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Featured Application: Object detection method based on three-dimensional GPR data of railroad
tracks using AI, trained solely on simulation data.

Abstract: Ground-penetrating radar (GPR) is a non-invasive technology that uses electromagnetic
pulses for subsurface exploration. In the railroad sector, it is crucial to assessing soil layers and
infrastructure, offering insights into soil stratification and geological features and aiding in identifying
subsurface hazards. However, the automation of radargram analysis is impeded by the lack of
ground truth—accurate real-world data used to validate machine learning models—thus affecting
the deployment of advanced algorithms. This study focuses on generating high-quality simulated
data to address the shortage of real-world data in the context of object detection along railroad
tracks and presents a fully automated pipeline that includes data generation, algorithm training, and
validation using real-world data. By doing so, it paves the way for significantly easing the future
task of object detection algorithms in the railway sector. A simulation environment, including the
digital twin of a GPR antenna, was developed for artificial data generation. The process involves
pre- and post-processing techniques to transform the three-dimensional data from the multichannel
GPR system into two-dimensional datasets. This ensures minimal information loss and suitability for
established two-dimensional object detection algorithms like the well-known YOLO (You Only Look
Once) framework. Validation involved real-world measurements on a track with predefined buried
objects. The entire pipeline, encompassing data generation, processing, training, and application, was
automated for efficient algorithm testing and implementation. Artificial data show promise for better
performance with increased training. Future AI and sensor advancements will enhance subsurface
exploration, contributing to safer and more reliable railroad operations.

Keywords: GPR; object detection; radargram; radar

1. Introduction

Ground-penetrating radar (GPR) uses electromagnetic pulses to explore beneath the
earth’s surface, a crucial process for assessing soil layers and infrastructure in the railroad
sector. GPR systems consist of an emitting antenna and a receiving unit for reflected signals.
The signal data are processed into an image, known as radargram, which reveals subsurface
features. In railroad applications, the primary use of GPR is to ascertain the thickness
and composition of soil layers along railroad tracks [1,2]. This information is critical to
planning and executing maintenance activities on railroad infrastructure. Additionally,
GPR plays a key role in underground object detection, including the identification of
explosive ordnances beneath railroad tracks. This capability enables early hazard detection
and facilitates prompt response measures.
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Despite its extensive utility, the application of object detection in GPR is not without
challenges. Existing learning algorithms for object detection, which have seen success in
various domains, rely heavily on manually labeled data from real measurements [3–5]. This
approach necessitates prior knowledge of the subsurface, a requirement often unmet in the
context of object detection beneath railway tracks. While some data for soil layer analysis
might be partially labeled, providing ground truth, the same is not true for object detection.
The manual labeling of such data would be labor-intensive and impractical, as verification
would require extensive excavation.

To address these challenges, an innovative approach that does not rely on manually
labeled data is proposed in this work, where physics-based simulation data are leveraged
to fill this gap. Simulated data have already been used in the verification of processing
pipelines, for example, in the detection of objects in tunnel linings [5], but models applied
to real data require training on labeled real-world samples. While the effectiveness of
enhancing detection models with simulated data has also been previously established [6],
manual efforts are rendered completely unnecessary in this approach. Even though success
has been shown by non-physics-based methods, particularly those employing Generative
Adversarial Networks (GANs), for tasks like radargram de-noising [7], they have largely
been confined to two-dimensional applications [8,9]. The rich information available in
multi-antenna GPR systems, particularly vital to detecting objects where significant signal
variations across channels are observed, is neglected by such methods. The aim of this
paper is to harness such additional channel information to enhance object detection models
in railroad track beds. The generation of high-quality training data also requires substantial
fine tuning to achieve optimal results. Additionally, this work aims at developing a fully
automated process pipeline that operates without any manual intervention, thereby greatly
simplifying future developments in object detection algorithms for railway applications.

The initial phase involves simulating data from a multi-antenna GPR system by using
the specially developed digital twin of a GPR antenna. This simulation aims to produce
data that closely mirror real-world scenarios. Subsequently, a learning algorithm is applied
to this simulated dataset to develop predictive models for object detection in radargrams.
The final phase of this work entails applying these models to actual data, using a controlled
environment where specific objects are buried along a known route. This approach allows
for detailed analysis and comparison of the models and the assessment of their performance
and transferability in multi-antenna radargram object detection.

Ground-Penetrating Radar

Ground-penetrating radar emits electromagnetic waves into the ground, as illustrated
in Figure 1; waves are partially transmitted and reflected at boundaries with different elec-
tromagnetic properties, and reflections are captured by a receiving antenna to infer ground
composition [10]. Individual GPR signals, known as A-Scans, are typically compiled into
two-dimensional representations for analysis. These are designated as B-Scans (radargram,
YZ-plane), C-Scans (XY-plane), or D-Scans (XZ-plane), depending on their plane orientation
(see Figure 1d).

