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Abstract: We propose a new approach for volumetric instance segmentation in X-ray Computed
Tomography (CT) data for Non-Destructive Testing (NDT) by combining the Segment Anything
Model (SAM) with tile-based Flood Filling Networks (FFN). Our work evaluates the performance
of SAM on volumetric NDT data-sets and demonstrates its effectiveness to segment instances in
challenging imaging scenarios. We implemented and evaluated techniques to extend the image-
based SAM algorithm for the use with volumetric data-sets, enabling the segmentation of three-
dimensional objects using FFN’s spatial adaptability. The tile-based approach for SAM leverages
FFN’s capabilities to segment objects of any size. We also explore the use of dense prompts to guide
SAM in combining segmented tiles for improved segmentation accuracy. Our research indicates the
potential of combining SAM with FFN for volumetric instance segmentation tasks, particularly in
NDT scenarios and segmenting large entities and objects. While acknowledging remaining limitations,
our study provides insights and establishes a foundation for advancements in instance segmentation
in NDT scenarios.

Keywords: instance segmentation; Segment Anything Model; computed tomography; non-destructive
testing; neural networks; machine learning

1. Introduction

In the field of Non-Destructive Testing (NDT) of large-scale components and assem-
blies, cars [1], shipping containers [2,3], or even airplanes [4,5] are often captured using
large-scale 3D X-ray computed tomography (CT) and are subsequently subjected to auto-
mated analysis and evaluation. In this context, an important step of the analysis process
consists of instance segmentation, where an attempt is made to assign a unique semantic
identifier or label to each entity in a data-set. For example, all voxels belonging to a specific
screw are hereby assigned the same unique identifier, while voxels belonging to another
component are assigned a different unique identifier.

The complexity of computing accurate instance segmentation varies significantly
across different problem domains and data-sets. While simple threshold- or flood-filling-
based methods from classical image processing suffice for data-sets from many fields, it
remains uncertain as to whether an adequate solution for segmentation is feasible for others.
Recent efforts, such as those in a challenge [6], tested multiple techniques to segment the
data-set of a Me 163 [7], a historic German airplane with a rocket engine during the Second
World War, with mixed success. This contribution aims to evaluate the suitability of an
approach based on the currently highly appraised Segment Anything Model (SAM) [8], a
foundational model for instance segmentation of such complex data-sets.

The task of instance segmentation shown in Figure 1 exemplifies this attempt using
the XXL-CT data-set of the historic airplane. It begins with acquisition of data from the
specimen, in this case the airplane, and proceeds with the reconstruction of a volumetric
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voxel data-set (Figure 1a). Figure 1b,c shows a sub-volume of size 512 × 512 × 512 voxels of
the reconstruction and the instance segmentation. In Figure 1c, each semantic entity within
the sub-volume is assigned a unique identifier. The classes of these entities (primarily
screws and metal plates) are not considered, as the classification of the entities is not
performed and is the focus of future work.

(a) Reconstruction (b) Input sub-volume (c) Reference sub-volume

Figure 1. Rendered example of instance segmentation (c), of a sub-volume of size 512 × 512 ×
512 voxels (b), from the XXL-CT Me 163 data-set with a data resolution of 10,000 × 10,000 ×
8000 voxels (a). The objective of instance segmentation is to generate a plausible segmentation
of individual objects or instances, as depicted in (c), from an input sub-volume such as that shown in
(b), applicable to data-sets of any size, akin to the one demonstrated in (a).

Instance segmentation is essential for automated image processing and data explora-
tion in NDT and medical [9] applications. By segmenting a large-scale volumetric image
data-set into its semantic instances, it becomes easier to extract valuable information and
to analyse complex component geometries. This is particularly important in cases where
the data-set contains various acquisition and reconstruction that can make interpretation
difficult for both experts and non-experts.

Instance segmentation is a critical task in computer vision, leading to the proposal
and development of numerous methods that leverage both classical image processing and
neural networks. These approaches, however, are not without their limitations. Some
methods necessitate manual intervention and corrections [10,11]; others are specifically
tailored to predefined component classes [12]. Challenges associated with data quality,
particularly in data-sets with a high incidence of artefacts, can significantly hinder the
effectiveness of segmentation algorithms.

1.1. Segment Anything Model

The Segment Anything Model (SAM) [8] is an instance segmentation model based on
the vision transformer architecture [13]. It is an advanced model for segmenting arbitrary
entities out of photographs. It stands out primarily for its high quality, robustness, and
minimal required user input. One of its notable features is the ability to be queried using a
variety of prompts, allowing it to segment a RGB input image with a spatial resolution up
to 1024 × 1024 pixels into multiple segments in one inference call. SAM supports prompts
in various forms such as seed points (point prompts), bounding boxes, brush masks (dense
prompts), and text prompts.

