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Abstract: The blasting quality of open-pit mining can be enhanced and the production cost of stope
reduced by establishing a mathematical model for step drilling and blasting costs based on stope
consumption. By enhancing the Gray Wolf algorithm, the parameters for step drilling and blasting
are optimized, resulting in improved effectiveness for step blasting mining, as demonstrated through
modeling and calculation. The enhanced Gray Wolf algorithm effectively enhances the blasting
performance, reduces production costs, and increases production efficiency. Taking a limestone mine
as an example, the optimized drilling and blasting parameters are as follows: hole spacing of 4.62 m,
row spacing of 4 m, and explosive consumption rate of 0.23 kg/t; based on these parameters, the
stope’s production cost is reduced to CNY 7.7.
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1. Introduction

The selection of blasting parameters significantly impacts the outcomes of blasting
operations, with a close correlation with the associated costs. Moreover, the configuration
of these parameters also influences the expenses incurred during drilling and loading
in production and processing processes. Common issues encountered in open-pit step
blasting include excessive explosive consumption, a high proportion of oversized frag-
ments post-blasting, and large block sizes that hinder efficient loading. In some cases, even
secondary blasts are required for excessively large rock fragments, as depicted in Figure 1.
These challenges severely hamper both production efficiency and cost-effectiveness. Conse-
quently, it becomes imperative to identify optimal drilling and blasting parameters within
open-pit blasting operations to effectively control blast effects while minimizing costs [1].
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Currently, due to the challenges encountered in the process of loading blasting materi-
als, numerous scholars have conducted research on optimizing parameters for open-air
step blasting. Liu Guanghui [2], Guo Ming [3], and Tan Zhen [4] employed traditional
Gray correlation analysis to examine the primary factors influencing lumpiness caused
by blasting and concluded that the consumption of explosives is the main factor affecting
both lumpiness and overall effectiveness. However, this result only demonstrates a correla-
tion between explosive unit consumption and block degree without directly linking it to
production cost. Yin Yuexian et al. [5] analyzed field experiments to establish a relation-
ship between explosive unit consumption and block consumption, ultimately obtaining
a curve that can be utilized for selecting optimal levels of explosive unit consumption.
Wu Yongxiang [6] determined multiple group schemes through engineering experiments
aimed at optimizing and screening blasting parameters; however, these studies primarily
focus on individual parameter optimization, with limited impact on the overall cost or
effectiveness. The results obtained by Wen Xing [7] and Peng Jinhao [8] regarding different
projects’ blasting parameters are only applicable within their respective projects, making
them difficult to apply in other types of projects’ selection processes for such parameters.
Xu Dengwei [9] and Lan Qiuhua [10], among others, established several groups of optimiza-
tion schemes based on varying lithology while verifying feasibility through field tests on
open-pit steps; however, subjective designer experience still influences parameter selection.
In the aforementioned studies, the investigation of blasting parameters primarily relies on
field tests or a combination of numerical experiments. The selection of blasting parameters
is predominantly based on empirical settings or traditional calculation formulas for such
parameters in order to design and optimize experimental groups. Subsequently, adjust-
ments and optimizations are made according to experimental results to achieve optimal
outcomes. On one hand, this optimization process renders the obtained blasting parameters
susceptible to variations in experiment quantity and the rationality of experiment designs,
making it challenging to accurately determine precise values for these parameters while
also considering overall costs. On the other hand, field tests encounter certain challenges,
such as tedious procedures and complex operations, which may hinder their implemen-
tation in some projects. The desired blasting effect in the mine can be achieved through
optimizing the design of blasting parameters and enhancing blasting methods. The primary
objective of optimization is to minimize mining costs. To achieve this, it is essential to
establish a precise system for evaluating the blasting effect and construct an optimization
model based on this system that accurately reflects real-world conditions. However, due
to numerous imperfect evaluation systems for the blasting effects and various types of
optimization models available, most personnel involved in blasting still heavily rely on em-
pirical knowledge to make multiple adjustments in order to attain optimal outcomes. This
dependence on experiential methods has long impeded changes in the design of blasting
parameters and techniques within engineering projects, thereby limiting advancements in
mining technology and cost optimization. The development of a method that can directly
correlate blasting parameters with production costs, while being easily implementable and
capable of accurately determining optimal blasting parameters, is, therefore, imperative.

