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Abstract: Point clouds obtained with 3D scanners in realistic scenes inevitably contain corruption,
including noise and outliers. Traditional algorithms for cleaning point cloud corruption require the
selection of appropriate parameters based on the characteristics of the scene, data, and algorithm,
which means that their performance is highly dependent on the experience and adaptation of the
algorithm itself to the application. Three-dimensional object recognition networks for real-world
recognition tasks can take the raw point cloud as input and output the recognition results directly.
Current 3D object recognition networks generally acquire uniform sampling points by farthest
point sampling (FPS) to extract features. However, sampled defective points from FPS lower the
recognition accuracy by affecting the aggregated global feature. To deal with this issue, we design
a compensation module, named offset-adjustment (OA). It can adaptively adjust the coordinates
of sampled defective points based on neighbors and improve local feature extraction to enhance
network robustness. Furthermore, we employ the OA module to build an end-to-end network based
on PointNet++ framework for robust point cloud recognition, named R-PointNet. Experiments
show that R-PointNet reaches state-of-the-art performance by 92.5% of recognition accuracy on
ModelNet40, and significantly outperforms previous networks by 3–7.7% on the corruption dataset
ModelNet40-C for robustness benchmark.

Keywords: R-PointNet; 3D deep learning; point clouds; object recognition; real-world application

1. Introduction

Point cloud refers to a collection of points that represent the spatial distribution
and surface characteristics of targets in three-dimensional space. It is commonly used to
represent three-dimensional data and contains rich information such as XYZ coordinates,
color, intensity value, and time [1]. Point clouds can be obtained using 3D scanners or
generated through computer-aided design (CAD) models. With the increasing popularity
of 3D data acquisition devices, point clouds have garnered significant attention in various
fields including object detection, autonomous driving [2,3], and robotics [4,5]. However,
due to the factors such as equipment accuracy and environmental conditions, point clouds
obtained from realistic scenes using 3D scanners often contain corruption, including noise
and outliers. Figure 1 shows an example of a raw real-world scanned point cloud. In
real-world applications, the raw point cloud is usually cleaned up by discarding outliers
and denoising the remaining points prior to point cloud recognition, in order to enhance
recognition accuracy.

Traditional methods for clearing raw point cloud corruption have been researched in
numerous cases [6], such as invalid value removal, statistical approaches [7], radius filtering
methods, and so forth. Expectedly, no single traditional method for filtering raw point
cloud corruption dominates in the recognition task of point clouds. The choice of algorithm
typically relies on the specific circumstances of the recognition application or the equipment
used for data acquisition. Furthermore, the selection of the appropriate parameters for
cleaning point cloud corruption is contingent upon the scene’s characteristics, the data in
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question, and the algorithm employed. Consequently, the performance of these methods
heavily relies on the experience and adaptability of the algorithm to the application.
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Figure 1. One example of the real-world point clouds with corruption (noise and outliers). Noise is a
random error or bias in the point cloud acquisition process and is generally not a real value, outliers
are real point cloud data that are not related to the target object.

Since the emergence of deep learning, various deep 3D point cloud recognition archi-
tectures have been proposed. Typically, there are three approaches for recognition. The first
approach is based on 3D voxel, which convert spatially distributed cluttered point clouds
into 3D voxel grids and then recognize them by a well-established 2D or 3D convolutional
network. The second approach focuses on multi-view projection images, which project
unstructured point clouds into 2D images for classification; and the third utilize point
clouds directly. However, both the first and second approaches suffer from the drawback
of losing original information through the transformation of point cloud formats. The
pioneering work, PointNet [8], addresses this issue by directly operating on raw point
clouds and capturing global features for recognition. Furthermore, in order to improve the
recognition accuracy and capture local features of the data, PointNet++ [9] was proposed.
However, increasing model complexity results in a slight decrease in the robustness of the
network when dealing with the corruption of raw point clouds in realistic scenarios.

