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Abstract: Inference plays a key role in reading comprehension. However, assessing inference in
reading is a complex process that relies on the judgment of trained experts. In this study, we explore
objective and automated methods for assessing inference in readers’ responses using natural language
processing. Specifically, classifiers were trained to detect inference from a pair of input texts and
reader responses by fine-tuning three widely used pre-trained language models. The effects of the
model size and pre-training strategy on the accuracy of inference classification were investigated.
The highest F1 score of 0.92 was achieved via fine-tuning the robustly optimized 12-layer BERT
model (RoBERTa-base). Fine-tuning the larger 24-layer model (RoBERTa-large) did not improve
the classification accuracy. Error analysis provides insight into the relative difficulty of classifying
inference subtypes. The proposed method demonstrates the feasibility of the automated quantification
of inference during reading, and offers potential to facilitate individualized reading instructions.
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1. Introduction
1.1. Automating the Assessment of Reading Comprehension Skills

Natural language processing (NLP) can improve productivity in many areas. This is
especially true for organizations that deal with large volumes of textual data [1]. For
example, NLP helps users to identify and extract key entities, facts, and relationships from
text to build knowledge bases [2]. These knowledge bases become valuable resources for
quick information access and decision making. In addition, in customer service, sentence
classification can be used to automatically categorize customer inquiries, complaints, or
feedback [3]. This enables quicker routing to the appropriate department or personnel,
thereby reducing response times and improving customer satisfaction. Furthermore, senti-
ment analysis, a special case of sentence classification, can automatically identify positive,
negative, or neutral sentiments in customer feedback or social media posts [4]. This helps
organizations to quickly gauge public opinion and adjust their strategies accordingly.

Recent research has increasingly focused on using NLP to augment or even replace
human expert judgments. In the legal field, NLP-powered tools are accelerating case
preparation by efficiently sifting through large volumes of legal documents [5]. Similarly,
in the financial sector, NLP-based systems are enhancing the ability of analysts to predict
market trends by analyzing large and complex datasets [6], a task that is beyond human
capabilities. Similarly, in education, automated essay grading systems provide instant
feedback [7], thus allowing educators to spend more time on individualized instructions.

This study focuses on automating the assessment of reading comprehension skills
through the development and application of advanced NLP in education. Reading is a fun-
damental skill for the acquisition of knowledge [8]. Assessing reading skills is challenging
because reading involves multiple cognitive processes, such as letter–sound correspon-
dence, phonological memory, word recognition, sentence processing, and comprehen-
sion [9]. These individual skills are assessed using standardized tests [10]. The objectivity
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of standardized tests makes it possible to compare the reading skills of students from
different backgrounds using the same criteria. However, standardized tests often focus
on specific types of reading skills, potentially neglecting broader aspects of literacy, such
as critical thinking and engagement with diverse background knowledge [11]. To gain a
holistic understanding of a student’s reading skills, the interpretation of test results and
personalized feedback from human experts are essential.

Machine learning models are actively used to improve the accuracy of reading level
assessments. In [12], Petersen and Ostendorf used support vector machines to combine
lexical and syntactic features of a given text to assess its reading level. The corpus used
for this study was Weekly Readers, which consisted of 2400 articles from an educational
magazine designed for children of ages 7–10 in the United States. Their model outperformed
the traditional Flesch–Kincaid score [13], which is based on sentence length and the average
syllable count. In [14], Boonthum-Denecke et al. used latent semantic analysis (LSA) [15]
and word matching to first identify students’ reading strategies and then estimate their
reading comprehension scores. The correlation between predicted and actual reading scores
was low (<0.5), indicating that estimating reading comprehension skills is a difficult task.
In [16], Allen et al. used a linguistic measure of coherence, called the Coh-Matrix [17], and
LSA to assess the reading comprehension of high school students. Their predictions were
compared with standardized scores, using the Gates-MacGinitie reading skill test, level
10/12 [18], and the correlation between them was low (<0.5).

However, existing studies using machine learning models combine known linguistic
features to improve the overall accuracy of reading assessments. In contrast, this study
investigates a way to use pre-trained language models to assess a specific cognitive task
(inference) for reading. This would support human experts in assessing reading skills by
providing tools and platforms that streamline assessment processes using NLP.