In recent years, with the rapid advancement of computer technology and artificial
intelligence, various optimization algorithms have been extensively utilized in transporta-
tion [11], logistics [12], energy scheduling [13], as well as diverse forecasting applica-
tions [14]. Moreover, their application in mining has also yielded significant outcomes.
In light of this, the present study employs the enhanced Gray Wolf optimization algo-
rithm [15,16] to determine the blasting parameters for open-pit drilling. Compared to
conventional algorithms, this improved approach enables faster and more accurate iden-
tification of optimal values. Additionally, by establishing a production cost model for
blasting shipping and solving an objective function related to optimal cost determination,
it is possible to directly link blasting parameters with production costs. Furthermore,
using a limestone mine located in southwest China as a case study example, the mining
and production model is established to calculate production costs. The improved Gray
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Wolf algorithm is then employed to solve this model and identify drilling and blasting
parameters that minimize consumption costs. The specific analysis process is illustrated in
Figure 2.
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2. Optimization Model of Bench Drilling and Blasting Parameters in Open-Pit Mine

In recent years, among a large number of parameters that affect the blasting effect and
blasting quality, the block theory is widely accepted by scholars [17]. The main parameters
for blasting block are hole spacing, explosive consumption, and resistance line; thus, the
design of these parameters can change the overall block and improve the blasting quality
and effect [18,19].

According to the actual situation of mine production, the blasting mining cost is
divided into drilling cost C1, blasting cost C2, and shipping cost C3.

The cost of drilling in a significant number of drilling and blasting operations exhibits
a strong positive correlation as follows:

C1 =
m1L
HSγ

(1)

where C1 represents the overall expenditure for drilling all holes; m1 denotes the cost per
meter drilled; L is the hole depth; H is the height of the step; S is the bore area of the pore
network; γ is the bulk density of the ore.

The cost of step blasting is mainly related to the consumption of explosives, hole
load area, and step parameters and mainly consists of the consumption of explosives and
blasting materials.

C2 = m2q +
m3L
HSγ

(2)

where q is the single explosive consumption; m2 is the unit price of the explosive; m3 is the
cost of blasting equipment consumed per meter.
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The loading process mainly includes two parts: shoveling cost and transportation cost.
The shoveling process is affected by the degree of rock blocks, and the average block size
is taken as the independent variable of shoveling cost, which is obtained by statistics on
the consumption of shoveling equipment and the amount of shoveling per unit time. The
transportation cost is related to the consumption of vehicles and the average block size,
among which the average block size mainly affects the load rate of vehicles. Shipment costs
are grouped into two parts as follows:

C3 = A1X + A2 + m4(A3X2 + A4X + A5) (3)

where X is the average lumpiness of the shipped ore; m4 is the transportation cost per ton
of ore; A1–A5 is the correlation coefficient of the statistical model.

In the mine’s production process, the results of open-pit drilling and blasting are
affected by many factors, and the average lumpiness after blasting directly affects the
subsequent production cost. Therefore, the model of blasting production cost is established
as follows:

C = C1 + C2 + C3 (4)

The cost of rock drainage is in line with the transportation cost, as it encompasses the
expenses related to personnel operation and management included in the shipping cost.

3. Solving Algorithm of Blasting Parameter Optimization Model
3.1. Gray Wolf Optimization Algorithm

The Gray Wolf Optimization (GWO) algorithm emulates the predation behavior of gray
wolves, incorporating various cooperative division of labor and internal communication
processes to achieve intelligent optimization for finding the optimal survival strategy. The
algorithm primarily consists of three key operations: wolf tracking, approximation, and
attack. Figure 3 illustrates the simulated movement pattern. The specific process is outlined
as follows:
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3.1.1. Initializing Population

The wolf pack begins to forage: the first alpha wolf, beta wolf, delta wolf and another
wolf ω are generated at the beginning, and the distance and direction of their movement in
relation to the prey are defined by Equations (5) and (6).