The propagation speed of an electromagnetic wave v in a medium can be approximated
from the ratio of the speed of light in vacuum (c0) and the square root of the product of
relative permeability (µr) and relative permittivity (εr) ([11], p. 149):

v =
c0√
µrεr

. (1)

Moving an antenna over a reflective object thus alters the signal’s travel time, creating
hyperbolas in B- and C-Scans due to changing distances.
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Figure 1. Working principle of ground-penetrating radar (GPR): Electromagnetic waves are partially
transmitted and reflected at layer boundaries (a). Multiple individual measurements (b) are compiled
into a two-dimensional representation (c), resulting in a B-Scan (d).

2. Materials and Methods

Figure 2 delineates the architecture of the developed methodology, with each segment
receiving a detailed exposition in the subsequent chapters of this document. Initially, a
digital twin representation is created and utilized within the track simulator to generate syn-
thetic data, as detailed in Sections 2.2 and 2.3, respectively. These synthetic data, alongside
empirical data collated from a reference track, detailed in Section 2.5, are both subjected to a
unified process of pre-processing and channel reduction, described in Sections 2.4 and 2.7.
The refined artificial data from this process are instrumental in the training of an object
detection model, elaborated in Section 3.3, which is integral to the subsequent detection
routine, explored in Section 2.9.

Figure 2. The main components of the architecture of the developed methodology.

2.1. Simulation Framework

In the course of this project, the simulation software “gprMax”, version 3.1.6, available
at the time of this work, was used [12]. This software is an open-source project specifically
developed for the modeling of ground-penetrating radar systems and similar applications,
and it is widely used in this field for the simulation of GPR systems.

2.2. Digital Twin of GPR Antenna

Due to technical limitations, achieving a perfect match between computer-generated
data and real system data is fundamentally impossible, leading to a discrepancy referred
to as domain gap, which poses a significant challenge in the use of computer-generated
data for training learning algorithms. In this work, the AM200 antenna system by IDS
GeoRadar s.r.l. (Pisa, Italy) was utilized, and to enhance the transferability between these
domains, a digital twin of the system was developed. This development employed Taguchi
optimization, a methodology documented by Warren and Giannopoulos [13].

Initially, the gprMax simulation environment was used to generically replicate the
core components of the antenna and the experimental setups, with the determination of
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their properties being the subsequent step. Reference measurements were then conducted
by using the selected GPR system, focusing on measuring the antenna crosstalk and the
reflection on a metal sheet. The measurement of antenna crosstalk, which is the signal
that travels directly from the transmitting antenna to the receiving one, was carried out
in a dedicated antenna laboratory to minimize interference, as illustrated in Figure 3a.
The choice of metal sheet reflection as a measurement parameter was due to its high
replicability in the simulation environment and the setup for measurement, which is
depicted in Figure 3b.

Through the application of an iterative optimization algorithm, an optimal combina-
tion of parameters was established. Consequently, the developed model not only captures
the geometric details of the antenna system but also incorporates its essential physical
properties, which is crucial to simulating electromagnetic wave propagation. While the
information obtained may not cover the entire complexity of the antenna system, compara-
tive measurements, as depicted in Figure 4, demonstrate a close correspondence between
the actual antenna used and its digital twin.

(a) Antenna crosstalk (b) Reflective object
Figure 3. Reference measurement setup.

Figure 4. A comparison of the simulated result of the replicated GPR system (blue) and the real
measurement (red).

2.3. Track Simulator

The basis for simulating a railway track is gprMax software, which simulates the
propagation of electromagnetic waves in a defined environment. However, it became
apparent during the work that the basic functionalities were not sufficient to fully meet the
requirements. Building on the functions of gprMax, software tailored to the simulation of
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railway tracks was developed, meeting the needs of this work. The software is explained
as follows.

2.3.1. Construction of Railway Track

The substructure of a railway track is generally divided into several layers [14], as
illustrated in Figure 5. The top layer consists of coarse-grained ballast, in which the sleepers
are embedded. Beneath it is the subballast layer, which serves as a separating layer to
prevent the mixing of the ballast bed with the bottom layer, the subgrade, and provides
drainage. This layered structure was used as a basis for the simulation and replicated in
the simulation environment, with the resulting simulation environment being depicted
in Figure 6. It is noted that the ballast was modeled separately, where each individual
ballast grain was generated randomly and piled up through physics-based simulation.
Additionally, the subgrade layer consisted of a soil model with varying degrees of moisture,
thus replicating diverse subballast conditions.