Furthermore, SAM allows the generation of multiple output masks for each input
prompt, hence enabling image segmentations at varying hierarchical levels of granularity.
Another advancement presented by the SAM is the extensive training data-set SA-1B,
which has been iteratively collected and refined through prior versions of SAM during its
own training process.

A multitude of studies and publications are currently emerging, which aim to apply
SAM as a foundation model across a diverse range of fields, testing its segmentation quality.
The application domains are varied. For instance, Li et al. [14] assess SAM for GeoAI vision
tasks particularly in permafrost mapping. Alternatively, Noe et al. [15] utilise SAM to
introduce a new approach for tracking black cattle on photographs. Another application
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within the domain of so-called “Precision Agriculture” is investigated by Carraro et al. [16],
where mapping of crop features by automated mechanisms is conducted. In the field
of NDT, the work by Weinberger et al. [17] examines how SAM can distinguish various
segments in CT volume slices through unsupervised learning techniques. However, the
direct application of SAM for instance segmentation is not the only focus of resent research.
For example, Xu et al. [18] explored how an expanded data-set computed via SAM can be
used to train an object detection network to improve license plate detection under severe
weather conditions. Similarly, Liu [19] employed SAM to optimise road sign detection by
using the model for background pixel exclusion in the data-set. In all these named studies,
SAM exhibits a performance ranging from high quality to mixed results, which are strongly
influenced by the data-set and specific problem domain under investigation.

1.2. Combination with Tile-Based FFN

This work aims to evaluate the applicability of SAM for segmenting volumetric NDT
data-sets and to examine its potential enhancement through the integration of Flood
Filling Networks (FFN), initially proposed by Januszewski et al. [20]. FFNs are instance
segmentation methods originally based on convolutional networks [21,22], which are able
to segment arbitrarily large data-sets based on tiles. Originally, FFN was developed for
the segmentation of organic objects but in the past, was extended to other applications,
including the delineation of large-scale XXL-CT data [4].

The FFN approach maintains the current state of segmentation within an accumulator
volume, which is sized to match the dimensions of the input volume. During each seg-
mentation step, a sub-volume or tile of the input volume and the corresponding partially
computed tile of the accumulator is passed to the model (in our case, a volumetric variant
of SAM). The segmentation proposal of the tile is then updated and written back to the
corresponding tile position within the accumulator.

Candidates for neighbouring tile positions with significant overlap, which could
extend the current segment, are determined using the updated accumulator state and added
to a queue of tiles pending processing. In the subsequent iteration, the next unprocessed
tile is removed from the front of the queue for processing. Starting from a seed point, the
FFN then processes all of the tiles that potentially belong to the current segment. The
processing of the current segment is completed when the queue of potentially belonging
tiles is depleted. The algorithm then proceeds with the next segment starting from another
seed point.

The seed points of the segments can be manually specified or computed automatically
by a reasonable algorithm.

1.3. Contributions

In this work, we propose a novel approach for volumetric instance segmentation in
NDT by combining SAM with FFN. Our contributions include the following:

1. Evaluation of SAM on NDT data-sets
We assess the performance of SAM on data-sets from the field of non-destructive testing
and demonstrate its effectiveness in accurately segmenting instances in challenging CT
imaging scenarios.

2. Implementation and evaluation of various methods to combine image-based
SAM for the application with volumetric data-sets
We implement and evaluate different techniques to integrate and fuse the output of the
image-based SAM approach for the application of volumetric data-sets, hence enabling the
segmentation of three-dimensional objects using FFN’s spatially adaptive capabilities.

3. Extending SAM for objects of arbitrary size through tile-based approaches
We propose a tile-based approach that leverages FFN’s capabilities to segment objects of
arbitrary size. By initially dividing the input volumes into tiles and then applying SAM on
each tile individually, we achieve accurate and efficient segmentation results for objects of
any size.
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4. Utilizing dense prompts for SAM to combine tiles in an accumulator
To further improve the accuracy of the proposed tiled-based approach of SAM, we use
dense prompts to guide SAM in combining the segmented tiles into a cohesive instance
segmentation result. By leveraging the accumulated information from neighbouring tiles,
we try to achieve more robust and accurate instance segmentation results.

2. Materials and Methods

This section presents the methodology and the experimental setup used, including the
introduction of the data-sets (Section 2.1) used for the evaluation of the proposed methods.
Furthermore, we describe a technique to improve the image segmentation performance of
SAM with respect to the Me 163 airplane XXL-CT data-set by fine-tuning it specifically for
this task (Section 2.2). Additionally, we detail our inference workflow in Section 2.3, which
adapts the top-performing SAM model for volumetric data-sets. This process includes
tile-based segmentation, accumulator-based dense prompts, and post-processing. The
workflow aims to integrate the best model into a cohesive volumetric inference approach.

2.1. Data-Sets and Data Processing

To demonstrate, exemplify, and evaluate our achievements, we make use of three
distinct data-sets. A specific sub-volume of the Me 163 data-set of a Second World War
fighter airplane [7] as well as two bulk material data-sets depicting entities of glass marbles
and corn kernels [4]. Figure 2 shows a photograph of each specimen, along with one typical
slice from the reconstructed volume and a corresponding reference segmentation.