D =
∣∣τ · Xp(n)− Xg(n)

∣∣ (5)

Xg(n + 1) = Xp(n)− σ · D (6)

where XP(n) is the prey position after n selections; Xg(n) represents the position of the
Gray Wolf after n times of transmission, that is, the local solution; σ and τ are random
coefficient; σ = 2a·r1 − a, τ = 2·r2, a decreases linearly in the interval [0, 2]; r1 and r2 are
random numbers in the interval [0, 1].
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3.1.2. Determine the Location

The wolves and their prey exist within a vast abstract space, making it challenging to
determine the precise location of the prey. Therefore, it is assumed that the α wolf, β wolf,
and δ wolf possess exceptional hunting abilities during initialization. This implies that the
local solutions obtained in the first three attempts are preserved and expressed as follows:

Dα =
∣∣τ1 · Xα(n)− Xg(n)

∣∣
Dβ =

∣∣τ2 · Xβ(n)− Xg(n)
∣∣

Dδ =
∣∣τ3 · Xδ(n)− Xg(n)

∣∣ (7)

The symbol D represents the distance between ω other wolves and the initial three
wolves, while Xg(n) denotes its current position.

Xα = |Xα(n)− σα · Dα|
Xβ =

∣∣Xβ(n)− σβ · Dβ

∣∣
Xδ = |Xδ(n)− σδ · Dδ|

(8)

Xg(n + 1) = (Xα + Xβ + Xδ)/3 (9)

The symbol X denotes the direction and step size of each iteration, while X(n + 1)
represents the final position after ω other wolves have undergone the same iterative process.

3.2. Improved Gray Wolf Optimization Algorithm

The Gray Wolf algorithm’s method for finding the optimal value is relatively straight-
forward but highly reliant on the initialization position. If the initial value is close to a local
solution that is far from the optimal solution, reaching the optimum becomes challenging
due to limited search distance. Additionally, as ‘a’ decreases linearly from 2 to 0, ‘σ’ also ex-
hibits a linear decline, while the actual process’s search solution is nonlinear. Consequently,
if nonlinearity arises early on and convergence happens too quickly at the beginning with
a small population number and reduced search scope, it may lead to falling into a local
solution. Conversely, if convergence occurs slowly in later stages, algorithm efficiency will
be excessively low [20–23].

3.2.1. Tent Chaotic Mapping

In order to overcome the limitations of local solutions, chaos mapping can be employed
to extend the initial position beyond the range of local solutions, thereby enhancing its
global solution search capability and convergence ability. Chaotic sequences are frequently
utilized in optimization search problems, with Tent chaotic mapping offering distinct
advantages over other chaotic maps in terms of randomness, uniformity, ergodicity, and
other aspects. Consequently, Tent mapping is chosen as the governing rule for generating
initial Gray Wolf populations within the Gray Wolf Optimization algorithm due to its
superior mathematical expression [24–27].

Xn+1 =


Xn

u
, 0 ≤ Xn < u

1−Xn
1−u , u ≤ Xn < 1

(10)

The random generation number “u” in the interval [0, 1] determines the chaos parame-
ter and influences the distribution characteristics of the generated sequence “X”. When “u”
is 0.5, the generated sequence follows a uniform distribution. The sequence “X” is initially
generated by the Tent map.
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3.2.2. Convergence Factor a

The selection of a nonlinear convergence factor is based on the influence of σ in the
Gray Wolf algorithm on both local and global search, aiming to enhance the algorithm’s
early-stage global search capability.

a = 2 cos(
tπ
2T

) (11)

The maximum number of iterations, denoted as T, represents the upper limit for the
iteration process. Meanwhile, t refers to the actual number of iteration steps taken during
this process.

3.2.3. Population Location Renewal and Variation

The process of population position renewal involves an iterative process, which leads
to a decrease in population size and an increase in duplicate individuals. This often
results in local convergence and the adoption of suboptimal solutions. To address this
issue, Gaussian variation [28,29] is introduced to facilitate population position renewal and
variation, thereby reducing the likelihood of falling into local solutions. The formula for
generating individuals using Gaussian variation is as follows:

X(t + 1) = (1 + N(0, 1))X(t) (12)

The position of the individual after variation, denoted as X(t + 1), is determined by
a normally distributed random variable N. This variable follows a Gaussian distribution,
with a mean of 0 and a standard deviation of 1.