Figure 5. Substructure of a railway track.

Figure 6. Simulation space limited to a series of individual blocks of 1.6 m × 1.0 m × 1.6 m.

2.3.2. Simulation Space

Due to gprMax’s calculation method, where the entire simulation space is divided into
equally sized cells, the computational effort and memory consumption increase to the third
power with the enlargement of the simulation space. This creates a limit on the maximum
possible simulated space, mainly determined by the memory capacity of the hardware
used. For this work, a server consisting of eight NVIDIA RTX™ A6000 graphics processors,
each with 48 GB of memory, was used. With a resolution of 2 mm, this allowed for a
maximum simulation space of up to approximately 1.6 m × 1.5 m × 1.6 m. Additionally,
the simulated space can be restricted in the direction of travel to the extent that a clean
formation of hyperbolas resulting from reflection on objects is achieved. In this case, this
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was achieved with a simulated distance of 1 m, resulting in a minimal simulation space per
section of 1.6 m × 1.0 m × 1.6 m.

Extended tracks were simulated within this constraint by initially segmenting each
track into smaller parts, which were then individually simulated on separate graphics
processors. The individual results were then reassembled. The requirement to traverse
the entire track in sections necessitates a programmatic method for creating individual
segments in the simulation environment. For this purpose, an automatic generation routine
was developed. Based on a general configuration file, outlined in Section 2.3.3, individual
gprMax simulation environments were defined, as detailed in Section 2.3.4, resulting in
simulation segments, as depicted in Figure 6.

2.3.3. Configuration

The configuration file for the track simulator contained information about the entire
track, including the geometry of the soil layers, the position of objects, and their material
properties. It also included the general parameters of the track, which were fixed for the
easier further processing of the data. These included the simulated space, spatial resolution,
and maximum simulation time. The maximum sensible simulation time results from the sig-
nal transit time of the excitation pulse. Assuming an average permittivity of εr ≈ 10, a depth
of 1.6 m requires at least a transit time of the forward and return wave of approximately
34 ns (see Equation (1)). To enable a good comparison with real data, a simulation duration
of 40 ns was chosen. Additionally, the antenna polarization, which determines the direction
of the emitted fields based on the type and installation position of individual antennas,
can be set. In this work, VV polarization was chosen (Vertical–Vertical), where both the
transmitting and receiving antennas are arranged parallel to the direction of movement.

2.3.4. Automated Scenario Generation

Text files (input files) are used as an interface in gprMax simulation software, contain-
ing all information for conducting a single simulation. Various commands are available
to define objects (geometry, position, etc.), material properties (permittivity, conductivity,
etc.), or general properties (simulation time, resolution, etc.). These commands are each
marked by a hash symbol (#) in the text file.

The task of the generation script is the automated creation of the input files, based on
the defined track in the configuration file (see Section 2.3.3). This process involves extracting
specific information for each segment based on its position from the configuration file and
translating this information into gprMax commands. By creating separate input files
for each segment, the generation script enables the modular and efficient execution of
simulations. Each segment can be simulated independently, improving the parallelization
and scalability of the simulations. Additionally, managing separate text files for track
segments facilitates the post-processing and analysis of simulation results for individual
sections of the track.

Beyond the standard track and sleepers in each section, the substructure can incor-
porate extra objects with customizable material properties. Not being limited to basic
shapes like cuboids, cylinders, and spheres, it also supports the integration of digital design
files, regardless of size and complexity. The antennas were based on the digital twin of
a ground-penetrating radar system, as described in Section 2.2. They were inserted in
triplicate in the middle in the direction of travel and a defined transverse offset, so as
depicted in Figure 7, a total number of 11 channels were available for evaluation by default.

The output of a simulation run is structured as a folder structure. In addition to the
measurement results, which are available channel-wise for each track segment as .out files,
additional data from the simulation environment (resolution, objects, substructure course,
etc.) are stored as .json files. To enable a meaningful further processing of the simulation
data, each channel is accompanied by a Label.txt file, which defines the positions of the
objects visible in the respective channel.
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Figure 7. The top view of a simulation block with the partial display of the antenna for clearer
visibility of the channels. Individual channels are marked in green from 1 to 11.

2.3.5. Simulation Time

A crucial aspect of the developed track simulator is the calculation time required
per track section, which is significantly dependent on the simulation parameters used.
Table 1 lists those parameters that are expected to have a direct influence on the required
computation time, along with the respective influence factor. A runtime factor of O(n)
is to be interpreted as a purely linear change in simulation duration caused by a change
in the parameter. However, the factor O(n3) already implies an increase in the required
computation time to the third power with a linear change in the parameter.

