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Abstract: High-pixel-number synchrotron radiation computed tomography (CT) has the advantages
of high sensitivity, high resolution, and a large field of view. It has been widely used in biomedicine,
cultural heritage research, non-destructive testing, and other fields. The Nyquist sampling theorem
states that when the detector’s pixels per row are increased, it requires more CT projections, resulting
in a lengthened CT scan time and increased radiation damage. Sparse-view CT can significantly
reduce radiation damage and improve the projection data acquisition speed. However, there is
insufficient sparse projection data, and the slices reconstructed show aliasing artifacts. Currently,
aliasing artifact correction processes more medical CT images, and the number of pixels of such
images is small (mainly 512× 512 pixels). This paper presents an aliasing artifact correction algorithm
based on deep learning for synchrotron radiation CT with a high pixel number (1728 × 1728 pixels).
This method crops high-pixel-number CT images with aliasing artifacts into patches with overlapping
features. During the network training process, a convolutional neural network is utilized to enhance
the details of the patches, after which the patches are reintegrated into a new CT slice. Subsequently,
the network parameters are updated to optimize the new CT slice that closely approximates the
full-view slice. To align with practical application requirements, the neural network is trained using
only three samples to optimize network parameters and applied successfully to untrained samples
for aliasing artifact correction. Comparative analysis with typical deep learning aliasing artifact
correction algorithms demonstrates the superior ability of our method to correct aliasing artifacts
while preserving image details more effectively. Furthermore, the effect of aliasing artifact correction
at varying levels of projection sparsity is investigated, revealing a positive correlation between image
quality after deep learning processing and the number of projections. However, the trade-off between
rapid experimentation and artifact correction remains a critical consideration.

Keywords: synchrotron radiation CT; spare-view; artifact correction; deep learning

1. Introduction

Sparse-view CT is an imaging technique that collects a small number of projection
images within the scanning angle and then reconstructs the CT slices [1]. It can effec-
tively reduce radiation damage, CT scanning time, and data storage volume in high-pixel-
number synchrotron radiation CT. However, the projection data collected by sparse-view
CT does not satisfy the Nyquist sampling theorem. Reconstruction is an ill-posed inverse
problem, and aliasing artifacts will appear in the reconstructed slice. Figure 1 displays
the aliasing artifacts in the mouse brain data used in this study under different sparse
views. Figure 1a–e shows the slice images reconstructed using FBP at 100 views, 200 views,
300 views, 400 views, and 1200 views (label), respectively. The images (a1–e1) and (a2–e2)
are magnified views of the blue and red boxed areas in (a–e), respectively. The magnified
images clearly reveal numerous streaking artifacts and noise.
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Figure 1. Aliasing artifacts in the mouse brain data used in this study under different sparse views.
(a–e) Slice images reconstructed using FBP at 100 views, 200 views, 300 views, 400 views, and
1200 views (label). The images (a1–e1) and (a2–e2) are magnified views of the blue and red boxed
areas in (a–e), respectively.

To correct aliasing artifacts, researchers have proposed some iterative correction meth-
ods based on compressed sensing [2–5]. These methods introduce constraints to the
iterative reconstruction process, greatly improving the quality of the reconstructed image.
However, to solve for the optimal values of the objective function iteratively, the iterative
approach involves constructing a mathematical model that requires multiple projections
and back projections. This process demands substantial computational resources, rendering
it impractical for high-pixel-number CT images.

The rapid development of deep learning in recent years in the fields of noise reduc-
tion [6,7], segmentation [8,9], and super-resolution [10–12] has also provided new ideas
for the correction of aliasing artifacts in sparse-view medical CT (512 × 512 pixels). The
correction of aliasing artifacts in sparse-view CT using deep learning methods is broadly
classified into three main categories: sinogram domain methods [13,14], slice domain
methods [15–21], and the fusion of sinogram domain and slice domain methods [22–27].
Lee et al. [13] proposed the segmentation of sinograms into patches, followed by the use of a
convolutional network to supplement the missing data in the sinogram. Okamoto et al. [14]
also suggested employing deep learning to enlarge a sinogram vertically and interpolate
the data to create more projections. The proposed band patch horizontally has the same
size as the sinogram and is only cropped vertically. Within the slice domain, Jin et al. [15]
proposed an FBPConvNet network to learn the residuals between low-quality inputs and
labels. Lee et al. [17] combined image wavelet transform and convolutional network using
wavelet transform instead of the pooling operation of U-Net [28]. Zhang et al. [19] pro-
posed a DD-Net slice domain network model with an encoding and decoding structure. In
the fusion domain, Lee et al. [22] suggested the use of a two-dimensional wavelet transform
instead of the down-sampling approach of conventional networks, employing two U-Net
models in the sinogram and image domains. Dong [27] proposed supplementing missing
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data with linear interpolation in the sinogram and using neural networks to correct artifacts
in reconstructed images within the slice domain.

