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Abstract: In the field of brain tumor segmentation, accurately capturing the complexities of tumor
sub-regions poses significant challenges. Traditional segmentation methods usually fail to accurately
segment tumor subregions. This research introduces a novel solution employing Graph Neural
Networks (GNNs), enriched with spectral and spatial insight. In the supervoxel creation phase,
we explored methods like VCCS, SLIC, Watershed, Meanshift, and Felzenszwalb–Huttenlocher,
evaluating their performance based on homogeneity, moment of inertia, and uniformity in shape and
size. After creating supervoxels, we represented 3D MRI images as a graph structure. In this study,
we combined Spatial and Spectral GNNs to capture both local and global information. Our Spectral
GNN implementation employs the Laplacian matrix to efficiently map tumor tissue connectivity
by capturing the graph’s global structure. Consequently, this enhances the model’s precision in
classifying brain tumors into distinct types: necrosis, edema, and enhancing tumor. This model
underwent extensive hyper-parameter tuning to ascertain the most effective configuration for optimal
segmentation performance. Our Spectral–Spatial GNN model surpasses traditional segmentation
methods in accuracy for both whole tumor and sub-regions, validated by metrics such as the dice
coefficient and accuracy. For the necrotic core, the Spectral–Spatial GNN model showed a 10.6%
improvement over the Spatial GNN and 8% over the Spectral GNN. Enhancing tumor gains were
9.5% and 6.4%, respectively. For edema, improvements were 12.8% over the Spatial GNN and 7.3%
over the Spectral GNN, highlighting its segmentation accuracy for each tumor sub-region. This
superiority underscores the model’s potential in improving brain tumor segmentation accuracy,
precision, and computational efficiency.

Keywords: Graph Neural Network; Spectral GNN; supervoxel; segmentation

1. Introduction

Accurate brain tumor segmentation in MRI images is crucial for neuro-oncology, en-
abling precise diagnosis, personalized treatment, and therapy monitoring. Additionally, it
facilitates biomarker research, predictive model development, and targeted therapies, ulti-
mately improving patient outcomes [1,2]. Traditional brain tumor segmentation methods
face challenges. Manual segmentation is time-consuming and prone to variability among
experts. Automated methods can struggle with the intricate shapes, varying appearances,
and unclear boundaries of brain tumors, limiting their accuracy and reliability. These limita-
tions highlight the need for innovative approaches capable of capturing the complex spatial
and structural information within medical images [1,3]. Neural networks, particularly
convolutional neural networks (CNNs), have significantly advanced image segmentation
tasks in medical imaging. Specialized CNN models such as V-Net have been proposed for
volumetric medical image segmentation [4] and CNN-CRF models for MRI medical image
segmentation [5]. These studies underscore the efficacy of neural netwroks in automating
and improving the accuracy of segmenting intricate structures in medical images.

Appl. Sci. 2024, 14, 3424. https://doi.org/10.3390/app14083424 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083424
https://doi.org/10.3390/app14083424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5181-8940
https://doi.org/10.3390/app14083424
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083424?type=check_update&version=1


Appl. Sci. 2024, 14, 3424 2 of 18

Graph Neural Networks (GNNs) excel in brain tumor segmentation by leveraging
graph theory to capture spatial relationships in medical images. Unlike pixel-based meth-
ods, GNNs represent image data as graphs, with nodes and edges denoting regions and
their connections. This approach enables GNNs to identify detailed features and broader
structural patterns across images, enhancing tumor identification accuracy. GNNs’ ability
to understand complex topological relationships in MRI data surpasses traditional neu-
ral networks, leading to more precise segmentation crucial for diagnosis and treatment
planning [6–9]. Saueressig et al. (2020, 2021) showcased GNN’s efficacy in segmenting
brain tumors from 3D MRI scans by treating the data as graphs. Their combined GNN and
CNN approach demonstrated enhanced segmentation accuracy, highlighting the benefits
of integrating different neural network architectures [3,10,11]. Patel et al. (2023) further
emphasized the utility of Graph Attention Networks (GATs) in multicategory brain tumor
segmentation, showcasing the potential of attention mechanisms in GNNs for improving
medical image analysis [12]. Recent studies have combined graph convolution-based
neural networks with image convolutions to enhance brain tumor segmentation. This
method utilizes cascaded anisotropic convolutional neural networks to address complex
brain tumor structures, offering advanced segmentation strategies through binary chal-
lenges [13]. Chen et al. [14] introduced shape-awareness for glioma segmentation, tackling
irregular shapes and ambiguous boundaries. Razzak et al. [15] emphasized the importance
of integrating local and global characteristics for accurate image segmentation.

Spectral-Spatial Graph Neural Networks (GNNs) represent an innovative fusion of
spectral and spatial analysis methodologies, tailored to meet the intricate demands of
brain tumor segmentation. This hybrid approach leverages the spectral domain’s capacity
for capturing global image characteristics through the analysis of frequency components,
alongside the spatial domain’s strength in delineating local details and textures within
an image. By integrating these complementary perspectives, Spectral–Spatial GNNs are
uniquely equipped to navigate the complexities of brain tumor imagery. They adeptly
bridge the gap between broad, structural insights and fine-grained, localized informa-
tion, ensuring a comprehensive understanding of both the tumor’s morphology and its
context within the surrounding brain tissue. This dual-pronged strategy enhances the
ability of GNNs to accurately segment tumors, addressing the challenge of varying tumor
appearances and the ambiguity of tumor boundaries, thereby significantly advancing the
precision and reliability of brain tumor analysis in medical imaging [13]. In this study, we
aim to investigate the capabilities of Spectral–Spatial GNNs for brain tumor segmentation.
We offer a powerful approach to enhance the accuracy and reliability of segmentation by
integrating spectral and spatial information. Their potential to provide a more nuanced
understanding of complex medical images could lead to advancements in precise diagnosis
and treatment planning, ultimately contributing to improved patient outcomes.

