moore, D.; van der Ploeg, M.J. On the complexity of model complexity: Viewpoints across the
geosciences. Catena 2020, 186, 261. [CrossRef]

564. Hill, M.C. The practical use of simplicity in developing ground water models. Groundwater 2006, 44, 775–781. [CrossRef] [PubMed]
565. Babu, G.J. Resampling methods for model fitting and model selection. J. Biopharm. Stat. 2011, 21, 1177–1186. [CrossRef] [PubMed]
566. Lever, J.; Krzywinski, M.; Altman, N. Model selection and overfitting. Nat. Methods 2016, 13, 703–704. [CrossRef]
567. Doherty, J.; Christensen, S. Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water

Resour. Res. 2011, 47. [CrossRef]
568. Castelletti, A.; Galelli, S.; Restelli, M.; Soncini-Sessa, R. Data-driven dynamic emulation modelling for the optimal management

of environmental systems. Environ. Model. Softw. 2012, 34, 30–43. [CrossRef]
569. Aanonsen, S.I. Efficient history matching using a multiscale technique. SPE Reserv. Eval. Eng. 2008, 11, 154–164. [CrossRef]
570. Asher, M.J.; Croke, B.F.; Jakeman, A.J.; Peeters, L.J. A review of surrogate models and their application to groundwater modeling.

Water Resour. Res. 2015, 51, 5957–5973. [CrossRef]
571. Yu, X.; Cui, T.; Sreekanth, J.; Mangeon, S.; Doble, R.; Xin, P.; Rassam, D.; Gilfedder, M. Deep learning emulators for groundwater

contaminant transport modelling. J. Hydrol. 2020, 590, 125351. [CrossRef]

https://doi.org/10.1016/j.advwatres.2019.03.011
https://doi.org/10.3390/s150304837
https://www.ncbi.nlm.nih.gov/pubmed/25730486
https://doi.org/10.1145/3453652
https://doi.org/10.3389/fphy.2020.00253
https://doi.org/10.2139/ssrn.4534217
https://doi.org/10.3390/app11114972
https://doi.org/10.1016/j.molliq.2019.111911
https://doi.org/10.1109/MCG.2021.3055971
https://doi.org/10.17226/11970
https://doi.org/10.1016/j.jhydrol.2022.127630
https://doi.org/10.3390/e25081186
https://doi.org/10.1007/s11269-015-1188-3
https://doi.org/10.1016/j.jhydrol.2020.125776
https://doi.org/10.1016/j.jhydrol.2018.12.007
https://doi.org/10.1029/2011wr011044
https://doi.org/10.3390/w11071463
https://doi.org/10.1016/j.jhydrol.2020.124681
https://doi.org/10.1002/wat2.1676
https://doi.org/10.1080/19942060.2021.1974093
https://doi.org/10.1002/wat2.1278
https://doi.org/10.1002/2017WR021902
https://doi.org/10.1016/j.catena.2019.104261
https://doi.org/10.1111/j.1745-6584.2006.00227.x
https://www.ncbi.nlm.nih.gov/pubmed/17087747
https://doi.org/10.1080/10543406.2011.607749
https://www.ncbi.nlm.nih.gov/pubmed/22023685
https://doi.org/10.1038/nmeth.3968
https://doi.org/10.1029/2011wr010763
https://doi.org/10.1016/j.envsoft.2011.09.003
https://doi.org/10.2118/92758-PA
https://doi.org/10.1002/2015WR016967
https://doi.org/10.1016/j.jhydrol.2020.125351


Appl. Sci. 2024, 14, 3675 59 of 65

572. Hugman, R.; Doherty, J. Complex or Simple—Does a Model Have to be One or the Other? Front. Earth Sci. 2022, 10, 867379.
[CrossRef]

573. Su, D.; Mayer, K.U.; MacQuarrie, K.T. MIN3P-HPC: A high-performance unstructured grid code for subsurface flow and reactive
transport simulation. Math. Geosci. 2021, 53, 517–550. [CrossRef]

574. Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT User’s Guide: A Simulation Program for Non-Isothermal Multiphase
Reactive Geochemical Transport in Variable Saturated Geologic Media (No. LBNL-55460); Lawrence Berkeley National Laboratory
(LBNL): Berkeley, CA, USA, 2004.

575. Yeh, G.T.; Li, Y.; Jardine, P.M.; Burgos, W.D.; Fang, Y.L.; Li, M.H.; Siegel, M.D. HYDROGEOCHEM 4.0: A Coupled Model of Fluid Flow,
Thermal Transport, and HYDROGEOCHEM-Ical Transport through Saturated Unsaturated Media Version 4.0; ORNL/TM-2004/103;
Ridge National Laboratory: Oak Ridge, TN, USA, 2004.

576. Lichtner, P.C.; Hammond, G.E.; Lu, C.; Karra, S.; Bisht, G.; Andre, B.; Mills, R.; Kumar, J. PFLOTRAN User Manual: A Massively
Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes (No. LA-UR-15-20403); Los Alamos National
Laboratory (LANL): Los Alamos, NM, USA; Sandia National Laboratory (SNL-NM): Albuquerque, NM, USA; Lawrence Berkeley
National Laboratory (LBNL): Berkeley, CA, USA; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA; OFM Research:
Redmond, WA, USA, 2015.

577. Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen,
J.C.L.; et al. Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 2015, 19, 445–478. [CrossRef]

578. Brookfield, A.E.; Ajami, H.; Carroll, R.W.H.; Tague, N.; Sullivan, P.L.; Condon, L. Recent advances in integrated hydrologic
models: Integration of new domains. J. Hydrol. 2023, 620, 129515. [CrossRef]

579. Bower, K.M.; Gable, C.W.; Zyvoloski, G.A. Grid resolution study of ground water flow and transport. Groundwater 2005, 43,
122–132. [CrossRef]

580. Schwartz, M.O. Groundwater contamination associated with a potential nuclear waste repository at Yucca Mountain, USA. Bull.
Eng. Geol. Environ. 2020, 79, 1125–1136. [CrossRef]

581. Rink, K.; Bilke, L.; Kolditz, O. Visualisation strategies for environmental modelling data. Environ. Earth Sci. 2014, 72, 3857–3868.
[CrossRef]

582. Tizón, J.M.; Becerra, N.; Bercebal, D.; Grabowsky, C.P. Trimpack: Unstructured Triangular Mesh Generation Library. arXiv 2023,
arXiv:2302.02795.

583. Trucano, T.G.; Swiler, L.P.; Igusa, T.; Oberkampf, W.L.; Pilch, M. Calibration, validation, and sensitivity analysis: What’s what.
Reliab. Eng. Syst. Saf. 2006, 91, 1331–1357. [CrossRef]

584. Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water
quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752.
[CrossRef]

585. Freyberg, D.L. An exercise in ground-water model calibration and prediction. Groundwater 1988, 26, 350–360. [CrossRef]
586. Hunt, R.; Fienen, M.; White, J.T. Revisiting “an exercise in groundwater model calibration and prediction” after 30 years: Insights

and new directions. Groundwater 2020, 58, 168–182. [CrossRef]
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