In synchrotron CT imaging, a 2 k × 2 k pixel detector is typically used [29,30], resulting
in both the acquired projection data and the number of pixels in the reconstructed CT
image being 2 k × 2 k in size. However, the increase in the number of pixels means
that more projection data are needed to satisfy the requirements of the Nyquist sampling
theorem, which will enhance the advantage of sparse projection but also increase the
difficulty of correcting sparse artifacts. In this paper, we present an artifact correction
algorithm for high-pixel-number sparse-view CT. We performed CT imaging using a
synchrotron radiation light source and acquired 1200 projections at 180 angles, using their
CT reconstruction slices as labels. We obtained sparsely sampled projections and used their
reconstructed CT slices as input to the neural network. This type of image post-processing
strategy can effectively conserve computational resources. We cropped the input image
into small patches and computed the loss of these patches with the corresponding labeled
patches to optimize the network parameters. Additionally, we proposed constraints: the
output patches of the network are reintegrated into full CT images, which are used to
compute the structural similarity with the labeled CT slices to further optimize the network
parameters. Experiments demonstrate that, compared with typical deep learning methods
(FBPConvNet [15], DD-Net [19]), our proposed artifact correction method shows excellent
results in both qualitative evaluation and quantitative metrics. We believe that this artifact
correction method for high-pixel-number CT can be applied to other fields as well.

The rest of this paper is organized as follows. First, Section 2 presents the details of
our proposed method. Section 3 gives the experimental and research results. Finally, the
paper is summarized.

2. Methods and Data
2.1. Method

The method proposed in this paper is shown in Figure 2: First, the sparse-view slices
are reconstructed with filtered back projection (FBP). The slices with aliasing artifacts of
1728 ×1728 pixels are cropped with overlap into patches of 480 × 480 pixels. Cropping
with pixel overlap avoids pixel discontinuity in image stitching. Then, these patches are
passed through the neural network to start training and artifact-free patches as labels. Once
all the patches of each slice have been trained, these patches are reintegrated to a complete
CT slice, and we further expect the complete CT slice to be wirelessly close to the full-view
CT slice in terms of feature structure. In other words, we add a Lossglobal here (see Figure 2).

Due to incorporating an attention mechanism in its network architecture (see Figure 3),
the Attention U-Net [31] model demonstrates an enhanced capability in extracting detailed
image features. Therefore, in this paper, the Attention U-Net is employed as the network
model for artifact correction. In the left part of the network, two convolutions are first
used in each dimension to extract image features. After down-sampling four times in the
Max Pooling layer, the receptive field of the network increases continuously. The right
part of the network is expanded by the up-sampled feature map to restore the image size.
The introduction of the Attention-Gate module allows the model to focus on the target
information, reduce the weight of irrelevant information, and improve the ability of the
network to retain details. After the Attention-Gate module and concatenation with the
up-sampled features on the feature channel, the image resolution can be recovered. The
network model is implemented using the PyTorch framework, running on Intel Xeon Gold
6240 CPU and Nvidia V100 GPU. The Adam optimizer was used during training, with a
total of 60 epochs, and the initial learning rate was 0.0001. Every 10 epochs, the learning
rate was reduced to 0.8 times the original. The images in this dataset are all of 8-bit depth.
Before training the network, we normalize their grayscale values by dividing by 255, thus
scaling them to a range between 0 and 1.
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Figure 2. Flow chart of aliasing artifact correction method.

Figure 3. Attention U-Net network structure.