In this paper, we propose a robust end-to-end point cloud recognition network, named
R-PointNet. Our network can capture local discrepancy features through the compen-
sation module, offset-adjustment (OA), and effectively handle noise and outliers in raw
point clouds.

Among the various methods used for point cloud recognition, ModelNet40 [10] is
considered the most widely accepted benchmark. Over the years, there have been continu-
ous improvements and innovations in network models, leading to enhanced recognition
accuracy on ModelNet40. However, these advancements only evaluate model performance
from a single perspective using clean data. Given the complexity and significance of 3D
point clouds in real-world application, it is crucial to conduct comprehensive robustness
benchmarking of point cloud recognition models. In order to better approximate the
deficiencies of real-world scanned point clouds and more accurately evaluate our net-
work, we tested R-PointNet on the ModelNet40-C dataset. ModelNet40-C [11], inspired by
ImageNet-C, is the first systematic dataset for 3D point cloud recognition robustness bench-
mark (Figure 2). Many currently representative 3D point cloud recognition models (e.g.,
PointNet, PointNet++, DGCNN [12], and PCT [13]) exhibit error rates on ModelNet40-C
that are nearly three times higher compared to the original ModelNet40.
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Figure 2. Visualizations of ModelNet40-C. The ModelNet40-C dataset consists of 15 corruption types
that represent different out-of-distribution shifts in the real-world applications of point clouds.

Our main contribution can be summarized as follows: (1) We design a compensation
module, offset-adjustment (OA), to prevent the influence of corruption of raw point clouds.
(2) We propose an end-to-end robust network, R-PointNet, for point cloud recognition.
With the proposed OA module, our network is more robust for noise and outliers. (3) We
provide an analysis of robustness in similar realistic deficiency scenarios using the proposed
R-PointNet and other popular networks.

2. Related Work
2.1. Corruption Processing Method

Raw point clouds usually have corruption, including noise and outliers. Extensive
research efforts over the years have resulted in various denoising approaches specifically
designed to address different forms of corruption [14,15]. For instance, statistical methods
are used to categorize outliers [7], while local smoothing is adjusted using additional input
parameters [16], etc. However, these traditional algorithms, while aiming to remove noise,
tend to smooth out crucial geometric features, such as sharp boundaries and geometric
texture details. As a result, point cloud corruption processing algorithms must strike a bal-
ance between smoothing and preserving important features. Furthermore, certain classical
algorithms require users to input parameters like search radius, which can significantly
impact the results and potentially render parameter-based algorithms less effective if users
are uncertain about selecting optimal parameters. These challenges have a detrimental
impact on the practical applications of point cloud processing in real-world scenarios.

Deep learning corruption processing methods typically employ a sampling strategy
to reduce computational effort. However, most sampling methods are limited by noise
sensitivity, are not data-driven [9,17], or ignore spatial distributions [18]. SO-Net [19]
utilizes an unsupervised neural network, the self-organizing map (SOM), to exploit the
spatial distribution of point clouds. Then, PointNet++ [9] is used for multiple smaller
sampling “nodes”. However, SO-Net does not incorporate adaptive sampling. Under
the assumption of local label consistency, several productions use the geometric center
of the voxel grid to represent the sampled points uniformly [20], ignoring differences in
the effect of point distribution. These approaches, however, are extremely sensitive to
noise and cannot simultaneously understand the spatial distribution of sampled points.
TriangleNet [21] is designed to extract features invariant to position, rotation, and scaling
disturbances. Although Triangle-Net achieves excellent robustness in the case of extreme
corruption, its performance on clean data is not as strong. There are other works to improve
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the robustness of models by denoising and upsampling, voting on downsampling point
clouds, and exploiting the relative positions of local features.

In summary, traditional methods for cleaning point cloud corruption heavily rely on
the expertise and suitability for specific applications, thus posing challenges in handling
the noise data of a general nature without requiring additional user intervention. On
the contrary, the deep learning approaches offer the advantage of processing corruption
without human intervention, but their complexity and lack of accuracy often limit their
effectiveness for real-world tasks.