The Me 163 data-set utilized in this study consists of a volumetric subset and a manu-
ally obtained reference segmentation XXL-CT data-set from a historic airplane [5], which
itself was extracted from an XXL-CT reconstruction. The reference segmentation sub-
volumes of the Me 163 data-set were manually annotated and underwent morphological
post-processing to clean up the edges. The acquisition process involved addressing challen-
ging aspects such as noisy data, low contrast, and limited spatial resolution. A detailed
description of the data-set creation, including the annotation and post-processing process,
can be found in [7].

The data-set consists of eight sets of sub-volume pairs, each sub-volume having the
spatial dimensions of 512 × 512 × 512 voxels. For training, six sub-volume pairs of the
data-set are used, while one sub-volume pair is used for validation and one for testing,
respectively. Each sub-volume pair consists of a reconstructed sub-volume (see Figure 2b)
and its corresponding reference segmentation sub-volume (see Figure 2c).

The reconstruction sub-volume is a small volumetric region that is extracted from the
reconstructed Me 163 XXL-CT data. To ensure compatibility with SAM, both the reconstruc-
tion or input sub-volumes and the corresponding reference segmentation sub-volumes are
extended with zero-padded 512 voxels in every direction. This results in an embedded
version of the sub-volumes with working dimensions of 1536 × 1536 × 1536 voxels. This
arrangement allows for the extraction of a slice, centred on any arbitrary voxel within the
original sub-volume, with the resolution of 1024 × 1024 × 1 voxels, matching the native
input dimensions required by SAM.

The first row of Figure 3 illustrates the described enframing process for the Me 163
data-set. The green rectangles in the first two columns indicate the unembedded region
with 512 × 512 × 512 voxels and their manually annotated references. Due to the fact
that the input sub-volumes of this data-set are located directly at the edge of the XXL-CT
volume, it was not possible to fill the border of the sub-volumes with actual reconstruction
values. Instead, we decided to use a border with a constant value of zero in all directions.
The last two columns of Figure 3 display the prepared input and reference slices used in
the subsequent processing.
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Me 163

(a) Specimen (b) Input (c) Reference

Corn

(d) Specimen (e) Input (f) Reference

Marbles

(g) Specimen (h) Input (i) Reference

Figure 2. Photographs, exemplary CT slices, and reference segmentation of the Me 163 (a–c),
corn (d–f), and marbles (g–i) data-sets, respectively.

The other two data-sets, which consist of CT scans of jars filled with marbles and
corn, also contain two sub-volumes each: one for the input CT reconstruction sub-volume
and one for its reference segmentation sub-volume. The segmentation process to yield the
reference volumes of the bulk material data-set involved semi-automatic segmentation
using threshold binarization with a threshold obtained from Otsu’s method [23], followed
by a distance transform, watershed transform, and label-wise morphological closing, as
described in more detail in [4]. As this traditional computer-vision process resulted in
some erroneous segmentations in the contact regions between the jar and the bulk material,
we only used a correctly segmented sub-volume in the centre of the jar, having a spatial
dimension of 256 × 256 × 256 voxels (denoted by the green rectangle in Figure 3). Also, the
sub-volumes of the bulk material were enframed by a border of 512 voxels thickness with a
constant value of zero.
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Figure 3. Zero-padding preparation steps were performed on the input and reference slices of the
different data-sets to create slices of size 1024 × 1024 pixels centred around each possible seed point.
The white border regions in the available input and reference slices were filled with constant values
of zero.

2.2. Fine-Tuning on the NDT Data-Set

The SA-1B training data-set published by the authors of the SAM [8] contains predom-
inantly coloured natural photographs, such as street scenes or still life compositions of
semantically well-known objects from daily life. In contrast, volumetric data-sets obtained
from the NDT field and particularly the slices extracted from the volumes are frequently of a
rather abstract nature and do not depict recognizable objects. Hence, these NDT images de-
viate from the familiar photographic data-set used by SAM and this deviation poses several
challenges in achieving sufficient segmentation quality (see Section 3.1). This, within the
CT imaging domain, means that even familiar objects can be difficult to recognize for non-
experts, as they exhibit unusual structures or non-orthogonal sections due to the specimen’s
imaging geometry; or, they may contain strong imaging and reconstruction artefacts.

Ma et al. [24] showcased a potential improvement in segmentation quality by fine-
tuning SAM on the problem domain, which inspired us to adopt a similar fine-tuning
approach.

In this study, we opted to perform fine-tuning on a certain part of the SAM, specifically
the Mask Decoder. For this purpose, we utilized, extracted, and pre-processed slices from
the Me 163 training data-set. Our approach adhered to the guidelines outlined in [24],
which have previously been employed for fine-tuning on medical volume CT data-sets.