During training, the patch section uses the mean square error as the loss function:

Losslocal(X′, X) =
∣∣X′ − X

∣∣2
(1)
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where X′ is the neural network’s patch output, and X represents the patch’s label. In
addition, the structural similarity index [32] integrates the brightness l(Y′, Y), contrast
c(Y′, Y), and structure s(Y′, Y) of the two images, which can be used to evaluate the
similarity between the Y′ (reintegrated CT slice)and the label image Y (full-view CT slice):

l(Y′, Y) =
2mY′mY + c1

m2
Y′ + m2

Y + c1
(2)

c(Y′, Y) =
2σY′σY + c2

σ2
Y′ + σ2

Y + c2
(3)

s(Y′, Y) =
σY′Y + c3

σY′σY + c3
(4)

SSIM(Y′, Y) =
(2mY′mY + c1)(2σY′ + c2)

(m2
Y′ + m2

Y + c1)(σ
2
Y′ + σ2

Y + c2)
(5)

where m represents the mean, σ represents the standard deviation, c1, c2 and c3 are constants.
We propose to use SSIM(Y′, Y) to further constrain the direction of network optimization:

Lossglobal(Y′, Y) = λ · (1 − SSIM(Y′, Y)) (6)

In this paper, the λ is 0.1. In summary, the loss function for network training consists
of two parts:

Loss = Losslocal(X′, X) + Lossglobal(Y′, Y) (7)

2.2. Data Preparation and Image Quality Assessment

Synchrotron radiation CT is an ideal method for high-resolution 3D non-destructive
imaging of mouse brains, and the radiation damage can be further reduced by the sparse-
view CT method. We used alcoholic dehydration mouse brains under 12 keV monochro-
matic light generated by a double crystal monochromator at the X-ray Imaging and Biomed-
ical Application Beamline Station (BL13W1) of Shanghai Synchrotron Radiation Facility
(SSRF). The distance between the sample and the detector was 20 cm, and the pixel size of
the detector was 6.5 µm × 6.5 µm. Meanwhile, we used a 2× objective lens, so each pixel
of the CT slice was 3.25 µm. In total, 1200 projections were collected at 180 angles, and
their reconstruction slices were used as labels for network training. In total, 400 views (or
300 views, 200 views, 100 views) were sampled at uniform intervals from all projections,
and the reconstructed slices were used as input to the network. The Artifacts are shown
in Figure 1. Sparse sampling results in the reconstructed slice contain aliasing artifacts. It
should be noted that the slice also contains ring artifacts. However, our focus is on the
correction of aliasing artifacts. Therefore, ring artifacts were not corrected prior to training
but were considered as part of the sample structure. Furthermore, we used five mouse brain
samples, of which three (2708 slices) were used for training, one was used as the validation
dataset (474 slices), and one (865 slices) was used as the test set. It is worth noting that since
the resolution of the image is 3.25 µm, the thickness of each layer in the reconstructed CT
slices is also 3.25 µm. This implies that the feature differences between neighboring slices
are very small, resulting in insufficiently significant feature differences in the dataset. Such
characteristics of synchrotron CT data pose a challenge for deep learning training.

There are two ways to evaluate image quality: qualitative and quantitative. The
performance of the proposed method is qualitatively evaluated by observing the differences
in features between the images after artifact correction and the reference (label) images. For
quantitative evaluation, there are full-reference and no-reference metrics [33]. Given the
availability of label images, we utilize full-reference metrics (PSNR and MS-SSIM [34]) to
evaluate the performance of the proposed artifact correction method.The larger the peak
signal-to-noise ratio, the better the quality of the network output image. The MS-SSIM
index performs down-sampling M (M takes 5) times on the image to represent the similarity
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of the network output image and the label at different scales. The closer the value is to 1,
the closer the network output image and the label are. Its expression is as follows:

PSNR(Y′, Y) = 10log10
MAX2

MSE(Y′, Y)
(8)

MS − SSIM = [lM(Y′, Y)]αM
M

∏
j=1

cj(Y′, Y)β j sj(Y′, Y)γj (9)

MAX represents the maximum value of the true (label) image. α,β,γ are weight parameters
used to adjust the relative importance of different components luminance l, contrast c
and structure s. Among these, β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001,
β4 = γ4 = 0.2363, α5 = β5 = γ5 = 0.1333 and l, c, s corresponds to Equations (2)–(4) in the
previous paragraph.

3. Results
3.1. Comparison of Artifact Correction Effects of Different Methods

To verify the performance of our proposed method, we compare it with the typ-
ical deep learning methods FBPConvNet [17] and DD-Net [19] under 200 views and
400 views. Figure 4 shows the artifact correction effects of several methods under 200 views.
Figure 4(a1–e1) is an enlarged view of the area of the red box in Figure 4a–e. Figure 4a is
a directly reconstructed slice using FBP, with details on the image destroyed by artifacts.
After applying the DD-Net (Figure 4(b1)) and FBPConvNet (Figure 4(c1)) algorithms, the
image features appear blurred and the internal structure is indiscernible. However, our
proposed method retains more information than other methods while removing artifacts
(Figure 4(e1)). Figure 4(a2–d2) depicts the absolute error images of Figure 4a–d and the
full-view slice (Figure 4e), with brighter colors indicating larger errors. Our proposed
method demonstrates the smallest absolute error, followed by the FBPConvNet method
and the DD-Net method in descending order. The data at the top of (a2–d2) represent the
average values of the absolute error images.