The remainder of this paper is organized as follows: Section 2 describe the holistic
approach undertaken to take steps for processing MRI data such as normalization and super-
voxel generation, followed by developing a graph structure that represents supervoxels
in the form of graph nodes. Section 2.5 pertains to the design and implementation of
experiments under different GNN models, accompanied by elaboration on the selection
process and applied methods in the varied set of experimental studies. Section 3 discusses
a detailed critical analysis of the experimental results obtained upon testing different
GNN models for tumor segmentation. Section 4 provides key summaries from the study,
highlighting tremendous potential benefits derivable from Spectral–Spatial GNNs for
enhanced MRI-based tumor segmentation, and proposes possible future work.

2. Methods and Material

Our methodology encompasses the entire process from data collection and prepro-
cessing, including normalization and standardization, to the sophisticated creation of
supervoxels using various segmentation algorithms. Subsequent to supervoxel generation,
we represent the images with a graph structure to feed into GNN. Furthermore, we intro-
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duce the integration of spectral–spatial GNN models to exploit both the spatial distribution
and spectral features of the brain MRI data, enhancing the segmentation accuracy and the
detection capabilities for tumor regions. This section aims to shed light on the methodology
and choices made during our research, emphasizing the innovative methods and analytical
processes used to increase the precision and trustworthiness of brain tumor segmentation.
Figure 1 provides a schematic representation of the computational workflow in our study.

Figure 1. This schematic outlines the research workflow from data collection and preprocessing to
advanced supervoxel creation and graph structuring for GNN training. It emphasizes the integration
of spectral–spatial GNN models, illustrating the comprehensive steps taken in this study.

2.1. Data

We utilized the Brats 2021 dataset [1,2,16] for our study. This dataset comprises multi-
parametric MRI scans of glioma patients, featuring four modalities: T1-weighted, T1 with
contrast enhancement, T2-weighted, and FLAIR (see Figure 2). These provide varied
insights into brain anatomy and tumor characteristics. It includes segmentation labels for
tumor sub-regions (necrotic core, edema, enhancing tumor, whole tumor). The data are
co-registered, isotropically resampled, and skull-stripped for consistency across scans [2].

Figure 2. T1-weighted, T1 with contrast, T2-weighted, FLAIR sequences, and a tumor segmenta-
tion mask.

2.2. Characterizing Tumor Sub-Regions for Segmentation Task

In this study, the segmentation task of the BraTS data involves the accurate identifi-
cation and classification of three distinct components as in Figure 3 within brain tumors,
using sophisticated image processing and machine learning techniques. The following
outlines the specific sub-regions of the brain tumor:
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Enhancing tumor: This term refers to the portion of the tumor that displays increased
intensity on contrast-enhanced MRI scans, highlighting the active and aggressive parts
of the tumor. The presence of an enhancing tumor, which indicates a disruption in the
blood–brain barrier that allows contrast agents to leak into the tumor tissue, is crucial for
evaluating the tumor’s aggressiveness and pinpointing the primary focus for therapeutic
interventions. It reflects areas where the tumor is most likely to grow and spread, making
it a focal point for surgical and medical treatments [17,18].

Edema: In the realm of brain tumors, edema signifies the swelling or accumulation of
fluid in the brain tissues surrounding the tumor, visible on MRI scans as areas of hyperin-
tensity on T2-weighted images. Edema is a vital indicator of the tumor’s impact on adjacent
brain tissue, significantly affecting a patient’s symptoms and overall condition. Accurately
identifying edema is essential for assessing the tumor’s extent and its implications on
brain function, as it can influence decisions regarding the urgency and type of treatment
required [18,19].

Necrosis: Necrosis within a tumor refers to areas of dead or dying cells that no
longer function due to the tumor’s growth outstripping its blood supply. On MRI scans,
necrosis is typically seen as a non-enhancing core within the tumor, surrounded by the
enhancing tumor margin. Identifying necrosis is important for determining the stage of the
tumor and its responsiveness to treatment. It also plays a critical role in surgical planning,
as these areas can affect the approach to tumor resection and the prediction of treatment
outcomes [18,20].

Figure 3. Tumor regions: 1. necrotic core 2. edema 3. enhancing tumor.

2.3. Data Preprocessing

In the preprocessing part of this study, we normalized and standardized brain MRI
data to ensure comparability and optimize its suitability for downstream analysis. We
further investigated the creation of supervoxels, evaluating different algorithms to identify
the one that generates the most robust and reliable supervoxel segmentation for our graph-
based methodology. These preprocessing steps are critical for achieving accurate and
reliable segmentation results.

2.3.1. Normalization and Standardization

In this research, normalization and standardization were integral preprocessing steps
in the analysis of brain MRI data. Our methodology involved normalization to adjust the
intensity values of MRI images to a common range, specifically to the [0, 1] scale. This step
was critical for ensuring comparability of scans from diverse sources or under different
conditions. Percentile scaling, with the 99th percentile as the upper limit, was employed in
our normalization process [21].

Furthermore, standardization played a vital role in our preprocessing regimen. This
step aimed to transform the data to have a zero mean and a unit standard deviation, essen-
tial for the machine learning applications in our study. It ensured that each feature (or pixel
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intensity) received equal consideration in the analysis, thereby preventing the dominance
of features with larger scales. The standardization process involved subtracting the mean
value of the dataset from each data point and then dividing by the standard deviation.

