
Supplementary Material 

1 Schematic Diagram of the Experimental and Numerical Models. 
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Figure S1. Schematic Diagram of the Experimental(Sun and Chen (2008,2012)) 
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Figure S2. Schematic Diagram of Numerical Models. 

2 Numerical simulation of Circular cylinder flow 

This study simulates flow around a cylinder using the experimental setup detailed 
in reference (Xiao S. 2020) entitled "Drop-tower Microgravity Granular Cylinder 
Towing Experiment." The experimental apparatus and model dimensions are 
illustrated in Figure 1.1. The specific model configuration parameters include: treating 
the cylinder as a rigid body with input for rotational moments of inertia in all 
directions, modeling the fluid as Eulerian with a density of 1000 kg/m³, viscosity of 
0.001 Pa·s, and speed of sound at 1480 m/s. The free surface of the fluid is applied at 
the top, while the bottom and sides employ smooth boundaries with velocities set to 0. 
The top of the cylinder is released with a horizontal degree of freedom, while other 
degrees of freedom are constrained. The contact between the cylinder and the fluid is 
defined as a smooth, hard contact, meaning no mutual penetration is allowed in the 
normal direction, and there is zero tangential friction. The model, as depicted in 
Fig.S3, is subjected to different horizontal velocities (VX) applied to the top of the 
cylinder for computational analysis. 

                  
     (a)Experimental Apparatus              (b)Numerical Model of the Experimental Setup 

Figure S3. Schematic Diagram of the Experimental and Numerical Models. 

 3 Velocity Field Contour Maps at Different Stages of the Two-Way Fluid-Structure 
Coupling Model 

The Fig.S4 illustrates the velocity field cloud diagram of the tie rod at various 
stages during its movement process. Notably, as the tie rod traverses through the fluid 
at a specific velocity, discernible alterations occur in the velocity field of both the tie 
rod and the surrounding fluid. This observation signifies a clear interaction between 
the tie rod and the fluid during their relative movement, thereby establishing a 
bidirectional fluid-structure coupling calculation model. 
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Figure S4. Velocity field cloud images at different stages of bidirectional fluid-structure coupling 

of the model 

4 Displays simulated and empirical solutions of drag forces on a cylinder at various 
Reynolds numbers. 

Table S1. Comparison of the empirical and simulated drag force calculation results (where V 
represents the horizontal velocity of the column). 
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Drag force 
Empirical 
solutions 
（N/m） 

Drag force 
simulated 
solutions 

(N/m) 

Relative error% 

0.01 1.18 200 0.00118 0.00144 22 

0.05 1 1000 0.025 0.031 24 

0.1 0.91 2000 0.091 0.11 20.9 

0.2 0.92 4000 0.368 0.376 2.2 

0.5 1.08 10000 2.7 2.9 7.4 

1 1.12 20000 11.2 10.5 6.3 

2 1.13 40000 45.2 44.4 1.77 

5 1.1 100000 275 256.2 6.8 

10 0.97 200000 970 984.9 1.53 

Relative error =| simulated solution - empirical solution |/ empirical solution, the value of CD is read from Fig.4 



 
Figure S5. Comparison of numerical and empirical drag force solutions 

5  CEL Motion Equations 

5.1 Fluid Motion Equations (Eulerian Equations): 

The Eulerian equations describe the motion of the fluid, typically in the form of the 
Navier-Stokes equations. For incompressible fluids, the Navier-Stokes equations 
(Noh,1964) can be written as: 
Mass conservation equation: பఘப௧ + ∇ ⋅ (𝜌𝐮) = 0                            (1) 

Momentum conservation equation: ப(ఘ𝐮)ப௧ + ∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝 + ∇ ⋅ 𝜏 + 𝜌𝐠                   (2) 

Here, ρ is the density, 𝐮 is the velocity vector, p is the pressure, τ is the stress 
tensor, and 𝐠 is the gravitational acceleration vector. 

The stress tensor τ in the equation represents the shear stress tensor. For a 
Newtonian fluid, the shear stress tensor can be expressed through the viscous stress 
term: 𝜏 = 𝜇(∇𝐮 + (∇𝐮)୘)                        (3) 

Here, 𝜇 is the dynamic viscosity coefficient, and ∇𝐮 is the velocity gradient. 
Under the assumption of incompressible flow, the momentum conservation 

equation simplifies to: డ𝐮డ௧ + (𝐮 ⋅ ∇)𝐮 = − ଵఘ ∇𝑝 + 𝜈∇ଶ𝐮 + 𝐠                  (4) 

Here, 𝜈 is the kinematic viscosity. 



In the context of the Navier-Stokes equations, which govern fluid dynamics, the 
pressure term arises from internal forces within the fluid. This includes contributions 
from both the static component, associated with hydrostatic pressure, and the dynamic 
component, associated with the motion of the fluid. The total pressure (𝑝) can be 
expressed using a state equation. For incompressible fluids, a commonly used state 
equation is: 𝑝 = 𝑝଴ + ଵଶ 𝜌|𝐮|ଶ                           (5) 

Here, p଴ represents the static pressure, ρ is the fluid density, and u is the fluid 
velocity vector. 

Substituting the state equation (5), the momentum conservation equation can be 
rewritten as: 

 డ𝐮డ௧ + (𝐮 ⋅ ∇)𝐮 = − ଵఘ ∇(𝑝଴ + ଵଶ 𝜌|𝐮|ଶ) + 𝜈∇ଶ𝐮 + 𝐠              (6) 

This represents the momentum conservation equation with the consideration of the 
total pressure term. The equation describes fluid motion, including the influence of 
both static and dynamic pressure within the fluid. It serves as a fundamental equation 
for simulating fluid dynamics and is typically solved using numerical methods. 