The Me 163 data-set was chosen due to its distinct level of complexity, setting it apart
from the bulk material data-sets also being investigated. In contrast, the marble and
corn data-sets can be segmented relatively easily using conventional image processing
techniques.

For the fine-tuning process, we randomly selected voxel positions from the Me 163
training data-set. If the chosen voxel was a foreground voxel belonging to a known labeled
entity, three orthogonal slices centred around its position were extracted. These slices
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were used as training examples, with the data range of the input slice normalised to
[0.0, 255.0]. For the target slice, all voxels of the entities belonging to the centre voxel were
one-hot encoded.

The original SAM operates on images, while our attempted input is a single slice from
a volumetric data-set. To ensure that a three-dimensional connected object was represented
by a single segment in the two-dimensional slices, a connected component analysis (CCA)
was performed on the one-hot encoded target slice. This issue is depicted in Figure 4.
Specifically, in the one-hot encoded a foreground target after the CCA (Figure 4d), where
only the central component is visible, as we isolated the segment connected to the centre
of the target slice, marked by a green cross. This central segment was then selected as
the training target. The surrounding image does not provide sufficient information to
distinguish if neighbouring non-touching segments belong to the same segment. Thus, we
performed a CCA and treated the parts of segments not connected in the current slice as
separate segments.

(a) Input (b) Reference (c) One-hot encoded
foreground target

(d) Connected com-
ponent target

Figure 4. Processing of an example foreground slice used for fine-tuning SAM. Consisting of
reconstruction slice (a), reference slice (b), one-hot encoded slice (c), and connected component
training target slice (d). The green cross marks the centre of the slice.

If the voxel at the centre of a slice represented the background, we generated three
orthogonal background examples, each containing a normalised input slice and a target
slice. We evaluated three versions: ForegroundOnly, which included only foreground input
slices; ConstantValueBackground, where we provided both background and foreground
input and target slices for training but expected SAM to produce a completely empty
response for background slices; and ConnectedComponentBackground, where we identified
all background voxels connected to the centre voxel of the slice as the target segment. This
was achieved through CCA on the data-set’s background, formed by also enframing the
reference segmentation with a zero-padded boundary. Consequently, the network was
prompted to consider all voxels connected to the air space in the slice’s centre as part of
that segment. Figure 5 provides an illustrative example of the different target versions.

Due to the significantly lower count of foreground voxels (0.1–9.4%) compared to
background voxels in the Me 163 data-set, we included all foreground examples while
randomly selecting a subset of background examples of the same size. This approach
ensured a balanced representation of both classes. To prevent batches from containing
closely located examples, the selected examples were shuffled and grouped into batches,
with each batch containing 16 foreground examples and 16 background examples. Addi-
tionally, to further diversify the examples within each batch, we employed a relatively large
stride during the example extraction process. This ensured that the examples originated
from different sub-volumes within the data-set. In each iteration over the data-sets, a new
random initial position offset was chosen, employing a non-repetitive selection process to
extract different examples.

We chose a single point prompt in the exact centre of each slice as the input for SAM
during training. This choice aligns with the input for our validation application as well as
the tile-based SAM integration for volume data-sets (see Section 2.3).
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(a) Input (b) No background (c) Constant value
background

(d) Connected com-
ponent background

Figure 5. Processing of an example background slice used for fine tuning SAM. The green cross marks
the centre of the slice, which is located in the background of the reconstruction. The green border
around the reconstruction slice in (a) depicts the original volume size, which was then enframed with
a constant value border. The other sub-figures show the tested possibilities for target slices for the
fine-tuning: ForegroundOnly (b), ConstantValueBackground (c), and ConnectedComponentBackground (d).

The batch size was set to 64. We initiated the training with a learning rate of 8 × 10−4,
which was linearly increased over the first 250 iterations. For optimization, we utilized the
AdamW optimizer [25] with β1 = 0.9 and β2 = 0.999, along with a weight decay of 0.1. Our
loss function consisted of a combination of dice loss (sigmoid = true, squared-pred = true,
and mean reduction) and binary cross-entropy loss (mean reduction). We let the training
run until overfitting for 10 to 25 days. We selected the model with the lowest validation
loss, determined at moving window intervals of 128 iterations.

2.3. Inference Workflow for Volumetric Data-Sets

Since SAM works only on RGB image data-sets but we wanted to segment volumetric
data-sets, we had to incorporate an adequate workflow to translate between these two
spatial domains. Since our goal was to evaluate SAM for volumetric data-sets and not ne-
cessarily to implement a complete new volumetric version, we referred to simple operators.
Figure 6 shows an overview of the approximate workflow for a volumetric data inference
of SAM. In short, we extract a sub-volume tile from the input volume and pass it to the
volumetric SAM adaption, which transforms it into three orthogonal slice stacks.