Figure 5 depicts the artifact correction effects of various methods at 400 views. Se-
quentially, Figure 5a–e presents the following: the slice directly reconstructed by FBP,
the DD-Net method, the FBPConvNet method, our proposed method, and the slice di-
rectly reconstructed by full-view (1200 views). Additionally, Figure 5(a1–e1) provides a
zoomed view of the area within the red box in Figure 5a. The input image of the network
(Figure 5(a1)) exhibits a low signal-to-noise ratio and noticeable noise, which can impact
subsequent image analysis. The DD-Net method still introduces excessive smoothing (as
indicated by the blue arrow in Figure 5(b1)). Upon observing the region highlighted by
the red arrow in Figure 5(c1), it is evident that the aliasing artifacts persist in the image
corrected by the FBPConvNet method. In contrast, our proposed method demonstrates
advantages in recovering fine details and closely approximates the label image. This is
further supported by the absolute error image in Figure 5(a2–d2).
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Figure 4. Artifact correction effects of different algorithms under 200 views. (a) Slice reconstructed
by FBP, (b) slice corrected by DD-Net, (c) slice corrected by FBPConvNet, (d) artifact correction
using the proposed method (e) full-view CT slice. (a1–e1) Enlarged images of the red box in (a–e).
(a2–d2) Absolute error images between (a–d) and (e). The display window is [0, 0.22] for the absolute
error images.

Tables 1 and 2 list the quantitative evaluation results of several artifact correction
methods on the test dataset under 200 and 400 views. Both the MS-SSIM and PSNR of our
proposed method are optimal values, indicating that the proposed method can recover
image details with high quality while removing artifacts.

Table 1. Quantitative evaluation of different artifact correction methods at 200 views.

Methods 200 Views (PSNR) 200 Views (MS-SSIM)

FBP 27.3812 0.7672
DD-Net 28.5358 0.9261

FBPConvNet 32.3808 0.9263
Proposed method 33.6259 0.9673

Table 2. Quantitative evaluation of different artifact correction methods at 400 views.

Methods 400 Views (PSNR) 400 Views (MS-SSIM)

FBP 32.1820 0.9218
DD-Net 33.7385 0.9589

FBPConvNet 35.4875 0.9671
Proposed method 36.4845 0.9800
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Figure 5. Artifact correction effects of different algorithms under 400 views. (a) Slice reconstructed
by FBP, (b) slice corrected by DD-Net, (c) slice corrected by FBPConvNet, (d) artifact correction
using proposed method, (e) full-view CT slice. (a1–e1) Enlarged images of the red box in (a–e).
(a2–d2) Absolute error images between (a–d) and (e). The display window is [0, 0.12] for the absolute
error images.

3.2. Artifact Correction Effects on Material Samples

Figure 6 demonstrates the aliasing artifact correction effects of the proposed method
when applied to material samples. These samples are composed of tungsten (W), silicon
carbide (SiC), and titanium (Ti)(referred to as TiW). The bright areas on the CT slices
represent W, while the ring structures surrounding W are made of SiC, and the remaining
structures consist of Ti. There are a total of four samples, of which two are used for training
(3930 slices), one for validation (1200 slices), and one for testing (1500 slices). The input to
the network are slices reconstructed from 200 projection images, and the network labels
are slices reconstructed from 1200 projection images. The network model and parameter
settings are consistent with those used for the mouse brain data. Figure 6a shows the
slice image reconstructed directly using FBP, Figure 6b shows the artifact correction result
using the algorithm proposed in this paper, and Figure 6c is the label image. After using
the proposed algorithm, the aliasing artifacts were corrected, and the image contrast was
improved. Figure 6(a2,b2) are the absolute error images between Figure 6a,b and the label
images. The deviation between the slice after applying the artifact correction algorithm
and the label decreases, as illustrated in Figure 6(b2). This result demonstrates that the
proposed method can be used for aliasing artifact correction in different types of data.
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Figure 6. Correction of aliasing artifacts in the TiW dataset under 200 views. (a) FBP reconstruction
slice, (b) slice processed using the proposed method, (c) reconstructed slice image at 1200 views.
(a1–c1) Magnified images of the areas within the red box in (a–c). (a2,b2) Absolute error images
between (a,b) and the label images. The display window is [0, 0.06] for the absolute error images.