The application of both normalization and standardization played a key role in prepar-
ing the MRI data specifically for the task of segmentation. By employing these prepro-
cessing steps, we aimed to optimize the data for segmentation, anticipating that such
conditioning would enhance the accuracy and precision of the segmentation process. This
approach was carefully chosen to ensure that the MRI data were adequately prepared for
the intricate demands of segmentation analysis in our research.

2.3.2. Creating Supervoxels

We conducted a detailed comparison of various supervoxel segmentation algorithms
for 3D Brain MRI scans, including VCCS [22], SLIC [23], Watershed [24], Mean Shift [25] and
Felzenszwalb–Huttenlocher [26], and Region Growing. Our analysis centers on evaluating
these algorithms using metrics like moment of inertia, homogeneity, shape uniformity,
and size uniformity. This crucial part of our research aims to determine which algorithm,
with its unique approach and capabilities, most effectively creates precise and reliable
supervoxels, thereby laying a solid foundation for the subsequent comprehensive analysis
(see Table 1).

Table 1. Supervoxel segmentation algorithm comparison.

Algorithm Homogeneity Moment of Inertia Shape Uniformity Size Uniformity Big O

VCCS 0.03 1.2 0.10 0.10 O(N log N)
SLIC 0.20 2.8 0.35 0.30 O(N)
Watershed (3D) 0.15 2.75 0.42 0.37 O(N log N)
Mean Shift (3D) 0.18 3.5 0.55 0.50 O(N2)
Felzenszwalb–Huttenlocher 0.19 3.25 0.40 0.35 O(N log N)
Region Growing 0.25 3.0 0.48 0.43 O(N)

• Moment of inertia: The moment of inertia as a metric for compactness of each super-
voxel in 3D brain MRI scans is a quantitative measure of the voxel points’ distribution
relative to the centroid. To calculate this, the centroid is first determined by averaging
the x, y, and z coordinates of all voxels within the supervoxel. This is given by Formula
(1). After finding the centroid, the moment of inertia is computed by summing the
squared distances of each voxel point from this centroid across all three dimensions,
as in Formula (2). We assign a uniform unit weight to each voxel within a supervoxel
for the moment of inertia calculations. This approach standardizes the contribution of
each voxel, simplifying the analysis and ensuring consistency across all supervoxels.

x̄ =
1
N

N

∑
i=1

xi, ȳ =
1
N

N

∑
i=1

yi, z̄ =
1
N

N

∑
i=1

zi (1)

I =
N

∑
i=1

[
(xi − x̄)2 + (yi − ȳ)2 + (zi − z̄)2

]
(2)

This calculation reflects how the voxels are distributed around the centroid, providing
insights into the supervoxel’s shape and compactness, which are crucial for evaluating
the quality of supervoxels created and consequently segmentation in medical image
analysis. Following the calculation of the moment of inertia for each supervoxel in 3D
brain MRI scans, the next step involves aggregating these values to assess the overall
compactness of the segmentation. This is achieved by calculating the average moment
of inertia across all supervoxels. Furthermore, to refine the analysis and ensure its
robustness, statistical procedures are applied. This includes identifying and removing
outliers, which are supervoxels whose moment of inertia significantly deviates from
the norm.
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• Homogeneity: Homogeneity in supervoxel segmentation for 3D brain MRI scans
assesses the uniformity of voxel properties, such as intensity values, within each
supervoxel. It begins by determining the mean intensity of all voxels in a super-
voxel, µ = 1

N ∑N
i=1 Ii, where Ii is the intensity of the i-th voxel. Subsequently, the ho-

mogeneity is computed as the variance of these intensity values from the mean.
Homogeneity = 1

N ∑N
i=1(Ii − µ)2. After computing the homogeneity for each super-

voxel, outliers are identified and removed to avoid skewing the results. The final step
involves calculating the average homogeneity across all supervoxels, which provides
a comprehensive measure of segmentation quality.

• Shape Uniformity: In the context of 3D brain MRI scans, shape uniformity of super-
voxels is crucial for understanding the geometric properties of segmented regions.
This metric is particularly informative when assessing the spatial distribution and
orientation of voxels within each supervoxel. Shape uniformity is quantified using the
coefficients of variation (CoV) of two aspect ratios: X/Y and Y/Z.
For each supervoxel, the aspect ratios are calculated, and the CoV for each ratio is
determined as CoVXY = σXY

µXY
and CoVYZ = σYZ

µYZ
, where σ and µ represent the standard

deviation and mean of the respective aspect ratios across all supervoxels. These CoVs
offer a standardized measure of dispersion, enabling a comparison of shape uniformity
across the dataset.
Unlike homogeneity, which focuses on the uniformity of intensity values within each
supervoxel, shape uniformity assesses the physical dimensions and orientations of su-
pervoxels. A lower CoV suggests more uniform shapes, indicative of regular, possibly
spherical or cuboid supervoxels. In contrast, a higher CoV points to greater variabil-
ity, signifying elongated or irregularly shaped supervoxels. By analyzing both CoV
metrics (CoVXY and CoVYZ), a comprehensive view of the 3D shape characteristics
is obtained.

• Size Uniformity: In the evaluation of supervoxel segmentation algorithms for 3D
brain MRI scans, size uniformity plays a vital role. It measures the consistency in
the sizes of supervoxels across the segmented image. Size uniformity is assessed by
first calculating the size of each supervoxel, typically the count of voxels it contains.
The mean size, denoted as µsize, and the standard deviation of sizes, σsize, are com-
puted. The coefficient of variation, given by CVsize = σsize

µsize
, serves as a normalized

measure of size uniformity. A lower CVsize indicates a higher degree of uniformity,
which is essential for the accuracy of medical image segmentation.