For each slice stack, we perform slice preparations (such as normalization and zero-
padding), a forward pass through SAM, selection of the corresponding outputs, and slice
post-processing. The output slice stacks are then merged and undergo further volumetric
post-processing to generate segmentation proposals, which are returned from the volumet-
ric SAM adaption into the inference algorithm. The evaluated algorithms are listed and
compared in Table 1.

Predict 
slice

Post-
process

slice

Prepare
slice

Input volume

Volumetric SAM

Split into orthogonal 
slice stacks

Merged 
slice

predictions

FoV 
prediction

Extracted
 FoV

Post-
process
volume

Figure 6. Schematic workflow of the volumetric data inference segmentation using SAM. Algorithm
options and steps for the configurable stages (grey boxes ) are listed in Table 1.
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Table 1. Overview of algorithm choices and options for different stages of the volumetric SAM
adaption seen in Figure 6.

Stage Algorithm Description (Options)

Preprocess Slice
Algorithms

Slice Normalization Normalization of pixel values in each slice to the minimum and max-
imum range of the slice.

Outlier and Empty Slice Detec-
tion

Identification and handling of outlier and empty slices.

RGB Conversion Conversion of grey values to RGB colour in order to comply with SAM
interface requirements.

Enframing Adds a zero-padded border to each slice to centre the seed point to
comply with SAM interface requirements.

Estimated Foreground Volume Utilizes different binarization strategies and thresholds to estimate the fore-
ground volume.

Predict Slice
Algorithms

Prompt Type Type of prompt is used for invoking SAM: point prompt for tile centre
and dense prompt from accumulator.

Multimask Output Selector Select mask from multiple disambiguating instance output channels
predicted by SAM: maximum predicted IoU, fixed index of channel; max-
imum IoU with estimated foreground to avoid segmenting background;
and minimum count of voxels to reduce under segmentation.

Mask Output Selector Selected output format of SAM: binary full resolution mask and quarter
resolution logits with subsequent threshold and upscaling algorithm.

Postprocess Slice
Algorithms

Seed Point Filter Aborts or continues prediction based on the seed point’s classification as
background or foreground (count of slices).

Merge Slice Rule Rule that should be used to decide if and how to merge slices to stacks
and when to abort an computation stack: Always; BreakOnEmptySlice;
MinimumIOUToLastSlice (threshold); MinimumIOUToForeground (threshold).

Slice Median Apply median filter to each slice (enabled or disabled).
Connected Component Analysis
and analyse connected compon-
ents and keep only segment con-
nected to seed point (enabled or
disabled).

Postprocess Volume
Algorithms

Merge Slice Predictions Merge orthogonal slice stack predictions based on count of foreground
voxels.

Volume Median Apply median filter to merged volume (enabled or disabled).

2.3.1. Adapting SAM for Volumetric Data-Sets

Adapting SAM, which was originally designed for segmenting image data-sets, to
our volumetric CT data-sets required certain modifications and the implementation of
appropriate post-processing steps. In this section, we explore various possibilities for this
transition and subsequently outline the approach we finally selected.

Several 2D to 3D techniques can be utilized to facilitate this transformation [26]. For
example, in [27], a Volumetric Fusion Net (VFN) was employed to merge multiple 2D
segmentation predictions into a comprehensive 3D prediction volume. In a related work,
Ref. [28] adopted a similar methodology for pancreas segmentation, albeit utilizing a
different VFN. According to [26], other approaches involve incorporating neighbouring
2D slices as additional channel information or utilizing specialized topologies to extract
and merge features in both the 2D and 3D domains. However, the effectiveness of these
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methods for improving segmentation results heavily depends on the specific data-sets
at hand.

Due to reports on the segmentation performance of SAM on volumetric medical data-
sets, such as those in [29] and our own preliminary experiments, which suggested that the
segmentation quality of SAM was likely to be mixed, we opted for a simple majority voting
approach to merge the 2D predictions into 3D volumes.

During the slice merging process, we experimented with different rules to determine
when to terminate the slice-wise merging. We either combined all slice within the current
field of view regardless of their content or stopped at the first empty slice, i.e., a slice
without foreground voxels. We also tested various rules based on different thresholds
of overlap or Intersection over Union (IoU) between the proposed segmentation of the
current slice and the preceding slice or a foreground volume obtained through global Otsu
thresholding followed by a morphological closing step.

As an optimization strategy, slice-wise prediction was performed in an alternating
manner, starting from the centre of the current sub-volume and moving outward slice-
wise in both directions. This approach was implemented to save computational time and
prevent the segmentation of unconnected segments, ensuring that only cohesive regions
were accurately identified.

In situations where the segmentation results in an identification of unconnected seg-
ments, the algorithm may inadvertently continue segmenting entire regions composed of
non-cohesive segments. This phenomenon occurs when the segmentation quality is signi-
ficantly compromised. During the subsequent hyperparameter search, we also permitted
segmentations without applying these rules. However, it appears that these deviations
have only minimal impact on the output quality.

Subsequently, a new target volume is constructed. Voxels are included in the output
volume if they are segmented as the foreground in at least one and depending on the
configuration, up to three slice-wise predictions.