2.2. Point Cloud Recognition Network

With the remarkable advancement of 2D-based computer vision model architectures,
there has been a rise in the emergence of 3D point cloud-based recognition methods that
involve the proposition of various architectures and operations. Notably, three of the
most typical approaches are based on 3D voxels, multi-view projection images, and point
clouds [22].

Some early studies converted cluttered point clouds distributed in space into 3D voxel
grid representation and then used refined 2D or 3D convolutional networks to achieve shape
classification [23]. PointGrid [24], which combined points and voxels, can extract the local
features of 3D objects better and achieve great results. However, point clouds suffer from
a certain degree of original information loss in the process of voxelization preprocessing
due to the resolution. Meanwhile, these methods are highly memory-consuming and
generally inefficient in network training with 3DCNN. In contrast, MVCNN [25] takes
a set of views of a 3D object by 12 cameras with different viewpoints and then inputs
them into the convolutional neural network to obtain the features of each view, and then
the features of multi-view images are maximally pooled to obtain the global features and
classification. GVCNN [26] first groups different views, then aggregates view features in
groups to obtain inter-group features and finally weights different inter-group features
by the learned weights to obtain global features before doing classification. Although
the multi-view-based approach has achieved good results, there is no definite conclusion
about how the number of views should be determined. In addition, multiple views cannot
completely cover the 3D objects, especially when the objects have an occlusion situation,
which poses a great challenge.

PointNet [8] pioneered extracting each point feature by multilayer perceptron and
integrating all point features to obtain the global features of the point cloud with max-
pooling, and then performs classification prediction through a fully connected layer, which
achieves good classification results. PointNet++ [9] used grouped feature extraction to solve
the problem of not being able to capture the local features of point clouds. PointCNN [27]
and RSCNN [28] refactor the traditional pyramid CNN to improve the local feature learning
for point cloud recognition. DGCNN [12] constructs a dynamic graph of point cloud
data based on graph data structure for representation learning. More recently, PCT [13]
incorporates Transformer [29] blocks into point cloud learning achieving a state-of-the-art
performance.

In conclusion, the current point cloud recognition networks mostly focus on enhanc-
ing accuracy on clean datasets by architectural innovations, to some extent ignoring the
corruption of real-world point clouds.

3. Method

This paper proposes a robust end-to-end network to deal with unclean point clouds
on the basis of PointNet++. In this section, we first detail the advantages of PointNet++
network architecture and ideas for improvement. Thereafter, we show how the offset-
adjustment (OA) module enhances network robustness. We then explain the design of
R-PointNet.
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3.1. PointNet++ Architecture

Innovations in 3D object recognition network architecture have continued to improve
the accuracy on point cloud synthesis datasets. Despite this, PointNet++ performs equally
well as the latest architectures after controlling factors independent of the network archi-
tecture via comprehensive comparison experiments [30]. Moreover, PointNet++ achieved
the lowest error rate of classification results on ModelNet40-C among the existing network
architectures as described in [11].

As the first object recognition network that directly uses point clouds as input, PointNet
attracted widespread attention and improvement. PointNet++ was proposed to improve
its poor ability of information integration on the local regions of point clouds. PointNet++
acquires the local features of different regions with sampling and grouping layers. Then,
the network integrates the local features of different levels into local–global feature through
several step-by-step downsampling operations, named set abstraction.

PointNet++ can be regarded as an encoder–decoder structure, as shown in Figure 3.
Encoder is a downsampling process, which achieves multi-level downsampling by several
set abstractions to obtain the local features of different regions.
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coder process.

The set abstraction consists of three layers: Sampling layer, Grouping layer, and
PointNet layer. The Sampling layer downsamples the point set with the farthest point
sampling (FPS), reducing the input point set to a smaller size. The FPS algorithm makes the
sampled points as far away from each other as possible, which has the benefit of making
the downsampling results more uniform and allowing the network to cover as many points
in space as possible. The sampling process can be understood as selecting N1 key points
among N points. The Grouping layer takes each of these key points as the center and finds
its neighbors of fixed size (size of K) to form a local neighborhood. The purpose of the
grouping layer is to generate N1 local neighborhoods and output their local features. The
PointNet layer uses a multi-layer perceptron and max-pooling to extract local features
and can be considered a local feature learner. The last output of set abstraction can be
considered a global feature. This also means that the network obtains the local–global
features of different scales and levels at last.