2.3.3. Supervoxels with Voxel Cloud Connectivity Segmentation (VCCS)

In our study, the Voxel Cloud Connectivity Segmentation (VCCS) [22] algorithm
was employed as a crucial preprocessing step for creating supervoxels from complex
volumetric data. Seed points S = {s1, s2, . . . , sK} were selected from the set of voxels
P = {p1, p2, . . . , pN}, with each voxel pi characterized by spatial coordinates xi and a
feature vector fi. These seeds were either uniformly selected or strategically chosen based
on a specific heuristic, and each seed sk had a unique spatial position xsk and an associated
feature vector fsk .

A specialized distance metric d was formulated to integrate spatial and feature space
distances, providing a holistic measure of dissimilarity between each voxel pi and seed sk:

d(pi, sk) =
√

α · ∥xi − xsk∥2 + (1 − α) · ∥ fi − fsk∥2

The parameter α served as a balance between spatial and feature space contributions.
Each voxel pi was assigned to the supervoxel of the nearest seed sk by minimizing the
distance d(pi, sk). The positions and feature vectors of the seeds were then updated to reflect
the centroidal position and average feature vector of the voxels within each supervoxel,
following the formulas
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xnew
sk

=
1

|Sk| ∑
pi∈Sk

xi

f new
sk

=
1

|Sk| ∑
pi∈Sk

fi

This iterative process was repeated until convergence was achieved or a maximum
number of iterations was reached. The parameter α was crucial in regulating the compact-
ness of the supervoxels, with higher values favoring spatial compactness and lower values
emphasizing feature-based homogeneity. In our study, we evaluated the performance of
different K values—3000, 10,000, 30,000, and 50,000—on supervoxel segmentation. The dice
coefficients for the whole tumor region were determined as 0.64, 0.70, 0.85, and 0.88, respec-
tively. Given these results, we selected K = 30,000 as our preferred setting. This decision
was based on the observation that the improvement in dice coefficient from K = 30,000 to
K = 50,000 was marginal, whereas the computational cost increased significantly, making
K = 30,000 the most efficient choice in terms of both accuracy and computational expense.

2.3.4. Graph Structure Representation

In our approach for brain MRI tumor segmentation using Graph Neural Networks
(GNNs), we construct a graph where each node corresponds to a distinct supervoxel, rep-
resenting a specific brain region of interest. These supervoxels are segmented from the
MRI data using the Voxel Cloud Connectivity Segmentation (VCCS), enhancing compu-
tational efficiency. We selectively retain supervoxels in brain regions, discarding those in
non-brain areas, and assign to each a feature set derived from a statistical analysis within
the supervoxel, including quintiles of voxel intensities. This results in an N × F feature
matrix, where N is the number of retained supervoxels, and F is the number of features
per node.

To depict the spatial and functional interconnectivity, we generate an adjacency matrix
of size N × N. In our study, we evaluate two methodologies for edge representation within
this graph. One utilizes binary edges, indicating the presence or absence of connections
between supervoxels, and the other employs weighted edges, where connections are
quantified based on Euclidean distances and intensity-based similarities. This exploration
of both binary and weighted edge formats allows us to tailor our graph construction to the
specific needs of tumor segmentation in MRI images. The dual-option approach for edge
representation is integral to our comprehensive and computationally efficient methodology,
enhancing the accuracy of tumor segmentation while maintaining mathematical rigor in
data representation.

Following the main discussion, the mathematical formulation of our methodology is
further detailed. The feature matrix is constructed using quintile-based statistics for each
supervoxel. For a given supervoxel i with voxel intensity values Xi, the feature vector
is computed as Featuresi = [Q1, Q2, Q3, Q4, Q5], where Q1 to Q5 represent the quintile
values of Xi. Consequently, the feature matrix for all supervoxels is represented as an N × F
matrix, where each row corresponds to the feature vector of a supervoxel.

For the adjacency matrix construction, the Euclidean distance between the centroids

of supervoxels i and j, denoted as Ci and Cj, is calculated as dij =
√

∑k(Cik − Cjk)2.
In the case of a weighted graph, the edge weight between two supervoxels is determined

using the formula wij = exp
(
−

d2
ij

2σ2

)
, where σ is the standard deviation constant. This

results in a weighted adjacency matrix where each element Aij represents the strength
of the connection between supervoxels based on their intensity-based similarities. This
mathematical approach allows for a nuanced representation of the graph, essential for the
detailed analysis required in tumor segmentation in MRI images.

The analysis of the brain MRI data graph for a single patient revealed a graph with
3447 nodes and 31,637 edges, demonstrating a dense and interconnected network. This
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intricate structure is indicative of the complex nature of brain MRI data. The centrality
measures, including degree, closeness, betweenness, and eigenvector centrality, have
highlighted nodes of significant importance and connectivity within the graph. The average
clustering coefficient, at 0.42224, along with a single connected component structure,
further validates the graph’s robust representation of the brain’s intricate architecture.
These characteristics underscore the graph’s suitability for Graph Neural Network (GNN)
analysis, paving the way for effective brain tumor segmentation using advanced GNN
techniques. This approach promises to harness the detailed connectivity and structural
nuances captured in the graph representation of the MRI data. (See Table 2 and Figure 4)

Table 2. Graph analysis of brain MRI data.