1.2. Contributions of the Study

Specifically, this study was motivated by the fact that inference has been shown to play
a key role in reading comprehension, serving as a critical component in the construction
of meaning from text [19–21]. Inference allows readers to fill in gaps in explicit textual
information, facilitating the deeper understanding and integration of knowledge. Previous
research emphasizes its importance not only for comprehending literal content, but also
for engaging with the text at a deeper level [20], allowing for the application of prior
knowledge and the anticipation of subsequent narrative developments [21]. Enhancing
inferential skills could significantly improve reading comprehension outcomes, thereby
advancing literacy education practices.

However, the evaluation of inferences during reading is a complex process and is
subject to the judgment of human experts. Currently, readers’ cognitive processes during
reading are monitored by the think-aloud protocol [22–24]. First, readers read a given text
and verbally report their thoughts (Figure 1A). Then, the readers’ responses are transcribed
and evaluated by multiple evaluators (Figure 1B). This traditional method relies heavily on
qualitative analysis and the interpretive insights of the raters, which leads to inter-rater
variability and limits the scalability of the evaluation. This variability and the high resource
requirements underscore the need for the development of more objective and automated
methods for assessing inference in readers’ responses [25].

Thus, this study attempts to address these challenges by using NLP to automatically
evaluate reader responses. Specifically, we formulate the problem as sentence classification,
where a classifier is trained to classify a pair of input texts and reader responses as inferen-
tial or non-inferential (Figure 1C). The classifier is fine-tuned from pre-trained language
models that have been trained with large text corpora. These pre-trained models efficiently
produce the contextualized representations of a given text and are a good starting point for
developing a task-specific language model [26]. Further training on smaller, more focused
datasets which are relevant to the task at hand (inference classification) would allow for
the automated quantification of readers’ responses to a given text.
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and transcribed.  
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identical in meaning. In the last example in Table 2, there was no meaningful response 
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Figure 1. Using the think-aloud protocol, the subject’s response to each sentence is collected (A).
Human evaluators then assess the sentence–response pairs to determine whether an inference was
drawn (B). The proposed method is used to classify a sentence–response pair as inferential or not,
without having to involve human experts (C).

The remainder of this paper is organized as follows. Section 2 describes the data
collection, human expert evaluation, and the procedure of fine-tuning pre-trained language
models and their evaluation. In Section 3, we assess the accuracy of the inference classifica-
tion using the proposed method, and we analyze the error patterns. Then, in Section 4, we
discuss the results and their implications. In Section 5, we draw general conclusions with
future research directions.

2. Materials and Methods
2.1. Data Collection and Evaluation by Human Experts

A dataset of 720 sentence–response pairs was collected as follows. The stimulus text
in Korean consisted of 10 sentences taken from an elementary school reading textbook.
The average number of words per sentence was 9.2. The think-aloud protocol was ad-
ministered to 72 third- and fourth-grade elementary school students in public elementary
schools in South Korea. The participant’s verbal response to each sentence was recorded
and transcribed.

Among the total 720 sentence–response pairs, 58 pairs were removed because the
reader failed to produce any meaningful response. The remaining 662 sentence–response
pairs were used for further analysis. Three evaluators individually assessed each sentence–
response pair according to the nine inference types defined in a previous study [21] (summa-
rized in Table 1). Each evaluator first identified the type of inference and then determined
whether an inference was made (labeled as 1) or not (labeled as 0). The evaluators’ decisions
agreed on 642 sentence–response pairs (97%). For the mismatched 20 pairs (3%), evaluators
discussed until they reached the same conclusion. Among the 662 sentence–response pairs,
438 pairs were labeled as inference (1), and 224 were labeled as no inference (0).

Table 2 shows typical examples of sentence–response pairs in which inferences were
made. The evaluators agreed that, in the first example in Table 2, the inference was made
because the reader tried to make a prediction about what would come next based on
what had come before. In the second example in Table 2, the reader tried to connect the
background knowledge (The plants seem to be inactive in general.) when explaining the
given sentence. In the third example in Table 2, the reader tried to associate the information
in the given sentence with their background knowledge (The Venus firetrap is a famous
example of a plant that eats insects.). In the fourth example in Table 2, the reader’s response
was a simple paraphrase of the given sentence, and the sentence and response were almost
identical in meaning. In the last example in Table 2, there was no meaningful response
from the reader.
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Table 1. Inference types and definitions.

Inference Inference Type Definition

Inference

elaboration explanation about the contents of the current
sentence using background knowledge

prediction anticipation of what will occur next in the text

association concept from background knowledge, brought to
mind by the text

bridging connecting contents of the current sentence with
local/near or global/distant text information

metacognitive
response

reflection of understanding or agreement with
the text

evaluative comment opinion about the text

affective response emotion related to the contents of the text

Non-
inference

paraphrase
putting the current sentence or part of the current

sentence into their own words, or restating the
text verbatim

meaningless
response no response or meaningless response

Table 2. Examples of sentence–response pairs in which inferences were made.