The decoder of the classification task transmits the local–global feature obtained by
the encoder into several fully connected layers, and finally outputs the recognition result
with SoftMax.

3.2. Local Operation

The grouping layer of set abstraction is an important part of the PointNet++ archi-
tecture. The grouping layer acquires local features by delineating a fixed regional scale,
which can have a significant impact on the subsequent point cloud recognition. PointNet++
divides the region by ball query, which is to define a certain radius from the center of the
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sampling point and find the points within that radius as neighbors. In order to ensure that
the number of sampled points is the same for each local neighborhood, if the number of
points in the sampling range is larger than the scale K, then the first K points are directly
taken as neighbors; if it is smaller than K, then a point is directly resampled (the closest one
to the center) to make up to the scale K. The advantage of ball query is that a fixed area
scale is guaranteed. A fixed scale makes local features more generalizable in space and
more suitable for the feature extraction of local regions.

However, the search radius is determined by the ball query method: if the realistic
point cloud data have serious defects, neighbors near the sampling point will be lost, and
the robustness of network will be decreased. To overcome this problem, we can find the K-
nearest points in coordinate space to delineate the local region by kNN (K-nearest neighbor
point sampling). While a sampled defective point lack neighbors in the local region, kNN
will still select the remaining points around the sampling point as neighbors, as shown in
Figure 4. Some studies have proven that k-NN generally performs better than ball-query as
a local operator in the corruption situation [31]. The reason is that outliers will lose their
neighbors in ball-query due to its fixed searching radius, but k-NN will choose neighbors
from the remaining points.
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3.3. Offset-Adjustment (OA) Module

Among point cloud recognition tasks, most of the recognition methods based on raw
point clouds adopt some sampling algorithms to select points from raw point clouds and
then perform local feature learning to recognize point clouds. Most existing sampling
algorithms, such as FPS (farthest point sampling), GSS (Gumbel subset sampling), and
PDS (Poisson disk sampling), have a common problem: they all may select outliers in raw
point clouds, which affect the recognition process. Such a situation is particularly sensitive
to real-world data, which also explains the poor performance of the network model in
ModelNet40-C.

As mentioned previously, although the FPS algorithm can acquire relatively uniformly
sampled points, it generates problems in the realistic applications of point cloud recognition
due to the corruption of raw point clouds. This is the reason that we propose to delineate the
grouping range by kNN instead of the ball query method in the grouping layer. However,
the defective sampling points acquired by the FPS still have a bad impact on the subsequent
recognition. To deal with it, we propose the OA module to mitigate the impact of each
sampling defect point.

We assume that Ts ∈ RPs∗3 denotes the set of points obtained from a layer after
downsampling by FPS, in which Ps noise points are required to be processed; Es ∈ RPs∗Dl

denotes the set of features of the point set after downsampling; pi and ei denotes the
coordinates and features of a point separately in the point set after the downsampling
operation.

First, the OA module obtains Ts and Es by FPS from the point set of the sampling layer.
After that, the nearest points (neighbors) are searched for each sampled point grouped by
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kNN, and the k neighbors of sampled point pi are: pi,1, . . . , pi,k ∈ N(pi); the corresponding
set of neighbors’ features are ei,1, . . . , ei,k. Then, the group features are updated for all
neighbors with the self-attention mechanism [30]. The feature update for neighbor ei,k can
be written as

ei,k = OA
(
S
(

pi,k, pi,j
)
ξ
(

pi,j
)
, ∀pi,jϵN(pi)