Property Value

Number of Nodes 3447
Number of Edges 31,637
Average Clustering Coefficient 0.42224
Highest Degree Centrality (Node ID 122) 0.01741
Highest Closeness Centrality (Node ID 1459) 0.22366
Highest Betweenness Centrality (Node ID 122) 0.07158
Highest Eigenvector Centrality (Node ID 2692) 0.16626

Figure 4. Graph visualization centered on the most important node (Node ID [insert ID]). This
representation highlights the node’s significant connectivity within the brain’s network.

In our brain MRI data graph, the prominently visualized central node, identified by
its high degree centrality (Node ID 122 with a centrality of 0.01741), indicates a region of
significant connectivity within the brain’s network. This node, along with its neighboring
cluster, highlights areas potentially crucial for brain function and structure. Nodes such
as Node ID 1459 with the highest closeness centrality of 0.22366, Node ID 122 with the
highest betweenness centrality of 0.07158, and Node ID 2692 with the highest eigenvector
centrality of 0.16626, further underscore the importance of these regions. Such insights are
invaluable for applying Graph Neural Networks (GNNs) in brain tumor segmentation,
enhancing our understanding of the brain’s architecture and advancing neuroimaging and
neurological disorder diagnosis.
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2.4. GNN Layers

Our Spatial Graph Neural Network (GNN) utilizes a multi-layer GraphSAGE archi-
tecture with pooling layers and ReLU activations for enhanced feature learning. This
design progressively aggregates information from each node’s neighborhood, allowing
the network to capture complex patterns within the graph structure. The transformation
applied to node features is illustrated by the following equation:

h(l+1) = σ

(
W(l) ·

(
h(l)|| max

∀vs.∈V(u)
σ(Wpool · h(l))

))
(3)

where each parameter represents the following:

• h(l) is the feature vector of a node at layer l.
• h(l+1) is the updated feature vector of the node at layer l + 1.
• σ denotes a differentiable, non-linear activation function, such as ReLU.
• W(l) is the weight matrix specific to layer l, applied during feature transformation.
• Wpool is a global trainable weight matrix used in the pooling operation.
• The concatenation operator || combines the node’s original features with the aggre-

gated neighborhood features.
• V(u) represents the set of nodes that are neighbors of node u.
• max∀vs.∈V(u) applies a max pooling operation over all features of the neighbors v of

node u after applying the activation function and weight matrix Wpool.

For Spectral GNN, we utilize Chebyshev Convolution (ChebConv). ChebConv rep-
resents a form of Spectral Graph Neural Networks (GNNs) [27] and leverages the eigen-
decomposition of the graph Laplacian to interpret graph convolution in the Fourier domain.
Among these methods, the Chebyshev Convolution (ChebConv) layer stands out due to its
efficient approach in capturing complex patterns in graph data by employing Chebyshev
polynomials of the first kind for spectral filtering.

Chebyshev polynomials [28] of the first kind, Tk(x), are defined by the recurrence relation:

T0(x) = 1,

T1(x) = x,

Tk+1(x) = 2xTk(x)− Tk−1(x) for k ≥ 1.

These polynomials form an orthogonal basis in the space of continuous functions and
are particularly suitable for approximating functions in a truncated series. The ChebConv
layer utilizes these polynomials to approximate the spectral graph convolutional operator,
thereby avoiding the computationally intensive eigen-decomposition of the graph Laplacian.

The graph convolution operation in ChebConv is executed in the spectral domain
using Chebyshev polynomials. Specifically, the convolution of a graph signal x with a filter
g, parameterized by weights θ, is approximated using the first K Chebyshev polynomials
of the scaled graph Laplacian L̃:

gθ(L) · x ≈
K−1

∑
k=0

θkTk(L̃)x,

where L̃ = 2L/λmax − I is the scaled Laplacian, L is the graph Laplacian, λmax is the largest
eigenvalue of L, and I is the identity matrix. This approximation facilitates a K-localized fil-
ter, meaning that each node aggregates information from its K-hop neighborhood, enabling
the ChebConv layer to capture local structures in the graph efficiently.

ChebConv layers offer significant advantages, including scalability to large graphs and
flexibility in handling varying graph structures without the need for re-training, making
them particularly suitable for inductive learning tasks. They are parameterized by the
number of input and output features (in_feats and out_feats), the order of the Chebyshev
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polynomial K (determining the size of the filter and the extent of the neighborhood in
the convolution), and optionally the activation function and bias term. The integration
of ChebConv layers into deep GNNs allows for the extraction and utilization of rich
topological and feature-based information from graphs, making their spectral approach a
robust mechanism for learning on graph-structured data.

In the context of the computational flow described in Figure 1, the process involves
utilizing Graph Neural Networks (GNNs) in two distinct stages. Initially, a GNN is
employed to segment supervoxels, with the subsequent output being fed into another GNN
for further refinement and precise segmentation of the tumor region. Specifically, for Spatial
GNN, GraphSage is utilized for both stages, while ChebConv is employed for both stages
in the case of Spectral GNN. In the scenario of Spectral–Spatial GNN, a combination of
Chebconv and GraphSage is utilized.

2.5. Experimental Setup

For the development of our model in this study, we partitioned the BraTS Dataset into
three segments: 70% of the cases were allocated for training, while 15% were set aside for
validation and another 15% for testing. The data were split randomly, utilizing a specific
random seed to ensure the reproducibility of our results. The training of the model was
performed on a personal computer equipped with an 8 GB Nvidia GPU, a process that
spanned 20 h. Bayesian optimization was utilized for the fine-tuning of hyperparameters,
with a comprehensive discussion on this approach and its outcomes provided in the
following sections and Table 3.

Table 3. Parameters and hyperparameters for Spatial, Spectral, and Spectral–Spatial GNNs.