5.2 Solid Motion Equations (Lagrangian Equations): 

In the Lagrangian coordinate system, the motion of the solid is typically described 
using elastic mechanics or other solid dynamics models (Noh,1964). The basic 
equation for solid motion can be written as: 

Motion equation: 𝜌௦ ௗమ𝐮ೞௗ௧మ = ∇ ⋅ 𝜎௦ + 𝜌௦𝐠                        (7) 

Here, ρୱ is the density of the solid, 𝐮ୱ is the displacement vector of the solid, σୱ 
is the stress tensor of the solid, and 𝐠 is the gravitational acceleration vector. 

Specifically, in the case of an elastic body, the elastic stress tensor σୱ can be 
obtained from the elastic strain tensor εୱ and the elastic modulus E relationship: 𝜎௦ = 𝐸 ⋅ 𝜀௦                            (8) 

Here, εୱ  represents the elastic strain tensor. For linear elastic materials, the 
relationship between the elastic strain tensor and displacement is: 𝜀௦ = ଵଶ (∇𝐮ୱ + (∇𝐮ୱ)୘)                        (9) 

Here, uୱ is the displacement vector of the solid, and (∇𝐮ୱ)୘ is the transpose of 
the displacement gradient. 

Therefore, combining the above two equations, the relationship between the shear 



stress tensor and displacement is given by: 𝜎௦ = 𝐸 ⋅ 𝜀௦ = 𝐸 ⋅ ൬ଵଶ (∇𝐮ୱ + (∇𝐮ୱ)୘)൰                (10) 

This relationship is used to describe the elastic behavior of solids and is typically 
employed in the Eulerian-Lagrangian method for modeling solids. 

When the expression for the elastic stress tensor (10) is substituted into the solid's 
motion equation (7), the elastic equation describing the motion of the solid can be 
obtained. In the Lagrangian coordinate system, the elastic equation is typically written 
in the following form: 

𝜌௦ ௗమ𝐮౩ௗ௧మ = ∇ ⋅ ቆ𝐸 ⋅ ൬ଵଶ (∇𝐮ୱ + (∇𝐮ୱ)୘)൰ቇ + 𝜌௦𝐠              (11) 
Here, 𝜌௦ is the density of the solid, 𝐮ୱ is the displacement vector of the solid, 𝐸 

is the elastic modulus. 
The above equation describes the motion of the solid under external forces and 

gravity, where the elastic term reflects the elastic properties of the material. It is 
important to note that this equation is based on linear elastic theory, and for nonlinear 
and large deformation cases, one may need to consider the material's nonlinear 
behavior, such as using more complex material models like nonlinear elastic or plastic 
models. 

5.3 CEL Method 

As illustrated in Fig.S6, the solution process of the Euler equations is divided into 
two steps. Initially, in the Lagrangian solving step, the grid is bound to the material 
and undergoes deformation. Subsequently, the Euler solving step is executed, 
remapping the grid back to the initial grid corresponding to the spatial initial position. 
In this step, the positions of materials and material boundaries in each initial grid are 
defined. The Euler solving step is also referred to as the remapping step. 

 
Figure S6. The schematic diagram of operator splitting for the Euler equations 

In the ABAQUS/Explicit module, the Volume of Fluid (VOF) method is employed 
for solving the Euler step. The VOF method, introduced by (Hirt et al. 1981), is 
applicable in the context of Eulerian finite element methods for describing the 
position and shape of material boundaries. It supports the imposition of displacement 
or velocity boundary conditions directly from Lagrangian bodies to Eulerian bodies in 



the CEL method. 
In the case of a single-phase problem, a field function is defined asφ(x,t). For any 

point in the solution domain, when the material occupies that point, φ(x,t)=1; 
conversely, when the point is empty, φ(x,t)=0. For grids containing material 
boundaries, the average value of the function within the grid is denoted as ത , 
representing the volume fraction of material in the grid. Accordingly, ത =1 indicates 
that the grid is filled with material, while ത =0 signifies that the grid is empty, 
indicating the absence of material boundaries within the grid. 

The VOF method efficiently constructs material boundaries using only the volume 
fraction parameter within the grid, making it a highly effective Euler remapping 
method. 

 
Figure S7. The Volume of Fluid method involves the representation of material volume fraction 

and the schematic diagram of material boundaries 

 

  As shown in the Fig.S7, when the material volume fraction within the grid is 
known, the position of material boundaries within the grid can be further determined. 
The material boundary, with respect to the function φ(x,t), represents an iso-surface, 
indicating that the gradient direction on the material boundary φ should be 
perpendicular to it. When both  ത  the volume fraction and φ the average gradient 
direction within the grid are known, a line can be defined within the grid, as 
illustrated by the gray line in Fig.S7, serving as a rough representation of the material 
boundary. After connecting material boundaries in adjacent grids, other methods, such 
as the use of Bézier curves in ABAQUS/Explicit, are employed for smoothing the 
rough boundaries, as shown by the blue curve in Fig.S7. 

6 Cable force time-history curves 

We provide the tension time-history curves of the cable under various conditions 
to further illustrate the dynamic changes in tension. We found that the cable enters a 
failure state when the seismic wave peak acceleration is greater than or equal to 0.05g, 
as shown in Fig.S8. In addition, we found that the cable force fluctuated most 
obviously under the action of 11hz sine wave, as shown in Fig.S9.  



 
Figure S8. Variation curve of cable tension under the action of sinusoidal waves with different 

peak accelerations 

 
Figure S9. Variation curve of cable tension under the action of sinusoidal waves with different 

frequencies 
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