)
(1)

where ei,k denotes the feature of the k-th neighbor of the i-th sampled point, and S
(

pi,k, pi,j
)

is a relationship function to calculate the high-level relationship between the neighbors
of the sampled point pi selected after downsampling, which is to find the dot-product
similarity of the two points. The formula is as follows

S
(

pi,k, pi,j
)
= softmax

(
ϕ(ei,k)

Tθ
(
ei,j

)
/
√

D′
)

(2)

where ϕ and θ are implemented by one-dimensional convolution, and both are two in-
dependent linear transformations; the one-dimensional convolution Conv: RDl → RD′

,
Dl and D′ are the number of input and output channels, respectively; ξ

(
pi,j

)
= wξ ei,j is a

linear transformation that serves to perform a dimensional transformation, transforming
the dimension from Dl to D′; OA() is an aggregation function, which finally aggregates
the features of the k-th neighbor to all other neighbors.

So far, we obtained the updated features ei,j for the k-th neighbor of the i-th sampling
point. Then, using the multilayer perceptron and the SoftMax activation function, we can
obtain wp and w f , which can be expressed as the normalized weights of each coordinate
and feature, with the following equations

Fp =
{

σp(pi,k)
}K

k=1, Wp = so f tmax
(

Fp
)
, (3)

Ff =
{

σe(ei,k)
}K

k=1, We = so f tmax
(

Ff

)
, (4)

where Fp, Ff , Wp, We ∈ RK×1 are the outputs after normalized weights by multilayer
perceptron and SoftMax function. Finally, the adjusted coordinates p∗i and features e∗i of
sampling point pi are obtained by wp and w f , with the following equations

p∗i = WT
P P, P =

{
pi,k

}K
k=1 (5)

e∗i = WT
e E, E =

{
ei,k

}K
k=1 (6)

To put it briefly, the OA module acquires relatively uniform points from the sampling
layer, and then uses kNN to find the neighbors of each sampling point and adaptively
updates the coordinates and features for each sampling point. Finally, the OA module
transmits new coordinates and features to the next layers for processing. Once a defect
point is input, the OA module adjusts the input point according to neighbors and shift it to
fit the intrinsic geometry shape, which mitigates the effects of defective sampling points.

3.4. R-PointNet

R-PointNet aims to effectively deal with noise and outliers in the raw point clouds. It
needs to capture the global feature of point clouds while simultaneously balancing local
feature extraction. Therefore, we exploited the advantages of PointNet++, including its
encoder–decoder architecture and the operation of set abstraction. The former integrates
local features across different regions and levels into the local–global feature, while the
latter iteratively extracts features from local regions of the point cloud. The OA module
is added to minimize the effect of anomalies in the raw point cloud. Combining the
PointNet++ architecture in Section 3.1 and the OA module proposed in Section 3.2, we
propose R-PointNet. The network structure is shown in Figure 5.
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Figure 5. Architecture of our R-PointNet. R-PointNet iteratively extracts the features from local
regions of the point cloud and integrates local features across different regions and levels into the local–
global feature by set abstraction levels, while the Offset-Adjustment module minimizes the effect
of anomalies in the raw point cloud. Then, the muti-level features are integrated into local–global
feature. Finally, R-PointNet obtains the recognition results by several fully connected layers.

R-PointNet extracts the features of the point cloud by three layers. The two former
layers accomplish downsampling and feature extraction through set abstraction. The third
layer concatenates the global features of the two former layers by max-pooling. Then, the
extracted feature would be mapped to column vectors by the max-pooling layer to complete
the extraction of point cloud features, which means that the network obtains the local–
global feature linked by different levels and regions. To achieve the recognition of point
clouds, the probability calculation of the features extracted by the network architecture is
required. Therefore, a fully connected layer needs to be connected after the max-pooling
layer in order to map the learned feature representations to the sample tag space.

4. Experiment and Analysis

Experiments are divided into three parts. First, Section 4.1 provides a detailed exper-
iment process. Second, Section 4.2 analyzes the experimental results and the robustness
of the R-PointNet. Finally, Section 4.3 verifies the effectiveness of the OA module by
ablation study.