In absolute numbers, this results in an average simulation duration of 154 min per
simulated meter of track section for the final parameter combination used in this work.
Even though decreasing the step size from 2 cm to 4 cm results in the simulation time
dropping to 77 min, and a further halving of the spatial resolution cuts down the simulation
time by approximately 87.5%, the decision was made not to reduce it in order to ensure
high quality of the simulation results.

Table 1. Influence of parameters on calculation duration.

Parameter Runtime Factor

Volume O(n2)
Resolution m O(n3)

Duration O(n)
Step size O(n)

2.4. Pre-Processing

To efficiently utilize data obtained from a ground-penetrating radar, they are typically
processed through a series of post-processing steps. The antenna model underlying this
work is based on the previously developed digital twin of a real antenna. Consequently,
the simulation results based on this model closely match those of the real antenna, allowing
for the application of the same post-processing steps. These steps are illustrated in Figure 8
and documented below in the order of their application.

Figure 8. Pre-processing pipeline.

2.4.1. Removing Signal Anomalies

In the context of this research, neither the simulated nor the real datasets exhibited
relevant noise. However, a drift along the time axis was detected in both. This temporal
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drift was attenuated through the application of a moving average filter, utilizing a temporal
window of 2.5 ns.

2.4.2. Downsampling

The simulated data were calculated at a higher temporal resolution than that for the
real data. To avoid unnecessary computational effort, all data were reduced to 5 samples
per nanosecond.

2.4.3. High-Pass Filter along Time Axis

To remove potential drift in the signal, a sliding average was subtracted, with the win-
dow width set to 2.5 ns. Although almost no drift was noticeable in the simulated signals,
the same filtering process as for the real data was applied for the reasons mentioned above.

2.4.4. Adjusting of Measurement Window

In the real system, a slightly delayed recording start of the cross-antenna channels
(No. 4 and 5) was observed. To compensate for this delay, the mentioned channels were
shifted accordingly. The iteration at which a channel first reached a spike of 10% of its maxi-
mum value served as the new zero position. To improve the processing of real and simulated
measurement results, all measurements were additionally reduced to a uniform length of 40 ns.

2.4.5. Dewow Filter

The so-called “wow” of the signal is a slow, wave-like signal component along the path
axis of a recording which can arise, for example, from the inductive coupling of the antenna
with the earth’s surface [15]. To remove these low-frequency signal components (dewow)
along the path axis, a sliding average filter was also used. The filter length was chosen such
that larger structures, which could originate from buried objects, would remain visible.

In this work, predominantly short track sections of a few meters were created, where a
“wow” in the above sense generally does not pose a problem. However, low-frequency sig-
nal components along the path axis did occur in the form of antenna crosstalk. Figure 9a,b
first show an unprocessed B-scan and then the result after applying the dewow filter. While
the unprocessed B-scan (see Figure 9a) is dominated by antenna crosstalk, the latter is
completely removed in the filtered B-scan (see Figure 9b).
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(a) Unprocessed simulated data
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(b) Dewow filter
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(c) Absorption compensation
Figure 9. The processing of a single B-Scan.

2.4.6. Absorption Compensation

Deeper objects increasingly disappear into the background due to the quadratic power
decrease in the electromagnetic wave during propagation and the additional attenuation
through the material to be penetrated. Despite the existence of more sophisticated methods,
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like spectral balancing [16], a simple empirically derived gain function was chosen to
mitigate this effect. This function dampens early signals and progressively boosts the signal
strength further along the time axis. However, the noise components of the signal are also
amplified by the increasing amplification, as evidenced by the results shown in Figure 9c.

2.5. Reference Track

To assess the quality of the simulated data and to evaluate the performance of the
subsequently developed detection algorithm, real measurement data from a known track
were used. This enabled the validation of the simulated data, ensuring that the simulation
models adequately reflected actual conditions. The following subsections address the
specifics of the track and the measurement process.

2.5.1. Real-World Measurement

The measurement was conducted on a railway siding using a GPR antenna of type
AM200 from the manufacturer IDS GeoRadar s.r.l., Pisa, Italy. This antenna was mounted
8 cm above the sleepers on a measuring cart and moved evenly along a track distance of
51 m. Individual measurements were triggered every 2 cm by using a distance-measuring
wheel. Various objects were buried at defined distances along the track, as listed in Table 2.
In addition, there were concrete sleepers spaced 65 cm apart on the track extending across
the entire measurement area. To facilitate a good comparison between the reference track
and the simulated data, both the real and simulated data were processed by using the same
methods described in Section 2.4.