Additionally, we employed post-processing techniques such as slice-wise and volume-
based median filtering and CCA prior to and after merging the slices into volumes to
smooth scattered and miss segmented voxels.

We also conducted experiments with different variants of SAM’s outputs. Since SAM
has the ability to generate multiple outputs per prompt, such as separating a backpack
from a person wearing it, we investigated whether selecting any of these outputs could
improve the segmentation quality. Specifically, we examined whether it is better for
volumetric segmentation to use the segmentation proposal provided by SAM with the
highest probable IoU or the one with the maximum IoU of the approximated foreground
volume. Additionally, as SAM often tends to under-segment and include background or
neighbouring segments as part of the foreground, we investigated whether selecting the
output with the smallest count of voxels among the multiple outputs would improve the
segmentation quality.

In this context, experiments were conducted using both the binarized output of SAM
and the raw probability values, which are available at a lower resolution than the binary
mask. After upscaling, different threshold values can be applied to the probability outputs
for further processing and experimentation.

2.3.2. Tile-Based Segmentation for Data-Sets of Arbitrary Size

Due to SAM’s image-based nature, we encounter segmentation challenges when
dealing with topologically complex objects depicted by volumetric CT NDT data-sets.
These volumes may contain holes or inclusions; complex folds are spatially sparse or may
extend beyond the boundaries of the currently processed tile.

To clarify this, Figure 7 offers a visual exposition of several schematically depicted
objects of varying complexity. The figure serves to illustrate how, in a volumetric context,
such complex segments are easier to understand but when segmenting them slice by slice
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there is a risk of mistakenly delineating them as multiple segments. This effect also occurs
when the tile is smaller than the entity’s size.

Figure 7. Schematic views of multiple simple volumetric objects (bolt, U-profile, pipe, and spiral
spring) and cross-sectional slices along their central axes in three orthogonal directions marked by
three respective colours ( , , ). The disjunction of simple objects into multiple components if
processed slice-wise poses a challenge as there are no straightforward rules for merging them without
a step-by-step traversal of the object.

To overcome these challenges, we utilize volume-based SAM inference (see Section 2.3.1)
within the FFN framework (see Section 1.2). The inference process starts with a single seed
point and is applied to a small sub-volume tile. The resulting segmentation proposal is
then stored in a result buffer, the accumulator volume. If a segment intersects the outer
boundaries of a tile, the intersection position is added to a queue. In subsequent iterations,
corresponding slightly shifted tiles aimed at these intersection points are processed by the
volume-based SAM inference. This iterative process generates segmentation proposals,
which are incorporated into the accumulator. This process repeats until the intersection
points queue is empty and the segmentation proposal in the accumulator is no longer
constrained by the boundary of the processed tiles.

As an optimization step, the proposed additional intersection positions are filtered
based on the approximated foreground volume. They are added to the intersection points
queue only if the corresponding voxels have a high probability to be foreground voxels.

The proposed combination of SAM and FFN allows us to compute segments and
input volumes of arbitrary size by combining multiple overlapping tiles using a temporary
accumulator volume. Nevertheless, this approach also increases the runtime due to the
recomputation of the overlapping tiles.

The choice of using 48 voxels per tile side was made heuristically based on the original
FFN algorithm, which also uses this tile size. However, the algorithm can be adjusted
by changing the tile size up to 1024 voxels in each dimension; the maximum dimension
SAM can handle without resizing the input. When the tile size is below this threshold, no
resizing of tiles is required as we add a constant value border around the tile. Additionally,
the step width between tiles and the overlap of the tiles can be adjusted to mitigate artefacts
caused by the tile-based algorithm. Tile-based algorithms are capable of assembling entities
with complex topologies. These algorithms can follow or trace the segment itself over
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multiple tiles and steps, even if it forms highly complex shapes. But tile-based algorithms
may introduce additional artefacts. The segmentation result of the combined algorithms is
heavily dependent on the performance of the SAM segmentation.

2.3.3. Prompt Selection and Accumulator Integration

As mentioned above, SAM allows queries using various prompts such as point
prompts (seed points and bounding boxes) and dense prompts (masks and brushes).
Multiple studies [24,30] have shown that, depending on the input data, higher segmenta-
tion quality can be achieved by using multiple prompts, such as point prompts distributed
evenly over the segment region or negative point prompts, which are not considered part of
the segment. Additionally, the use of rectangular prompts consisting of two anchor points
often leads to adequate segmentation results.

Given that the main objective of this study is to evaluate the applicability of SAM
in the automated NDT domain, we have opted to solely assess single point prompts and
dense prompts as they can be easily automated.

We placed a single point prompt at the exact centre of the tile. The centre point of a tile
was either chosen by a seed point or deemed highly likely to belong to the current segment,
due to the iterative processing of the tiles.