4.1. Experiment Process

The server hardware configuration for all network training is as follows: Ubuntu 20.04
system, 2-core 12-thread Intel Xeon Platinum 8255C processor, 1 NVIDIA RTX 2080 Ti
graphics card, Pytorch 1.4.0.

In order to exclude the discrepancy of a training environment among compared
networks, we repeated the rest of the networks under the mentioned conditions. During
the training period, the augmentation strategy is as follows: random anisotropic scaling
in the range [−0.67, 1.5]; translation in the range [−0.2, 0.2]; and random dropout 20%
points. For all network models, the batch size is 16, the training epoch is 200, and the initial
learning rate is 0.01.

R-PointNet is tested on two datasets, including ModelNet40, a synthetic dataset
commonly used as a point cloud recognition benchmark, and ModelNet40-C, the latest
corruption dataset used for robustness benchmark, in order to simulate real-world applica-
tions.

ModelNet40 is a point cloud synthesis dataset that is widely used for point cloud
recognition benchmark tests. It contains 40 classes with 12,311 point cloud models. For a
fair comparison with other networks, we used the official division with 9843 objects for
training and 2468 objects for validation. The same sampling strategy as in PointNet++ was
used, sampling each object uniformly to 1024 points. ModelNet40-C is the first systematic
corruption robustness benchmark for 3D point cloud recognition. It contains 185,000 models
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of point clouds with three common categories of distortion: density distortion, noise
distortion and transformation distortion. Details are shown in Figure 2.

4.2. Results and Analysis

The test results on ModelNet40 are shown in Table 1. The best recognition accuracy
of the R-PointNet network model is 92.5%, which is a 3.2% and 2.1% improvement com-
pared to PointNet and PointNet++, respectively. In Table 1, we can see that our method
outperforms almost all state-of-the-art methods on the Modelnet40 benchmark. The only
exception is RS-CNN. This is because RS-CNN can learn more meaningful fine shape
information such as geometric topological constraints between points. However, RS-CNN
does not perform as well on corruption dataset as R-PointNet does.

Table 1. Overall accuracy on ModelNet40 (M40) datasets. “pnt” stands for coordinates of point and
“nor” stands for normal vector.

Model Input Overall Accuracy (M40)

PointNet [8] pnt 89.3
PointNet++ [9] pnt, nor 90.6

RSCNN [28] pnt 93.6
DGCNN [12] pnt 92.2
R-PointNet pnt 92.5

We compare our R-PointNet with five representative networks: PointNet, PointNet++,
DGCNN, RSCNN, and PCT. These five models stand for different architecture designs
of 3D object recognition, and have achieved good accuracy on the clean dataset. In our
experiments, the error rate of these popular networks is not 3× larger on ModelNet40-C
than ModelNet40 as in the original paper. But compared to the results in Table 1, the error
rate still increased by 7–9% under point cloud distortion. The experimental results on
ModelNet40-C are shown in Table 2. Combining Tables 1 and 2, the results demonstrate
that the point cloud network architecture is still very vulnerable to common distortions.
It is worth highlighting that the R-PointNet reaches 89.9% recognition accuracy, which
outperforms other networks on Modelnet40-C.

Table 2. Overall accuracy on ModelNet40-C (M40C) datasets. Characterizing the robustness of networks.

Model Overall Accuracy (M40C)

PointNet 82.2
RSCNN 84.3
DGCNN 84.6

PCT 85.0
PointNet++ 86.9
R-PointNet 89.9

Finally, we select eight representative corruption types in the ModelNet40-C and test
the performance of different networks under different corruption types in detail. The
results are in Table 3.

Table 3 presents the detailed accuracy of the six models evaluated on ModelNet40-C
separably. As mentioned before, there is a significant decrease in recognition accuracy on
each corruption compared to ModelNet40. From the perspective of the model, all networks
have different shortcomings in several corruptions, and the performance of our R-PointNet
is the most stable across different corruptions, with above-average recognition accuracies,
and outperforms all networks in dealing with the noise corruption of the type Uniform
and Gaussian.
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Table 3. Accuracy of different model architectures on ModelNet40-C (M40C) datasets with different
corruption.