Table 2. Buried objects.

Distance Object Dimensions (L × W × H)

10 m Metal canister 30 cm × 50 cm × 30 cm
19.7 m Plastic canister (water-filled) 30 cm × 40 cm × 20 cm
30 m Wooden log 30 cm × 40 cm × 25 cm
39 m Stone 17 cm × 28 cm × 17 cm
50 m Metal canister 30 cm × 40 cm × 30 cm

2.5.2. Comparison of Measurement Data

Figures 10 and 11 show the complete B-scan of the middle channel (No. 4) for both
real and simulated data. To better illustrate this, the areas where objects were buried
in the B-scan of the real measurement are marked in red. In comparing real and sim-
ulated measurements, the first key observation is the presence of consistent reflections
from the upper area’s sleepers. Similar reflections further down indicate transitions be-
tween the ballast layer, subballast, or subgrade due to varying materials. Expectedly, these
transitions show gradually changing reflection heights. However, the upper sleeper con-
tours are echoed in lower layers, with high-frequency waviness along the path axis due
to electromagnetic wave traversal. In the simulated data, the absence of low-frequency
components is noted due to constant subgrade layer thickness, unlike the real dataset,
where gradual subgrade changes are observed over long track segments. Distinct varia-
tions are evident in the real data for buried objects beneath the track. Metal containers at
10 m and 50 m are distinctly visible, exhibiting hyperbolas of differing prominence, most
probably attributed to variations in their depths and orientations. In simulations, these con-
tainers also exhibit clear hyperbolas. The water container at 19.7 m, while similar to the metal
containers, shows unique multiple reflections for differentiation, a feature well represented in
simulations. Distinguishing between the buried log and rock at 30 m and 40 m is challenging.
While the relative permittivity of wood is about εr ≈ 1.5 to 3.5, slightly lower than that of
granite (εr ≈ 5), the permittivity of the rock can be assumed to be similar to that of granite.
The slight difference in permittivity between wood and granite-like rock did not produce
clear reflections in either real or simulated data. However, a certain irregularity in the signal is
noticeable at both positions (30 m and 40 m) directly below the sleepers. Regardless of whether
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these changes were due to the objects or whether the excavation work carried out at these
points itself affected the measurement, these positions served as control points. They allowed
for the verification of whether the subsequently implemented algorithms actually responded
to the sought-after objects or were equally sensitive to general structural changes beneath
the track.
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Figure 10. Section of real measurement data 0 to 51 m. Areas with buried objects are marked in red.
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Figure 11. Section of simulated measurement data 0 to 51 m.

2.6. Detection Framework

In traditional object detection approaches, a sliding window is either moved across
the input image or the image is divided into various regions, each requiring a computation
cycle, thereby increasing the computational effort needed per image. The You Only Look
Once (YOLO) framework [17], acting as a single-shot detector, was utilized in this study,
enabling the identification of all detected objects in the input image through just one model
evaluation. This efficiency is achieved by consolidating all detection steps into a single
model. The choice of this framework was influenced by its suitability for processing live
data in future applications. By enabling image processing through a single evaluation, the
YOLO framework significantly lowers computational demands, making it highly suitable
for tasks involving real-time object detection.
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2.7. Channel Reduction

The YOLO detection framework is originally designed to handle three-dimensional
data, typically limited to the Red, Green, and Blue (RGB) color channels.

Two main strategies were employed to adapt the ground radar dataset, comprising
11 channels along with time and path axes, to the three-channel format: data subset
selection and dimensionality reduction through feature selection. Both strategies were
explored in the work of this study, resulting in varying outcomes. Inspired by the method
of Kim et al. [3], the subset selection approach entailed the creation of three cross-sectional
views for each subsection, with one view being assigned to each RGB channel. However,
satisfactory results were not yielded by this method; thus, it is not elaborated upon in this
paper. The approach found to be more effective, which is detailed further, revolves around
the engineering of lower-dimensional features to effectively condense the data into a format
compatible with the YOLO framework.