Hyperparameter Spatial GNN Spectral GNN Spectral–Spatial GNN

Number of Epochs 200 200 200
Number of Node Features 20 20 20
Output Classes 4 4 4
Learning Rate 0.005 0.005 0.005
Learning Rate Decay 0.95 0.95 0.95
Weight Decay 5 × 10−4 5 × 10−4 5 × 10−4

Layer Sizes [256, 256, 256, 256] [256, 256, 256, 256] [256, 256, 256, 256]
Dropout 0.5 0.5 0.5
Chebyshev filter size - 2 2
Activation Function ReLU ReLU ReLU
Optimizer Adam Adam Adam
Aggregator LSTM - LSTM

In our experimental setup, we rigorously tested three distinct Graph Neural Net-
work (GNN) models to assess their performance. The Spatial GNN model employed the
GraphSAGE algorithm, known for effectively aggregating local neighborhood features.
The Spectral GNN model utilized the Chebyshev Convolution (ChebConv) layer, aiming to
leverage its spectral filtering capabilities for capturing global graph features. Lastly, our in-
novative Spectral–Spatial GNN model combined the local feature extraction of GraphSAGE
with the global perspective of ChebConv, offering a comprehensive approach to graph data
analysis. This strategic integration of models aimed to provide an in-depth comparative
analysis, shedding light on their individual and collective strengths in addressing our
research challenges.

2.6. Evaluation Metrics

In the ongoing development of tumor segmentation models, the implementation of
an adept and thorough evaluation metric is of essence. The metrics illustrated below are
designed to give an intensive examination of the performance of models.
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Dice coefficient: A primary metric employed is the dice coefficient, which is formulated
as

Dice =
2 × |X ∩ Y|
|X|+ |Y| =

2 × ∑ |A × B|
∑ A2 + ∑ B2 (4)

This metric, drawing from Milletari et al. [4]’s work on volumetric medical image seg-
mentation, measures the overlap between model predictions Y ) and actual segmentations
X, assessing model accuracy. X represents the true regions of interest, such as tumors in
MRI scans, while Y is the algorithm’s predicted segmentation. A and B are binary masks
for X and Y, marking regions of interest as 1, simplifying the comparison of actual and
predicted segmentation

Precision, sensitivity, and specificity: Precision, another critical metric, calculates the
ratio of true positives to the combined sum of true positives and false positives. Sensitiv-
ity (or recall) measures the model’s ability to correctly identify positive samples, while
specificity assesses its skill in identifying negative samples. These metrics, when com-
bined, provide a comprehensive view of the model’s performance, ensuring a meticulous
assessment of the balance between detecting tumor regions and avoiding false positives.

Precision =
True Positives

True Positives + False Positives
(5)

Sensitivity =
True Positives

True Positives + False Negatives
(6)

Specificity =
True Negatives

True Negatives + False Positives
(7)

2.7. Hyperparameters Study

In this study, we utilized Bayesian Optimization [29] for hyperparameter tuning due
to its superior efficiency over Grid Search and Random Search. Bayesian Optimization
intelligently navigates the hyperparameter space, significantly reducing computational
costs and time by focusing on promising areas based on a probabilistic model. This
approach allows for a more efficient search and often yields better results faster than
traditional methods.

Multiple parameter sensitivity experiments were performed to test the influence of the
selected crucial hyperparameters. It is crucial to consider the impact of different learning
rates on the training process of machine learning models (See Figure 5). According to
Smith (2017) [30], a high learning rate, such as 0.1, can lead to rapid convergence of the
model but may introduce instability during training. This instability is characterized by
significant fluctuations in accuracy from one epoch to another, as the model may overshoot
optimal points in the loss landscape. Consequently, training curves associated with higher
learning rates are likely to display more noise due to these fluctuations.

Conversely, a medium learning rate, exemplified by 0.01, offers a balance between con-
vergence speed and stability [31]; while models trained with a medium learning rate may
still exhibit some fluctuations in accuracy, these variations are typically less pronounced
compared to those observed with high learning rates. The noise level in the training process
is moderate when using a medium learning rate.

On the other hand, a low learning rate, such as 0.005 or lower, results in slower
convergence but promotes a more stable training process with minimal fluctuations in
accuracy [30]. This stability is achieved because the model makes smaller weight updates,
leading to a smoother progression of accuracy over epochs and reduced noise in the training
curves associated with lower learning rates.



Appl. Sci. 2024, 14, 3424 12 of 18

Figure 5. Accuracy vs. epochs for three learning rates.

Given the objective of comparing the efficacy of Spatial, Spectral, and Spectral–Spatial
GNN models for brain MRI segmentation, the hyperparameter selection was critically
strategized. As demonstrated in Table 3, a uniform learning rate of 0.005 was chosen across
models to ensure a fair ground for performance comparison, negating any bias introduced
by learning dynamics. This rate strikes a balance between adequate model training and
the prevention of rapid convergence to local minima. The consistency in epochs, layer
sizes, and dropout rates further standardizes the experimental setup, allowing direct
attribution of performance differences to the architectural distinctions of each model. Such
a methodical approach enables a comprehensive analysis of how spatial and spectral
data processing capabilities of each GNN variant contribute to the segmentation accuracy,
providing valuable insights into their applicability in medical imaging analysis. Table 3
provides a comparative overview of the configuration settings used for three types of Graph
Neural Networks (GNNs): Spatial GNN, Spectral GNN, and Spectral–Spatial GNN. In this
study, we used a consistent setup across all three models for many parameters, including
the number of training epochs (200), number of node features (20), number of output
classes (4), learning rate (0.005), learning rate decay (0.95), weight decay (5 × 10−4), layer
sizes (four layers of 256 units each), dropout rate (0.5), activation function (ReLU), and the
optimizer (Adam). Unique to the Spectral GNN and the Spectral–Spatial GNN is the use of
a Chebyshev filter size of 2. Additionally, the Spatial GNN and the Spectral–Spatial GNN
utilize an LSTM aggregator, which is absent in the Spectral GNN, due to the difference in
how node information is integrated in these models.