For dense prompts, we utilized the SAM output stored in the accumulator, which
was shifted by the relative position of the current point prompt. This requires SAM to
complete the segmentation proposal at the edge of the current tile. Since our tile step size
was [1, 20] voxels, the overlap between the tiles and the dense prompt with the expected
segmentation proposal was high, allowing SAM to only predict a relative slim border of
new voxels. Figure 8 illustrates an idealized schematic of such an operation. In the case of
dense prompts, we also include a corresponding point prompt at the centre of the tile as
more prompts tend to increase the segmentation performance [24].

Extracted 
tile n

Input volume

 Point 
prompt n 
(centre of 

tile n)

Input volume

Accumulator 
volume n−1

Accumulator
volume n

Prediction n

SAMExtracted
tile n+1 

Point 
prompt n+1 

(centre of 
tile n+1)

Accumulator
volume n+1

Movement n+1

Step n Step n+1Step n−1

SAM

Dense 
prompt n+1

Dense 
prompt n

Figure 8. Schematic view of two subsequent inference steps, denoted as n (represented by ) and
n + 1 (represented by ), which use the modified accumulator volume from the previous step to
create a dense SAM prompt. In step n, the content of the accumulator volume of the previous step
n − 1 is used to generate a dense SAM prompt n + 1. This prompt, along with the point prompt
n and the extracted input volume tile n, is used by SAM to compute prediction n. Subsequently,
the accumulator volume is updated to the state n based on this prediction. In the subsequent step
n + 1, the accumulator volume n is used to determine the movement n + 1 to the tile n + 1. Tile n + 1
significantly overlaps with tile n. SAM is parametrized with the extracted input volume tile n + 1,
point prompt n + 1, and dense prompt n + 1 to compute prediction n + 1, which is used to update
the accumulator volume n + 1.
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3. Results
3.1. Evaluation of SAM Segmentation Quality in NDT Slice Data-Sets

In an initial test of SAM’s segmentation quality for CT NDT data, we applied SAM
to segment individual slices from NDT volumetric data-sets. We used three pre-trained
SAM models, vit_h, vit_l, and vit_b, based on Vision Transformers (ViT) arranged in
descending order of size. Additionally, we tested three fine-tuned versions of the vit_b
model, each adapted to the Me 163 data-set with unique target configurations. For each
of the three data-sets introduced in Section 2.1, randomly selected slices were selected
and segmented, which accounted for approximately 0.5% of all available validation data-
sets. Each example underwent the preparation steps outlined in Section 2.2 before being
processed by SAM. SAM then tried to segment the entity located at the exact centre of each
slice using point prompts. Examples of typical segments can be seen in Figure 9. Notably,
SAM demonstrated good segmentation performance for the marbles and corn kernels data-
sets, while the segmentation quality was significantly inferior for the individual segments of
the Me 163 data-set. To quantify the segmentation performance across data-sets and models,
Table 2 presents the mean loss values and standard deviations for slice-wise predictions
made by multiple SAM model configurations. The statistics in this table show that while
the vit_b model yields the lowest loss for the corn kernels data-set, with a mean loss of 0.10,
the application of vit_b with a ConstantValueBackground modification achieved the best
performance on the Me 163 data-set, reducing the mean loss to 0.36.

Table 2. Mean loss value (and standard deviation) over all slice-wise predictions on the validation
data-sets by multiple models for the graphs in Figure 10. Models yielding the optimum performance
for each data-set are denoted in bold. Models vit_h, vit_l, and vit_b denote pre-trained SAM
models that utilise Vision Transformers (ViT) as their foundation, ordered from largest to smallest.
The remaining models represent fine-tuned versions of vit_b applied to the Me 163 data-set, each
employing distinct target configurations.

Marbles Corn Me 163

vit_h 0.03 (0.06) 0.11 (0.10) 0.49 (0.34)
vit_l 0.03 (0.06) 0.11 (0.10) 0.46 (0.34)
vit_b 0.03 (0.07) 0.10 (0.10) 0.44 (0.32)
vit_b ForegroundOnly 0.41 (0.27) 0.66 (0.24) 0.49 (0.26)
vit_b ConstantValueBackground 0.15 (0.10) 0.44 (0.16) 0.36 (0.25)
vit_b ConnectedComponentBackground 0.51 (0.24) 0.51 (0.19) 0.57 (0.23)

Figure 10 demonstrates the segmentation dynamics of the individual models on the
different data-sets. These plots represent the loss of the segmentation proposals generated
by SAM for the entities at the centre of each layer of the corresponding validation data-set.
The loss values are determined with respect to the reference data-set. From left to right, the
loss values are sorted in ascending order, so that the nearly correctly segmented segments
are on the left side of the graph, while the difficult and often incorrectly segmented segments
are on the right side. The seed points of the segments were chosen in such a way that each
of them corresponds to a foreground voxel, so the networks are not tasked with segmenting
the background. The different colours in the plots correspond to different networks.
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(a) Input (b) Reference (c) vit_b loss=0.02 (d) vit_bCVB loss=0.04