Sentence Response Inference
Type

Plants prevent insects from
eating them in several ways.

I think plants discourage insects
from eating them in some ways,

such as thorns or bad smell.
prediction

Plants like roses produce
thorns to keep insects away.

A rose cannot do anything because
it’s a plant, but it has a lot of thorns.
When insects come, they get stung
and die. So, the insects cannot eat

the plant.

elaboration

Unusually, there are plants
that eat insects.

I think it refers to some plants that
eats insects, like the Venus flytrap! association

Plants prevent insects from
eating them in several ways.

It means that plants have different
ways of preventing insects from

trying to eat them.
paraphrase

Plants like roses produce
thorns to keep insects away. Hmm... I do not know. meaningless

response

2.2. Pre-Trained Language Models

In this study, three widely used Transformer-based pre-trained language models [27]
were selected to investigate their effectiveness for classifying inference. Due to the relatively
small sample size (662) when compared to the huge parameter space of Transformer-based
models, we decided to use BERT [24] and its variants in order to avoid overfitting. These
models, namely the BERT-base [28], RoBERTa-base [29], and RoBERTa-large [29], have
become fundamental in the field of natural language understanding due to their success in
capturing complex patterns and representations, achieved through extensive pre-training
on large corpora. The selection of these models allows for a comprehensive analysis of
their performance and adaptability in fine-tuning scenarios for inference classification.
Each model brings its own set of characteristics, such as model size, masking, and training
objectives, which are summarized in Table 3.
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Table 3. Comparison of pre-trained models’ architecture and training objectives.

Model BERT-Base RoBERTa-Base RoBERTa-Large

Number of layers 12 12 24

Number of
parameters 110 million 110 million 335 million

Masking static dynamic dynamic

Next sentence
prediction included removed removed

Korean versions of the three base models were pre-trained using the KLUE (Korean
Language Understanding Evaluation) benchmark dataset [30]. The benchmark contains
eight Korean natural language understanding tasks, including topic classification, semantic
textual similarity, natural language inference, named entity recognition, relation extrac-
tion, dependency parsing, machine reading comprehension, and dialogue state tracking.
The corpora used for this benchmark include news headlines, Wikipedia, Wikinews, policy
news, The Korea Economics Daily News, and Acrofan News for formal texts, and ParaKQC,
Airbnb reviews, and the NAVER Sentiment Movie Corpus for colloquial texts. The tok-
enizer for the dataset is a morpheme-based sub-word tokenizer [30], which first divides an
input text into morphemes using a morphological analyzer, and then tokenizes them using
the byte pair encoding (BPE) technique [31]. The pre-trained models and the tokenizer are
publicly available [32–34].

2.3. Transfer Learning and Evaluation Using k-Fold Cross-Validation

The inference classifiers were trained by fine-tuning the three pre-trained language
models as follows. Each pair of input sentences and corresponding responses was con-
catenated with the separator symbol ([SEP]) between them. The combined text was then
provided as the input. For each base model, the last layer (classification head) was replaced
with a dense layer with the output size set to one, and its weights were initialized with
random values. As a result, the model will produce a single number for each input, and
this output is used as the logit of the target class. The loss is defined by the binary cross
entropy between the output of the model and true class label as follows:

Loss = −(y log(σ(z)) + (1 − y)log(σ(z))),
σ(z) = 1

1+e−z ,

where y is the true class label (0 or 1), z is the model output, and σ is the sigmoid function
that transforms the input logit into a probability. This loss is minimized using the Adam
optimizer [35].