2.7.1. Data Mapping Analogous to LiDAR Sensor Processing

Drawing on the “bird’s eye” perspective utilized in LiDAR sensor (Light Detection
and Ranging) data analysis, this paper proposes a comparable approach for analyzing
simulated georadar data. LiDAR sensors provide a three-dimensional point cloud of the
environment and are used, for example, in the localization of autonomous robots and the
detection of their surroundings. Due to the operation, where a rotating laser outputs the
current angle and the measured distance, a point cloud consisting of the nearest reflective
surfaces around the sensor is created [18]. The vertical resolution is usually very limited
compared with the angle resolution, but here too, the need arises to reduce the horizontal
levels. In the case of point clouds, this is performed by encoding the three-dimensional
dataset onto three horizontal image planes. The first image plane describes the height of
the highest reflected point at each position, while the second plane records its intensity.
The total number of reflected points at each position is entered on the third plane [19].
Unlike LiDAR data, where few points are occupied in the entire space, ground radar
measurement data have an intensity value for every point, making a simple transfer of
the aforementioned encoding impractical. The following are various processing methods
aimed at highlighting the characteristic properties of ground radar data.

2.7.2. Average of B-Scans

By forming the average in the channel direction, signal components that extend over all
channels are amplified. In contrast, reflections visible in only a few channels are weakened.
As a result, sleepers, which extend over the entire measurement area and beyond, are
especially well represented (see Figure 12a).
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(a) Average of B-Scans
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(c) Normalized deviation
Figure 12. Individual channels of the processed dataset.
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2.7.3. Standard Deviation in Channel Direction

A measure of the change in signal strength is the standard deviation (σ), which is
calculated by using the mean value (x̄) and the number of channels (n) as follows:

σ =

√
1
n

n

∑
i=1

(xi − x̄)2 . (2)

Applied to each data point across the individual channels, differences between the
channels are emphasized. This particularly highlights reflections in the subgrade, which
only occur in individual channels, such as smaller objects in the ground radar’s measure-
ment range (see Figure 12b).

2.7.4. Normalized Deviation

The normalized deviation (z) has proven to be more robust than the simple standard
deviation, which is also applied across all channels. Each value (x) is reduced by the
respective mean value (x̄) between the channels and then normalized by the standard
deviation (σ) of the values between the channels [20]:

z(σ) =
x − x̄

σ
. (3)

The result, shown in Figure 12c, clearly shows the difference from simple standard deviation.

2.8. Data Augmentation

Given the significant computational resources required to create individual data
samples, the resulting dataset was relatively small. To enhance the training foundation,
data augmentation presents a viable solution. The augmentation techniques focused on the
following dataset properties:

• Mirroring;
• Scaling;
• Resolution;
• Noise level.

These data augmentation methods were carefully chosen to reflect realistic conditions
of objects buried underground. Objects can vary in size and orientation, warranting the
adoption of scaling and mirroring techniques. Moreover, because the resolution and noise
levels do not perfectly align with the real system, even when using a digital twin, employing
augmentation methods for resolution and noise level proves practical.

The mirroring of the data was performed both horizontally and vertically, with the
data along the path axis being additionally stretched or compressed by ±10 %. Both for
time (vertical axis) and path (horizontal axis), the resolution was reduced by up to 50%. The
added noise was normally distributed and was chosen so that the average signal-to-noise
ratio across the entire dataset was at least 25 dB.

2.9. Implementation of the Automatic Detection Routine

The reference track, with a length of 51 m, differed significantly from the simulated
meter-long sections used for training. To apply the trained model to the reference track, it
had to be broken down to the same size and was thus divided into 1 m pieces. To prevent
the incorrect detection of objects in the border areas, an overlap of 0.5 m was chosen
for successive pieces. The detection algorithm proceeds as follows: After initialization
and algorithm instantiation from the configuration file, measurement data are read, pre-
processed, and fed to the algorithm. The trained model is loaded, and a process pool
is created for converting data into the dataset, as described in Section 2.7. The data are
segmented, processed, and analyzed by the model. The computation results are normalized
to the track’s original length. Overlapping detections are refined, keeping only the most
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probable ones and filtering out low-probability detections. These results are then compared
with the reference track’s ground truth. The labels of detections are overlaid with the
ground truth, calculating precision and recall based on their intersection over union (IoU).
Finally, the outcomes are exported as text files and files in Visualization Toolkit (VTK)
format, which are suitable for three-dimensional visualization.

3. Results

Initially, the generated simulations are analyzed and compared to actual data to
identify any discrepancies. Following this, the outcomes of the algorithms developed are
reviewed.

3.1. Simulations

Over the course of the work, more than 700 individual simulations were used to
replicate over 50 different track environments under various conditions. Figure 13 compares
the B-scan of a section from the real dataset with the corresponding simulation result.
Visible in this section are three sleepers (narrow hyperbolas in the upper area) and a buried
metal container, which appears as a hyperbola between the second and third sleepers.
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(b) Simulation result
Figure 13. A comparison of the B-Scans of a section from real data (a) and simulated data (b).