3. Results and Discussion

Our comprehensive evaluation of supervoxel segmentation algorithms for 3D brain
MRI scans demonstrates the superior performance of the Voxel Cloud Connectivity Seg-
mentation (VCCS) method across multiple metrics. The results, summarized in Table 1,
illustrate VCCS’s leading edge in homogeneity (0.03), moment of inertia (1.2), shape unifor-
mity (0.10), size uniformity (0.10), and time complexity (O(N log N)), affirming its efficiency
and effectiveness in generating precise supervoxels.

VCCS exhibited the highest homogeneity, indicating a consistent intensity within
supervoxels, crucial for distinguishing between various brain tissues accurately. Its moment
of inertia was the lowest, reflecting compact and well-defined supervoxels essential for
detailed anatomical analysis. Additionally, VCCS achieved the best scores in shape and
size uniformity, ensuring the segmentation’s reliability and facilitating subsequent image
processing tasks.

Comparatively, other algorithms such as SLIC, Watershed, Mean Shift, Felzenszwalb–
Huttenlocher, and Region Growing showed varying performance levels but did not match
VCCS’s balanced excellence across all evaluated aspects. For instance, while some algo-
rithms like SLIC were fast (O(N)), they could not provide the same level of detail and
accuracy in segmentation as VCCS.
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The time complexity of VCCS, O(N log N), balances between computational efficiency
and segmentation quality, making it a practical choice for large-scale medical image anal-
ysis applications. These findings underscore VCCS as the most suitable algorithm for
supervoxel segmentation in 3D brain MRI scans, offering a compelling balance of accuracy,
computational efficiency, and segmentation quality.

Following the development of the graph structure derived from brain MRI data, spec-
tral analysis was conducted to evaluate its structural integrity, as illustrated in Figure 6.
The “Histogram of Laplacian Eigenvalues” reveals a distribution with a significant con-
centration of values in the lower range, indicative of the presence of many low-frequency
components in the graph. These components suggest gradual variations in voxel intensity
across the graph, as in the main images, highlighting coherent structural patterns. The de-
tection of extremely small eigenvalues points to the existence of connected components or
a notable community structure within the graph, reflecting distinct anatomical regions of
the brain.

(a) (b) (c)

Figure 6. Figure (a) on the left displays the Spy Plot of the Laplacian matrix, highlighting sparse
connectivity. The middle Figure (b) showcases the Enhanced Incidence Matrix Visualization, re-
vealing intricate graph connections. Figure (c) presents the Histogram of Laplacian Eigenvalues,
emphasizing low-frequency components and potential community structures. Together, these vi-
sualizations provide a concise overview of the graph’s topology, vital for signal processing and
community detection.

The Spy Plot of the Laplacian Matrix visually depicts the non-zero elements of the
graph’s Laplacian matrix. The dense clustering of dots along the diagonal highlights the
connectivity of nodes to themselves or their immediate neighbors, underscoring spatial ad-
jacency in terms of voxel intensity and structural coherence. In contrast, the sparse presence
of dots elsewhere in the matrix indicates a lack of direct connections between most voxel
pairs. This pattern implies that the graph may be extensive and sparse, containing several
localized clusters or communities that echo the brain’s complex structural organization.

Our investigation delves into the comparative performance of Spatial GNN, Spectral
GNN, and Spectral–Spatial GNN approach, aiming to highlight the significant advance-
ments and insights these methods offer in brain tumor segmentation. The Spatial GNN
demonstrates commendable performance with an accuracy of 92.5%. This highlights the
effectiveness of spatial features in identifying tumor regions within MRI scans. Conversely,
the Spectral GNN, which processes data in the spectral domain, shows a higher accuracy
of 95.3%, indicating the additional benefits of spectral analysis in enhancing segmenta-
tion outcomes (See Table 4).
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Table 4. Comparison of GNN methods for whole tumor segmentation

Metric Spatial GNN Spectral GNN Spectral–Spatial

Accuracy 92.5% 95.3% 99.2%
Precision 91.8% 94.6% 98.7%
Recall 92.2% 95.0% 99.0%
Dice Score 91.7% 94.5% 98.9%

However, the integration of both spatial and spectral features in the Spectral–Spatial
GNN method leads to a remarkable improvement in segmentation accuracy, precision,
recall, and other metrics. This integrated approach effectively capitalizes on the complemen-
tary strengths of spatial and spectral data representations, facilitating a more comprehensive
analysis of MRI scans. Such an approach is especially beneficial in the context of brain
tumor segmentation, where the accurate delineation of tumor boundaries is critical for
diagnosis and treatment planning.

The results not only validate the hypothesis that combining spatial and spectral
features can yield superior segmentation performance but also illustrate the potential of
GNNs in automating and improving the reliability of medical image analysis.

The evaluation of our Spectral–Spatial GNN model against established approaches in
the literature reveals its superior performance in brain tumor segmentation on the BraTS
dataset. As outlined in Table 5, existing methods, including YOLO2 combined with CNN,
DNN integrated with SVM, and a standalone CNN approach, have shown commendable
results in terms of accuracy, precision, recall, and other key metrics. However, our Spectral–
Spatial GNN model demonstrates a notable enhancement in segmentation accuracy and
precision, highlighting its effectiveness and efficiency.