Hyperparameters for the training process were optimized as follows: As suggested by
the authors of the pre-training models [26], the batch size, learning rate, warm-up ratio,
and weight decay were varied independently, and the highest F1 score for each model was
reported. First, the batch size was set to either 4, 8, 16, and 32. Larger batch sizes provide
a more accurate estimate of the gradient, resulting in more stable training. However,
they require more memory and processing power. Second, the learning rate was set to
either 10−5, 2 × 10−5, 3 × 10−5, and 5 × 10−5. Too low a learning rate can lead to a long
convergence time or to being fixed at a local minimum, while too high a learning rate can
cause the training to be unstable and diverge. Third, the warm-up ratio was set to either 0,
0.1, 0.2, and 0.6. During the warm-up iterations, the learning rate gradually increased from
zero to the target learning rate. This technique helps to stabilize the fine-tuning in the early
iterations. Fourth, the weight decay was set to either 0, 0.01, 0.02, 0.04, and 0.08. The weight
decay regularizes the model and prevents overfitting by penalizing large weights. The four
hyperparameters varied independently, resulting in a total of 320 configurations.
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For each base model, five-fold cross-validation was performed for each training configu-
ration in order to rigorously assess the classification accuracy and generalization ability of
the model. Specifically, the dataset was randomly divided into five distinct subsets, so that
the proportions of the inference subtypes were equal. Four of these subsets were used for
training and the remaining one was used for validation in order to calculate the F1 score with
corresponding precision and recall scores. This cycle was repeated five times, with each subset
serving as a validation set once. As a result, five F1 scores were collected for each training
configuration. The configuration corresponding to the highest average F1 score was found for
each base model. The five F1 scores of the best model were compared for models that were
fine-tuned from different base models, using the paired t-test.

3. Results
3.1. Accuracy of Inference Classification

Table 4 shows the hyperparameters that resulted in the best models. Different batch
sizes yielded the highest F1 scores for different base models. In contrast, the same learning
rate (10−5) and warm-up ratio (0) corresponded to the highest F1 scores. Here, the best
warm-up ratio of zero means that the warm-up was not necessary. A non-zero weight decay
was useful only for the largest model (RoBERTa-large). This suggests that the regularization
via weight decay was effective only for the largest model.

Table 4. Hyperparameters for the best models.

Base Model Batch Size Learning Rate Warm-Up
Ratio Weight Decay

BERT-base 16 10−5 0 0
RoBERTa-base 8 10−5 0 0
RoBERTa-large 32 10−5 0 0.02

Table 5 shows the classification accuracies of the best models fine-tuned from the three
pre-trained models. Both the precision and recall scores of the RoBERTa-base model were
higher than those of the BERT-base model. As a result, the F1 score of the RoBERTa-base
model was higher than that of the BERT-base model. The precision score of the RoBERTa-
large model was lower than that of the RoBERTa-base model, but the recall scores of the
two models were the same. As a result, the F1 score of the RoBERTa-large model was lower
than that of the RoBERTa-base model.

Table 5. Accuracies of the best models.

Base Model Precision Recall F1

BERT-base 0.89 0.86 0.87
RoBERTa-base 0.91 0.94 0.92
RoBERTa-large 0.87 0.94 0.90

Figure 2 shows the F1 scores of the inference classification by fine-tuning the three
pre-trained language models. First, training the inference classifier from the BERT-base
model resulted in an average F1 score of 0.87, with a standard error of the mean (SEM)
of 0.01. Second, training the inference classifier from the RoBERTa-base model resulted
in a higher average F1 score of 0.92, with an SEM of 0.01. The F1 score of the fine-tuned
RoBERTa-base model was significantly higher than that of the fine-tuned BERT-base model
(paired t-test, p < 0.05). Third, training the classifier from the RoBERTa-large model resulted
in a lower average F1 score of 0.90, with a higher SEM of 0.02. However, the difference in the
F1 scores of the fine-tuned RoBERTa-base and RoBERTa-large models were not statistically
significantly (paired t-test, p > 0.05).
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3.2. Error Analysis

Figure 3 shows the proportions of the inference subtypes in the errors. The propor-
tions of the inference subtypes in the entire dataset are shown as gray bars for reference.
The proportions of the inference subtypes in inaccurate predictions are shown in red, green,
and blue for the BERT-base, RoBERTa-base, and RoBERTA-large models, respectively.
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A comparison of the proportions of the inference subtypes in the errors with the
proportion in the entire dataset shows the relative difficulty of classifying the inference
subtypes. The proportion of elaboration and bridging subtypes in the errors decreased
as larger language models were used. This suggests that larger language models classify
these types of inferences with a higher accuracy. In contrast, the proportions of evaluative
comments and paraphrases increase as larger language models are used. This suggests
that these inference subtypes are more susceptible to overfitting. Furthermore, the largest
language model (RoBERTa-large) made more errors in classifying meaningless responses
than the other two language models (BERT-base and RoBERTa-base). This is another
indication of overfitting.

4. Discussion
4.1. Effects of Pre-Trained Language Models on the Classification Accuracy

The accuracy of inference classification is significantly influenced by the choice of the
base pre-trained language model. The comparison of the F1 scores based on the BERT-base
and RoBERTa-base models shows the effect of the training strategies used during the
pre-training phase of a language model on the classification accuracies of the fine-tuned
models. The more advanced training strategies used for the RoBERTa-base model resulted
in significantly higher F1 scores for the inference classification than that of the BERT-base
model of the same size. This is consistent with previous findings which indicate that models
trained with RoBERTa-base models outperform models trained with BERT-base models for
various downstream tasks [22].