A mere examination of the B-scans already reveals a high degree of similarity, although
the sleepers in the simulated data appear somewhat clearer. This can be attributed to
slight differences in the assumed and actual material properties. When comparing the
normalized deviation, shown in Figure 14b, the reflection components of the sleepers are
also overemphasized. This effect suggests a deviation of the antenna model from the
real antenna.

In the examination of the C-scan at the sleeper level (see Figure 15), it is evident that
channels 4 and 8 are attenuated in the simulated data. These channels are those cross-track
channels where the transmitting and receiving antennas are located in different housings.
Even though this configuration was not explicitly replicated during the development of the
digital twin and thus slight deviations from the real setup have to be expected, the effect is
observed in both the real and simulated data.

Traditional similarity criteria, such as the mean square deviation, are unsuitable in
this case, as the absolute position of the objects significantly influences the result. However,
this is of secondary importance for the present problem.
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0 0.5 1 1.5
0

5

10

15

20

25

Distance [m]

Ti
m

e
[n

s]

(b) Simulation result
Figure 14. A comparison of the normalized deviation between channels of a section from real data (a)
and simulated data (b).
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(a) Excerpt from real measurement data
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(b) Simulation result
Figure 15. Comparison of the C-scans from real data (a) and simulated data (b).

A more suitable method for evaluating similarity is the structural similarity (SSIM)
described by Wang et al. [21], which is widely used in image processing. In addition
to contrast and brightness, the structure of the image is also evaluated. For each image
area, a normalized value between −1 and 1 is determined, with a value of 0 indicating no
similarity and +1 absolute equality. A value of −1 would correspond to the inverted image.
Applied to the results in Figure 13, this yields an average SSIM value of 0.95, indicating a
high degree of similarity. When only the image section in the area of the sleepers and the
buried object is considered, the average SSIM value is slightly lower, 0.84, but also confirms
very high similarity here. Applied to the normalized deviation, visible in Figure 14, SSIM
values of 0.95 for the entire image or, likewise, 0.84 for the relevant section are obtained.
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3.2. Preparation and Composition of Dataset

All data underwent pre-processing to be properly formatted for the neural network
training of YOLO. For the scope of this work, the dataset was limited to 20 simulated track
sections of 1 m each. Future investigations, however, can use the present research as a basis
and expand the dataset analogously. This led to the decision to initially distinguish between
only two classes: the railroad sleepers and the buried containers. Figure 16 shows a dataset
that was reduced to three channels by using the approach described in this paper. To
expand the overall dataset, the methods of data augmentation described in Section 2.8 were
relied upon. This resulted in a dataset of 56 sleepers and 40 metal containers underground
which was used for training.
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Figure 16. Exemplary dataset projected onto three color channels.

3.3. Training of Object Detection Model

The image size for training was set to 1280 px and the number of training iterations
to 300 px. The number of images combined per training iteration (batch size) was 8. In
addition to the augmentation methods listed above, additional integrated methods in
the framework were applied to all data. These were defined via a configuration file and
included, among others, the following:

• Mosaic arrangement of individual images;
• Displacement;
• Transformation of color information.

In mosaic arrangement, several training images are randomly combined into a single
image, which may lead to overlaps between the original images and possibly the concealment
of individual labels. This approach offers the advantage that a model trained with such data is
better able to recognize objects at positions where no objects were present in the training dataset.

The basis for the transformation of color information is the Hue, Saturation, and Value
(HSV) color model, which describes the hue, saturation, and brightness of an image. However,
it must be noted in the present case that fundamentally different information is applied to the
individual color channels of the image, which makes, for example, a change in hue impractical.

The box loss serves as a metric for training. Both for the training and validation
datasets, a significant decrease in errors with the increase in training progress was observed,
suggesting advantageous development of the model.

3.4. Evaluation

Upon examination of the data presented in Figure 17, the model, which was trained
by utilizing the artificial dataset, demonstrated notably high efficacy in the detection of
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individual sleepers. This robust detection was characterized by consistent and precise
recognition across the entire length of the track.
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Figure 17. Real-world reference track with drawn labels.

This is also evident when looking at the confusion matrix (see Figure 18), which shows
a 100% recognition rate. While the precision for buried objects is also 100%, the recall rate
is only 66%. However, due to the uneven distribution of classes, the resulting average
precision of 83% is of limited significance. Some variability is also evident in the dimensions
and positions of the labels, reflected in an average IoU value of 61% for sleepers.
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Figure 18. Confusion matrix with color-coded values: dark blue indicates higher accuracy, light blue
indicates lower accuracy.

3.4.1. Object Detection Computation Time

The total computation time for the 51-m-long reference track, encompassing a total
volume of 14.37 million voxels, amounted to 22.07 s. Of this, roughly 90% (19.98 s) was
dedicated to data pre-processing, leaving 1.14 s for the actual inference process.