Table 5. Comparison of other approaches.

Metric [32] YOLO2 + CNN [33] DNN, SVM [34] CNN

Accuracy 90% 97.47% 96%
Precision 91.5% 92.3% 94.1%
Recall 94.5% 91.4% 93.4%
AUC 95.7% 93.4% 95.2%
Dice Score 87.4% 93.4% 96.2%

Recent studies highlight the effectiveness of machine learning in medical imaging.
Object detection with YOLO2 + CNN achieved a 90% accuracy and an 87.4% Dice Score [32].
DNN combined with SVM improved the accuracy to 97.47% and the Dice Score to 93.4%
[33]. A standalone CNN approach reported a 96% accuracy and a 96.2% Dice Score,
emphasizing deep learning’s potential [34]. Despite these advances, our Spectral–Spatial
GNN model surpasses these methods with an accuracy of 99.2% and a Dice Score of 98.9%.
This improvement can be attributed to the model’s ability to effectively integrate spatial
and spectral features, leveraging the complementary information for a more accurate
segmentation of brain tumors. The model’s performance emphasizes the importance of
multi-dimensional feature analysis in achieving high precision and recall, critical factors in
medical diagnosis and treatment planning.

As demonstrated in Tables 6 and 7, the Spectral–Spatial GNN method outshines both
Spatial GNN and Spectral GNN across validation and test sets for tumor sub-region seg-
mentation, achieving superior Dice Scores and accuracy for necrotic core, enhancing tumor,
and edema. This method’s integrated approach, combining spectral and spatial graph
analyses, allows for a nuanced representation of tumor structures, evident in its robust
performance metrics; while Spatial GNN effectively utilizes local connectivity and Spectral
GNN focuses on global patterns, they fall short in capturing the comprehensive tumor land-
scape as effectively as the Spectral–Spatial GNN. This model’s ability to accurately segment
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complex tumor regions, maintaining high performance across different datasets, under-
scores its potential as a reliable tool in medical imaging segmentation. The consistency in
outperforming other methods across both datasets not only highlights the effectiveness
of the Spectral–Spatial approach but also marks a significant step forward in the field,
suggesting further exploration into combining modalities and advanced graph theories
could yield even greater advancements in tumor segmentation. In Figure 7, the precision
of the Spectral–Spatial GNN model is exemplified. The depicted brain MRI slice, extracted
from the BraTS dataset showcases the predicted tumor area, illustrated with heightened
clarity and precision.

Table 6. Comparison of GNN-based methods for tumor sub-region segmentation on the validation set.

Method Metric Necrotic Core Enhancing Tumor Edema

Spatial GNN Dice Score 75.2% 80.5% 70.8%
Accuracy 85.3% 88.7% 83.2%

Spectral GNN Dice Score 78.4% 82.3% 74.6%
Accuracy 87.5% 90.1% 85.4%

Spectral–Spatial GNN Dice Score 85.7% 90.2% 82.5%
Accuracy 92.6% 94.3% 90.7%

Table 7. Comparison of GNN-based methods for tumor sub-region segmentation on the test set.

Method Metric Necrotic Core Enhancing Tumor Edema

Spatial GNN Dice Score 69.5% 75.2% 64.7%
Accuracy 81.2% 85.3% 79.4%

Spectral GNN Dice Score 72.1% 78.3% 70.2%
Accuracy 83.7% 87.5% 82.6%

Spectral–Spatial GNN Dice Score 80.1% 84.7% 77.5%
Accuracy 88.4% 91.3% 87.9%

Figure 7. Ground truth versus three predicted classes.

Our findings suggest that while existing methods provide a strong foundation for
brain tumor segmentation, the incorporation of graph-based neural networks offers a
significant leap forward in accuracy and reliability. The Spectral–Spatial GNN model’s
superior performance highlights its potential as a state-of-the-art solution for brain tumor
segmentation, promising to enhance diagnostic processes and patient outcomes signifi-
cantly. However, to realize its full potential, several key challenges need further exploration.
The complexity of supervoxel generation and the intricate graph structures that model
their relationships pose a barrier to easy implementation and can increase computational
costs. Additionally, Graph Neural Networks require substantial training data, and the
limited availability of accurately annotated medical image data can hinder the model’s
ability to achieve the robust performance necessary for clinical confidence. Addressing
these challenges will be crucial for unlocking the benefits of Spectral–Spatial Graph Neural
Networks in everyday diagnosis and treatment planning of brain tumors.
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4. Conclusions

In conclusion, our research shows that Graph Neural Networks (GNNs), combining
spectral and spatial aspects, provide a superior approach for accurate and precise brain
tumor segmentation. The preliminary supervoxel generation phase showed that VCCS out-
performed SLIC, Watershed, Meanshift, and Felzenszwalb–Huttenlocher in homogeneity,
inertia, shape uniformity, and size uniformity. This sets a strong foundation for further
analysis. Meticulous hyperparameter tuning maximized the performance of our Spectral–
Spatial GNN model. This model demonstrates superior accuracy in both whole tumor
and sub-region segmentation compared to traditional methods and individual Spectral or
Spatial GNNs, with the dice coefficient and other metrics as proof. Our Spectral–Spatial
GNN model’s accuracy and precision advances have significant potential to enhance brain
tumor diagnosis, treatment planning, and fundamental research. To fully realize this
potential, future research should prioritize developing optimized techniques for faster,
more resource-efficient analysis of graph-based medical imaging, while also addressing
limited data availability through few-shot learning within GNNs to ensure robust model
performance even with smaller datasets.
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