The improvement process for the enhanced Gray Wolf algorithm is illustrated in
Figure 4. Firstly, the population is initialized, and the number of iterations as well as the
search scope of the spatial dimension are determined. Subsequently, the new position
for each wolf pack member is computed by comparing Tent mapping with a nonlinear
convergence factor. Then, based on the objective function, the positions of three wolves with
optimal fitness are calculated and recorded; subsequently, these positions are compared to
their original fitness values and updated accordingly for each new wolf. Finally, whether
or not the maximum number of iterations has been reached is assessed. If so, the optimal
solution is recorded; otherwise, iteration continues until reaching the specified number.

The improved Gray Wolf algorithm’s optimization ability is tested using the multi-peak
test function. Figure 5 illustrates the trajectory of the multi-peak function search, which is a
commonly employed test function for evaluating optimization algorithms with a dimension
of 30 and a theoretical minimum value of 0. This function contains multiple peaks that
effectively discern optimization algorithms with inadequate global search capabilities, as
they tend to converge towards local optima.

After considering the objective function, other optimization algorithms, such as the
simulated annealing optimization algorithm [30] (SA), genetic optimization algorithm [31]
(GA), particle swarm optimization algorithm [32] (PSO), improved Whale algorithm [33]
(EWOA), and improved Gray Wolf optimization algorithm (IGWO), were all set to a
population of 50 with 1000 iterations. Multiple comparison experiments were conducted
to find the optimal solution for the function. The enhanced Gray Wolf algorithm exhibits
accelerated descent and convergence in Figure 6 while searching for the minimum fitness
value, whereas other algorithms fail to attain the specified number of iteration steps due to
local optima. As shown in Figure 7, it is evident that the search results of the improved
Gray Wolf Optimization algorithm can achieve an optimal solution with a value of zero,
indicating its superior global search capability compared to other algorithms as it accurately
identifies the global optimum.
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4. Optimization of Blasting Parameters
4.1. The Optimization of Engineering Cases

The lime mine area has an elevation ranging from 624 m to 1063 m, with a relative
elevation difference of 439 m, indicating a medium-cut low-mountain landform. The
terrain in the mining area exhibits higher elevations towards the north and lower elevations
towards the south, characterized by steep slopes and well-developed vegetation. The
highest mining point reaches +900 m, while the lowest mining point is at +701 m, resulting
in a relative elevation difference of 199 m. The natural ore composition is relatively simple,
consisting solely of limestone ore with predominant mineral components, including calcite,
sparry calcite, and dolomite. The rock’s physical and mechanical parameters are presented
in Table 1. At the conclusion of mining operations, the step height measures 15 m, while
the working step exhibits a slope angle of 75◦. The safety platform spans a width of 4 m,
whereas the cleaning platform boasts an impressive width of 8 m. The road grade is
classified as III and has a width of 8 m. With regard to longitudinal slopes, the maximum
stands at 8%, while the average measures 6.4%. Additionally, a minimum turning curve
radius of 15 m is required, and a relaxation slope section with a minimum length of 60 m
must be implemented. To ensure optimal conditions for transportation within the mine
site, mud-bound gravel pavement will be utilized along approximately 2.8 km worth of
mining roads. Lastly, medium- and deep-hole multi-row hole-differential extrusion blasting
techniques will be employed in conjunction with detonating tubes.
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Table 1. Physical and mechanical parameters of rock.

σcm (MPa) σt (MPa) c (MPa) φ (◦) Erm (GPa) µ K (GPa) G (GPa)