3.3. Selection of the Optimal Sparsity Ratio

To enable the application of the method to actual CT imaging, our attention is di-
rected towards establishing a projection sparse ratio, aiming to achieve high-quality artifact
correction while expediting experiments with reduced projection data. Accordingly, we
conducted artifact correction at 100, 200, 300, and 400 views, as depicted in Figure 7.
Figure 7(a1–e1) illustrates the local zoomed-in image of the red box region in Figure 7a–e.
The experimental results demonstrate that a higher number of projections leads to richer
image information after algorithmic correction, becoming closer to the ground truth. Ad-
ditionally, Figure 7f,g presents quantitative image quality evaluations using PSNR and
MS-SSIM for varying sparsity levels in the test set. It is noteworthy that although the image
quality improves with an increasing number of projections after applying the algorithm,
the rate of improvement diminishes. Meanwhile, the experimental time and radiation dam-
age to the samples also increase, indicating a diminishing return. The trade-off between
rapid experimentation and artifact correction is a critical consideration. For this case, we
believe that the choice of the sparsity ratio should depend on the experimental task. For
example, if it is necessary to observe a salient target (e.g., the red arrow in Figure 7), it is
appropriate to choose 100 views, which can save 11/12 of the experiment time. After being
processed by the deep learning method, the signal-to-noise ratio of the image is improved,
which is conducive to subsequent data processing operations such as feature segmentation.
Moreover, if the focus is on restoring the detailed information of the slice (such as the blue
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arrows in Figure 7), it is a suitable choice to choose 400 views, which can save 2/3 of the
projection data.

Figure 7. Qualitative and quantitative comparison of network artifact correction ability under
different sparse views: (a) 100 views, (b) 200 views, (c) 300 views, (d) 400 views, (e) full-view CT
slice. (a1–e1) Enlarged image of (a–e) in the red box area. (f) Quantitative evaluation of MS-SSIM.
(g) Quantitative evaluation of PSNR.

4. Conclusions

This paper proposes a deep learning method for artifact correction in synchrotron
sparse-view CT. In contrast to artifact correction for medical CT images, synchrotron
CT imaging commonly uses a 2 k × 2 k detector and the reconstructed slices with the
same dimensions. Therefore, we propose a method for aliasing artifact correction with
a high pixel number (1728 × 1728 pixels) to fit practical applications better. Specifically,
local details are addressed by cropping CT slices with aliasing artifacts into overlapping
patches, and the artifacts are corrected through neural network optimization. Then, the
local patches are reintegrated into the global CT slice, further constraining the spliced global
slice and high-quality labels to be consistent in feature structure. In practical scenarios,
obtaining a sufficient number of samples is challenging. Therefore, this study utilized
only three sample slices as the training set, one sample as the validation set to verify
the network training effect, and the reconstructed slices of another sample as the test set.
The experiments demonstrate that our proposed method can successfully correct aliasing
artifacts, indicating the feasibility of utilizing sparse-view CT imaging to achieve fast
experiments and reduce radiation damage in practical CT imaging. We believe that the
proposed method can also be applied to other fields.

Meanwhile, we investigated the artifact correction effect of the proposed method
at different sparsity levels. The results indicate that the quality of the neural network-
processed images improves with an increased number of acquired projections, but the
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enhancement rate of the method gradually diminishes. Moreover, the rise in the number
of projections implies longer experimental data and higher radiation damage, leading to
diminishing returns, which need to be weighed. Based on this, we recommend using a
sparse ratio of 1/12 or 1/6 if the sample’s complexity is similar to that of the mouse brain
and the researcher wishes to observe significant features. If high-quality CT images are
needed, a higher sparse ratio needs to be considered. The deployment of the proposed
method on the TiW dataset led to the elimination of aliasing artifacts and an enhancement
in image quality, thereby further substantiating the effectiveness of the proposed technique.
The neural network model utilized in this study is Attention U-Net. In subsequent research,
we plan to explore other neural network architectures to achieve superior artifact correction
results. Furthermore, our future endeavors will also focus on developing artifact correction
methods capable of simultaneously addressing multiple types of samples.
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