Furthermore, the comparison of the F1 scores based on the RoBERTa-base and RoBERTa-
large models suggests that the larger model is not necessarily better for classifying inference
in the current dataset. The RoBERTa-base and RoBERTa-large models share the same Trans-
former architecture and training objective (masked language model with dynamic masking),
but the main difference between the two models is the number of layers (12 vs. 24) and the
model sizes (110 million vs. 355 million parameters). Despite the greater representational
capacity, the RoBERTa-large model did not perform significantly better than the smaller
model with the same architecture. The average F1 score became even lower, and the SEM
of the F1 scores became larger. The error analysis using the inference subtypes shows that
the largest language model (RoBERTa-large) made more errors in classifying evaluative
comments, paraphrases, and meaningless responses.

This lower accuracy of the larger model is probably due to overfitting. In Table 4, the
optimal weight decay value was zero for RoBERTa-base and non-zero for RoBERTa-large.
This suggests that regularization with weight decay worked for RoBERTa-large, yielding a
higher F1 score than RoBERTa-large without weight decay. Without weight decay, the F1
score of RoBERTa-large would be even lower than that of RoBERTa-base. More data are
needed to train the larger model, and a well-trained small model (RoBERTa-base) would be
the preferred choice for inference classification with a relatively small dataset.

4.2. Insights from the Error Analysis for Automating Inference Classification

Error analysis using the inference subtypes provides further insights into automated
inference classification as follows:

Elaboration was the most common subtype of inference in the dataset, and the error
rates of elaboration decreased for more complex (RoBERTa-base) and larger (RoBERTa-
large) models. Given enough elaboration samples for training, scaling up the model could
further improve the classification accuracy of elaboration.

Paraphrase, the second most common inference subtype in the dataset, shows a
different pattern. The error rates when analyzing paraphrases using all the three models
were higher than the proportion in the dataset, and there was no clear order among the
models. This suggests that fine-tuning the pretrained models is not effective for paraphrase
classification.
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The accuracies for classifying elaboration and inference seem to be in a trade-off
relationship. Because paraphrase is classified as non-inferring, sentence pairs which are too
close are classified as negative samples. This is the opposite of the typical applications that
measure the similarity between sentences and look for meaningfully related sentences. To
correctly classify paraphrases as non-inferring, the classifier should reject similar sentence
pairs. However, this would reduce the accuracy of classifying elaborations. Solving this
problem would require new model architectures or training strategies, which are topics for
future research.

For the classification of evaluative comments and meaningless responses, the error
rates increased for more complex (RoBERTa-base) and larger (RoBERTa-large) models.
The low accuracy in classifying evaluative comments would be due to a lack of samples. In
contrast, there were more samples of meaningless responses, but the error rates increased
much more for the largest model (RoBERTa-large). These different patterns in error rates
between the different subtypes suggest that the degree of overfitting varies for different
inference subtypes.

5. Conclusions

In this study, we investigated the feasibility of using language models to classify the
inferences of sentence–response pairs. The proposed method achieved high F1 scores by
fine-tuning a Transformer-based pre-trained language models. Specifically, the highest F1
score, 0.92, was achieved by fine-tuning RoBERTa-base, which was higher than that of a
model with the same size fine-tuned from BERT-base. A larger language model (RoBERTa-
large) did not increase the classification accuracy. This suggests that choosing pre-trained
language models of high quality and appropriate size is important.

The proposed method would allow the automated quantification of reader responses
to a given text and improve the effectiveness of the think-aloud protocol. In the think-aloud
protocol, reader responses are open ended and provide rich information which requires a
trained expert to evaluate. This study opens the possibility of simulating trained experts in
evaluating inferences, which is one of the key qualities of an effective reader.

Further work could be conducted in three ways. First, expanding the genre of the
stimulus text would be a natural next step. Different genres have unique structures, styles,
and conventions that would affect reading behaviors. Therefore, confirming the feasibility
of our method for different genres would test the generality of our method. Second,
classifying inference subtypes would be an interesting future work. This requires a larger
dataset, so that enough samples are collected for each inference subtype. Third, another
future research direction is to adapt the proposed method to educational settings. For
example, the automated inference classification of user responses could enrich interactive
learning by tailoring content to meet individual learning needs and preferences. We are
eager to further explore applications and improve learning outcomes.
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