7.5922 0.1543 1.0324 35.14 2.1520 0.22 1.2810 0.8820

During the calculation process for overall costs, actual consumption and production
data from mine operations are taken into consideration. It can be concluded that the drilling
cost per meter in the mine (m1) amounts to CNY 22/m. The step height is set at 15 m with
a hole depth (L) of 17 m. The bulk weight of ore (γ) stands at 2.62 ton/cubic meter. An
emulsion explosive is used for blasting with a unit price (m2) of CNY 7/kg. Additionally,
the cost per meter for blasting equipment (m3) reaches CNY 3.5/m. Transportation costs
per ton of ore amount to m4 = CNY 2/ton. By analyzing lumpiness and consumption costs
related to shipped ore statistics, values A1 = 0.298, A2 = 0.013, A3 = −0.0036, A4 = 0.032,
and A5 = 0.48 can be obtained. By incorporating these variables into Formula (4), we can
derive an overall consumption cost mathematical model specific to limestone mines. To
solve this mathematical model effectively, the improved Gray Wolf algorithm is employed.
The objective function associated with it is as follows:

C =
22 × 17

15 × a × b × 2.62
+ 7q +

3.5 × 17
15 × a × b × 2.62

+ 0.298X + 0.013 + 2(−0.0036X2 + 0.032X + 0.48) (13)

The equation is defined as follows: X represents the average block size, a denotes the
hole distance, b signifies the row distance, and q indicates the single explosive consumption.

The development of the limestone mine joint has not been undertaken. Based on
the average block formula and blasting experience formula, we derived the target con-
straint conditions.

X = 7 × q−0.8 × 2.62−0.8 × (15 × 2.62 × a × b × q)
1
6 × (1.15)

2
3 (14)

a = mW1 (15)

b = a sin 60◦ (16)

q =
Q

aW1H
(17)

The given formula incorporates the subsequent variables: a denotes the hole distance,
b represents the row distance, q signifies the explosive consumption per unit, Q stands for
the charge amount, and m represents the gun hole density coefficient. Typically, limestone
exhibits a value ranging from 0.8 to 1.0 for this coefficient. W1 corresponds to the chassis
resistance line, with a fixed value of 5 m. In terms of empirical values, q ranges from
0.2 to 0.4 kg/t for explosive consumption per unit, while a varies between 4 and 5 m for
hole distance, and b ranges from 3 to 4 m for row distance. By enhancing the Gray Wolf
optimization algorithm in order to search for optimal results within our objective function,
we obtained optimal values as follows: a = 4.62 m (optimal hole distance), b = 4 m (optimal
row distance), q = 0.23 kg/t (the quantity of explosives utilized for each ton of ore during
blasting), and b = 4 m (optimal row distance). The total cost was optimized at CNY 7.7/ton
while satisfying all imposed constraints.

The step diagram is depicted in Figure 8. The hole arrangement predominantly follows
a triangular pattern, and the layout is accomplished through manual drafting tape. Based on
engineering requirements and geological conditions, all charges are continuously connected,
with the adoption of either multi-hole or single-hole delayed detonation, depending on site
conditions. The delayed detonation network is illustrated in Figure 9. The hole distance is
4.62 m, the row distance is 4 m, and the layout accuracy is 0.1 m.
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Figure 9. The network diagram for delay.

H is the height of the step, 15 m; B represents the safe distance between the center of
the drilling hole and the top line of the slope on the step surface, 3 m; W1 is the length of
the chassis resistance line, 5 m; L is the hole depth, 17 m; L1 is the charge depth, 12 m; h is
the excess depth of the hole, 0.3 m; finally, L2 indicates the depth to fill the blockage, 5 m.

The optimal parameters, with a hole spacing of 4.62 m and row spacing of 4 m, exhibit
excellent blasting effectiveness in practical operations, effectively reducing the bulk rate
and lowering the production cost of loading. The results after production blasting operation
are illustrated in Figure 10.
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4.2. Algorithm Comparison Verification

The enhanced Gray Wolf algorithm is further assessed for its capability to explore
the objective function in engineering applications. To accomplish this, we utilize a mathe-
matical model based on the aforementioned engineering parameters as the target solution.
We compare it with well-established and widely used optimization algorithms, such as
simulated annealing (SA), genetic optimization (GA), and particle swarm optimization
(PSO). Moreover, our emphasis lies in minimizing overall cost consumption using a low-
complexity model. The experiment comprises 200 iterations, a population size of 20, and a
solution dimension of 3. We observe the variation in fitness with each iteration number.
As illustrated in Figure 11, the Gray Wolf Optimization algorithm demonstrates rapid
convergence speed, with lower fitness values indicating attainable optimal cost solutions.
In contrast, other intelligent optimization algorithms exhibit slower iteration speeds and
encounter challenges escaping local optima or locating the global optimum.
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4.3. Numerical Simulation Verification