Model

Accuracy (M40C)

Density Corruption Nosie Corruption Transformation
Corruption

Occlusion LiDAR Uniform Gaussian Impulse Upsampling Background Rotation

PointNet 58.2 55.6 90.7 89.6 81.4 89.0 16.5 73.6
RSCNN 58.7 42.1 85.9 86.7 64.2 90.3 92.5 81.3
DGCNN 51.3 29.6 88.5 87.0 85.6 91.4 57.4 90.2

PCT 53.9 33.8 93.5 92.1 85.9 93.1 52.6 92.1
PointNet++ 55.8 45.0 87.6 86.4 75.4 85.7 82.4 82.9
R-PointNet 59.2 50.4 94.1 93.4 76.1 90.1 86.1 86.1

Average 56.2 42.8 90.1 89.2 78.1 89.9 64.6 84.4

4.3. Ablation Study

We designed an ablation study in order to further illustrate the effectiveness of the
proposed OA module. The results of the ablation study are summarized in Table 4.

Table 4. Ablation study on the ModelNet40 (M40) and ModelNet40-C (M40C) validation set.
PN, kNN, and OA mean PointNet++ architecture, K-nearest neighbor point sampling and offset-
adjustment module.

Model Ablation Accuracy (M40) Accuracy (M40C)

A PN only 90.6 86.9
B PN+kNN 90.1 87.2
C PN+kNN+OA 91.9 90.0
D DGCNN 92.2 84.6
E DGCNN+OA 92.5 88.5

The experiments set model A as baseline. Model A encodes local and global features
using PointNet++ architecture. The baseline model A obtains a low accuracy of 90.6%.
When we combine model A with kNN (model B), there is a slight decrease in the synthesis
dataset, ModelNet40. Compared with kNN, the ball query’s local neighborhood guarantees
a fixed region scale, thus making the local region feature more generalizable across space,
which is preferred for tasks requiring local pattern recognition. But model B is more robust
against corruption, considering the improvement in the ModelNet40-C. Finally, when we
add the OA module, the model will have a significant improvement on the ModelNet40
and ModelNet40-C datasets (91.9% and 90.0% in model C).

Furthermore, our proposed components with the OA module can directly improve
the performance of other architectures on the corruption dataset. When we use DGCNN
with our OA module (model E), it will increase the recognition accuracy by 3.9% with its
original model (model D) on the ModelNet40-C.

5. Conclusions

Compared to clean datasets, point cloud data in real-world scenarios often contain
corruption from noise and outliers. In the field of 3D object recognition, existing networks
largely focus on improving the accuracy of clean datasets. Although they have reported
promising accuracy on such datasets, their performance is still unsatisfactory in practi-
cal application deployment. Hence, object recognition in raw point clouds remains an
extremely challenging task.

In this paper, we propose the offset-adjustment (OA) module and build an end-to-end
network R-PointNet to deal with real-world datasets. The OA module benefits the feature
learning of raw point clouds by adjusting the spatial distribution of sampled defective
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points. The adjusted point cloud model aligns more accurately with the intrinsic geometry
of the point cloud model. R-PointNet is evaluated on synthetic and real-world datasets
through systematic benchmarking and analysis. In the experiments, its accuracy reaches
92.5% on the clean dataset ModelNet40, which is higher than almost any other point cloud
recognition network. Additionally, our network outperforms previous networks by 3–
7.7% on the corruption dataset ModelNet40-C. The experiments demonstrate that the OA
module reduces the effect of erroneous and extraneous points in the sampling and enables
the model to learn more comprehensive global features to enhance network robustness.

Our analysis in this work is limited to point cloud recognition, which is an important
problem in 3D scene understanding and is an essential component of object detection and
retrieval systems. In future work, we intend to apply the methods of this paper to point
cloud segmentation to improve the robustness of network in real-world applications.
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