3.4.2. Degree of Automation in Process Chain

The entire process, from preparing the simulation data and generating labels to detect-
ing objects on a given track, is fully automated. Manual user input is only necessary when
defining the track sections to be simulated and possibly when tuning the parameters of the
YOLO framework. A critical point in this process chain is the correct placement of labels,
as this is crucial to the proper functioning of the resulting model. The proposed method
was found to be robust in this respect due to the chosen calculation methods.
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4. Discussion

The challenge in developing algorithms using artificial intelligence often lies in pro-
viding high-quality datasets. Particularly, in detecting objects buried in railway beds, the
available datasets are not sufficient in either quality or quantity. This is partly due to the
fact that the verification of manually labeled data would require extensive excavation work,
which seems highly impractical given the necessary volume of data. The primary aim
of this project is to create an automated process for generating physically accurate data,
labeling them, and subsequently applying algorithms that have been trained on this dataset
on real-world environments.

To achieve the objective, a digital twin simulating the electromagnetic properties of
a real GPR antenna system was developed and integrated into a simulation environment
tailored for the railway sector. This allows for the simulation of measurements in customiz-
able railway scenarios, providing realistic data and ensuring that ground truth is available
for subsequent training steps. The processing of simulated radar data was undertaken by
using two distinct methods, with a focus on the additional insights gained from utilizing all
channels of a multi-antenna system. These data were transformed into RGB images, where
each color channel conveyed different information, enabling direct training with the YOLO
framework. The detection model was demonstrated to be capable of identifying objects
within the railway bed by using exclusively synthetic training data. The performance of the
model and its transferability to real-world data were evaluated through measurements on
a reference track, where known objects had been buried in advance. These measurements
were then compared with the predictions of the model to assess accuracy and reliability.

This work represents a significant advance in the application of artificial intelligence
in the railway sector by overcoming the challenge of high-quality training data scarcity
through the use of realistic simulation models by leveraging the digital twin of an multi-
antenna system. The created simulation environment effectively generates realistic GPR
measurements for various railway environments and subsoil conditions, avoiding the need
for the costly gathering of labeled real-world data. This advancement not only simplifies
future research in object detection and beyond but also introduces a novel method for
transferring the three-dimensional radar data of a multi-antenna system, enabling the
efficient use of all system channels within established detection frameworks, marking a
novel application in the railway industry.

Although the feasibility of developing detection algorithms exclusively with artifi-
cial data has been demonstrated, the limitations of this approach must be acknowledged.
Firstly, the results might not be universally applicable to other antennas due to the cus-
tomization of the digital twin to a specific antenna. Additionally, a risk of overfitting
was indicated by the restricted dataset used in this study, suggesting that an expansion
of the dataset should be aimed for in future research to enhance reliability. It is also ac-
knowledged that the performance of various detection frameworks may vary, with some
potentially outperforming the chosen YOLO framework. Therefore, identifying the most
suitable detection framework necessitates comparative testing. Moreover, the applicability
of the chosen processing methods to objects with varying radar-reflection characteristics
remains uncertain. While the differentiation between two types of objects (sleepers and
buried containers) has been successfully achieved, the efficacy in distinguishing among
various buried objects, such as metal containers and water-filled boxes, has yet to be tested.
Lastly, the basis for the evaluation of model performance has been a singular reference
measurement, which may not accurately reflect the breadth of potential application con-
texts. As a result, the need arises to further study the effectiveness of the model across
different environments.

5. Conclusions and Outlook

One possible improvement to the existing approach would be to reduce the spatial
resolution; this, however, would require a revision of the digital twin. The simulation
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duration achieved in this work could be further reduced, but the resulting effects on the
quality of the measurement data must be carefully examined.

In summary, this work offers a promising approach to improving object detection in
the railway sector through the use of a specially adapted simulation environment (gprMax).
Despite the identified limitations, there is great potential for further applications and de-
velopment. This work opens up the possibility of detecting a wide range of buried objects
and differentiating between different types of objects while eliminating the need for exten-
sive manual data preparation in the future. By enhancing the simulation environment’s
capabilities to model scenarios like ballast contamination or water anomalies, significant
potential exists for further refining the ability to simulate various subsoil conditions. This
opens up opportunities for developing and testing algorithms aimed at assessing the rail-
way bed or verifying assumptions about its condition, all while minimizing the need for
extensive labeling tasks. Consequently, this work provides a solid foundation for further
developing methods of all kinds based on the use of ground-penetrating radar systems in
the railway sector.
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