According to the enhanced Gray Wolf algorithm, the blasting parameters and mine
production data obtained from the overall cost mathematical model are resolved. The
numerical model of the blasting step is established by utilizing Rhino modeling software
(Version 6 SR10) coupled with Flac3d (Version 7.00.126), and a comparison is made between
the failure situation and damage range of the step under different hole spacing and row
spacing to validate the rationality of solving the blasting parameters.

4.3.1. Establishing the Model for Blasting Steps

The slope’s step size was confirmed to be consistent with the actual step size, with
a height of 15 m and a gun hole depth of 17 m. The bottom end was extended by 30 cm,
while the overall width of the model measured 10 m. The initial model was created using
Rhino modeling software, generating a solid grid. The grid had a minimum mesh length of
0.1 m and a maximum mesh length of 1 m. Gun holes were spaced at intervals of 4.62 m
horizontally and rows were spaced at intervals of 4 m vertically. In the mixed-grid mode,
for instance, there were a total of 109,175 output grids generated. Figure 12 illustrates both
the model and the position of the gun holes in it, while Figure 13 shows their location in
Flac3d model format. When generating the initial stress field, constraints were applied on
all sides surrounding it as well as on its front, back, left, and right sides.
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4.3.2. Applying Dynamic Loading

The dynamic loading position is located on the inner surface of the gun hole, with
the upper part serving as a plugging section, measuring 3.75 m in length. The sine wave
loading technique is employed, with a total loading time of 0.08 s and appropriate damping
and free-field boundaries set up. Figure 14 illustrates the load exerted by both the free-field
boundary and blasting hole surface after loading.
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4.3.3. Conducting Comparative Analysis on Model Failure

In order to compare and analyze the influence of hole spacing and row spacing
on slope step blasting, the maximum principal stress distribution of the three models is
illustrated in Figure 15. The hole spacing for group (a) is 4 m and 3.46 m, for group (b)
is 4.62 m and 4 m, and for group (c) is 5 m and 4.33 m. (a) After blasting, the maximum
stress at the gun hole location reaches 1.543 × 105 N, while the maximum principal stress
at the middle and back sections amounts to 6 × 104 N. The stress distribution exhibits
unevenness with a concentration area, where significant stress occurs in the rear rock
mass. (b) Following blasting, the maximum stress at the gun hole location measures up
to 1.542 × 105 N; however, there exists small residual stress in both the middle and back
parts of the rock mass with an evenly distributed pattern. (c) For group (c), after blasting,
it shows a peak value of approximately 1.554 × 105 N at the gun hole location as well as
a maximum principal stress reaching around 8 × 104 N in its middle and back sections,
which also exhibit some degree of concentration. By comparing these cloud images, it
can be observed that within a range of approximately 20 m–40 m from the upper edge of
the step area, the level of stress experienced by group (b) is significantly lower than that
encountered by both groups (a) and (c). This indicates that due to minimal damage effects
on the intact rock mass behind caused by blasting operations, group (b) demonstrates
better suitability for mining production and construction purposes. The level of stress at
the back end of group (c) is less than that of group (a), but it is more pronounced than that
of group (b). Therefore, it can better adapt for rock mining and production compared to
groups (a) and (c).
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Figure 15. Results of maximum principal stress distribution in groups (a–c).

The acceleration changes in groups (a), (b), and (c) at 30 m on the edge of the step
within 1 s of blasting time are illustrated in Figure 16. It can be observed from the figure
that group (a) achieves a maximum acceleration of 0.185 m/s2 at 0.009 s, while group (b)
reaches a peak acceleration of 0.176 m/s2 at the same time. Group (c), on the other hand,
attains its maximum value at 0.009 s, with a peak acceleration of 0.183 m/s2. Similarly,
among the three simulation groups, group (b) experiences the smallest peak acceleration,
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indicating that the rock mass behind it bears minimal stress and exhibits good stability,
which is favorable for subsequent construction.
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Figure 16. Acceleration 30 m away from the upper edge of the slope step.

The velocity changes at 30 m on the upper edge of the slope step for groups (a), (b),
and (c) within 1 s of the blasting record time are depicted in Figure 17. It can be observed
from the figure that group (a) reaches a maximum velocity of 0.022 m/s, after which it
starts to decline. Group (b) attains a maximum velocity of 0.013 m/s, peaking at 0.045 s
before declining thereafter. Group (c) achieves a maximum speed of 0.023 m/s towards the
end. Consequently, it can be concluded that among these three groups simulating slope
step blasting, group (b) exhibits a minimal impact on the farthest measurement point from
the blast hole location, specifically on the upper edge of the slope step, thus indicating that
group (b) inflicts less damage to the intact rock mass behind its post-blasting.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 17 
 

the end. Consequently, it can be concluded that among these three groups simulating 
slope step blasting, group (b) exhibits a minimal impact on the farthest measurement point 
from the blast hole location, specifically on the upper edge of the slope step, thus 
indicating that group (b) inflicts less damage to the intact rock mass behind its post-
blasting. 

 
Figure 17. Velocity at 30 m from the upper edge of the slope step. 

The above idealized model research experiments demonstrate that the enhanced 
Gray Wolf algorithm is employed for optimizing blasting parameters in mining slopes 
with simple lithology and structural planes, resulting in improved blasting effectiveness 
and cost optimization. 

5. Conclusions 
(1) By optimizing the initial population generation and convergence factors of the 

original Gray Wolf algorithm, the improved Gray Wolf Optimization algorithm 
demonstrates significant advantages over its predecessor in solving multi-peak objective 
functions. It exhibits faster convergence and a stronger ability to search for global optimal 
solutions. 

(2) A mathematical model is established to accurately analyze and calculate the 
production cost of drilling, blasting, and loading operations in a limestone mine. This 
enables precise control over mine production costs. The improved Gray Wolf 
Optimization algorithm is applied to optimize mining parameters for blasting in order to 
obtain overall optimal cost parameters for mine extraction. The optimal hole distance is 
determined as 4.62 m, row distance as 4 m, and explosive consumption as 0.23 kg/t, with 
a resulting cost of 7.7 CNY/ton. Numerical comparison experiments and actual 
production applications confirm that these results meet the production requirements 
effectively, providing a valuable reference for similar projects. 

Author Contributions: Investigation, Writing—original draft, L.Z. and D.S.; Writing—review & 
editing, L.Z. and D.S.; Numerical simulation, Software, L.Z., Z.L. and B.C.; Data curation, R.W. and 
R.C. All authors have read and agreed to the published version of the manuscript. 

Funding: Financial support for this work was provided by the Sichuan Natural Science Foundation 
Project (Youth Science Foundation Project) (No.2022NSFSC1089) and the Natural Science 
Foundation of the Southwest University of Science and Technology (No. 18zx7124). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available in article. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 17. Velocity at 30 m from the upper edge of the slope step.

The above idealized model research experiments demonstrate that the enhanced Gray
Wolf algorithm is employed for optimizing blasting parameters in mining slopes with
simple lithology and structural planes, resulting in improved blasting effectiveness and
cost optimization.

5. Conclusions

(1) By optimizing the initial population generation and convergence factors of the orig-
inal Gray Wolf algorithm, the improved Gray Wolf Optimization algorithm demonstrates
significant advantages over its predecessor in solving multi-peak objective functions. It
exhibits faster convergence and a stronger ability to search for global optimal solutions.
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(2) A mathematical model is established to accurately analyze and calculate the pro-
duction cost of drilling, blasting, and loading operations in a limestone mine. This enables
precise control over mine production costs. The improved Gray Wolf Optimization al-
gorithm is applied to optimize mining parameters for blasting in order to obtain overall
optimal cost parameters for mine extraction. The optimal hole distance is determined as
4.62 m, row distance as 4 m, and explosive consumption as 0.23 kg/t, with a resulting
cost of 7.7 CNY/ton. Numerical comparison experiments and actual production applica-
tions confirm that these results meet the production requirements effectively, providing a
valuable reference for similar projects.
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