(e) Input (f) Reference (g) vit_b loss=0.01 (h) vit_bCVB loss=0.05

(i) Input (j) Reference (k) vit_b loss=0.04 (l) vit_bCVB loss=0.29

(m) Input (n) Reference (o) vit_b loss=0.04 (p) vit_bCVB loss=0.12

(q) Input (r) Reference (s) vit_b loss=0.01 (t) vit_bCVB loss=0.44

(u) Input (v) Reference (w) vit_b loss=0.01 (x) vit_bCVB loss=0.13
Figure 9. Segmented examples of the corn and marbles data-set. The green crosses mark the position
of the currently used point prompt. The last column depicts the result of the vit_b model, which was
fine-tuned on the Me 163 data-set.
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(c) Me 163
Figure 10. Graphs depicting the slice segmentation performance of the six evaluated SAM models on
the three different testing data-sets. From left to right, the index of each segmented slice sorted by
their loss value. In an ideal case, only a horizontal line close to the loss value of 0 would be visible.

It can be observed that the unchanged SAM networks perform very well in segmenting
the marble and corn data-sets. The few entities which exhibit lower segmentation quality
in these data-sets and are located on the right edge are often due to insufficient quality in
the reference segmentation data-set, as illustrated in Figures 11 and 12. A slightly lower
segmentation quality can be observed for the corn data-set, which consists of a higher count
of entities that are also not as homogeneous in colour compared to the marble data-set.

Figure 10c demonstrates that the segmentation quality for the Me 163 data-set is
notably lower compared to the previously mentioned data-sets. Figure 13 displays some
typical error patterns in the original trained SAM images. Both under-segmentation and
over-segmentation occur and segments are sometimes partially or not recognized at all.
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(a) Input (b) Reference (c) vit_b loss=0.93 (d) vit_bCVB loss=0.50

(e) Input (f) Reference (g) vit_b loss=0.50 (h) vit_bCVB loss=0.26
Figure 11. Error cases for the marble data-set. Here, the reference segmentation, which was generated
by a connected component analysis, is erroneous. In (b), the point prompt (marked with a green
cross) lies on the boundary of two marbles and vit_b segments the upper marble instead of the lower
marble. In (f), the point prompt lies inside an artefact region.

(a) Input (b) Reference (c) vit_b loss=0.26 (d) vit_bCVB loss=0.50

(e) Input (f) Reference (g) vit_b loss=0.90 (h) vit_bCVB loss=0.88
Figure 12. Error cases of the corn data-set. In the first case in (b), two kernels were erroneously
segmented together in the reference segmentation. In contrast, in (f), the reference segmentation only
appears erroneous as the current slice only depicts one voxel. The next slice in the input volume
contains the kernel this voxel belongs to. The green crosses mark the position of the currently used
point prompt.

Among the different not fine-tuned SAM models, the smallest model vit_b showed the
most promising results. While it was sometimes outperformed by the other two original
SAM models, vit_l and vit_h, in the well-segmented slices, it still had a higher segmentation
quality in the moderately segmented slices. Therefore, we decided to use vit_b as the base
model for fine-tuning and volumetric segmentation experiments.

Among the subsequently trained networks, vit_bCVB exhibits the highest quality in
Figure 10c. It is based on vit_b and uses ConstantValueBackground (CVB) (see Section 2.2)
for background examples. In simple cases, it matches the segmentation quality of non
fine-tuned SAM variants. A considerable improvement in segmentation quality on the
challenging entities could be achieved through training, although not to a satisfactory level.
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This model was chosen as the representative of our fine-tuned model for further tests on
our data.

(a) Input (b) Reference (c) vit_b loss=0.99 (d) vit_bCVB loss=0.86

(e) Input (f) Reference (g) vit_b loss=0.99 (h) vit_bCVB loss=0.76
Figure 13. Poorly performing cases for SAM vit_b segmenting thin metal sheets in the Me 163 data-set
as well as the better but still not optimal segmentation results achieved by the model fine-tuned on
the Me 163 data-set.

3.2. Tile-Based Algorithms and Artefact Mitigation

Figures 14 and 15 showcase the segmentation results of a volumetric inference run
using the proposed SAM algorithm on a small subset of the marble and corn data-sets for
the two tile sizes 48 × 48 × 48 voxels and 1024 × 1024 × 1024 voxels. These results exhibit
segmentation errors in the form of erroneous segmented edges as well as tiling artefacts,
resulting in a textured appearance of the segment with noticeable gaps.

Notably, for a tile size of 48 × 48 × 48 voxels, the marble example in Figure 15b
demonstrates tiling artefacts. Since the volumetric inference algorithm with the small tile
size cannot segment the entire marble in a single step, it must combine multiple steps,
which can introduce and propagate errors. These artefacts can be cleaned up using a
morphological closing operation as a post-processing step.

In contrast, segmentations using a larger tile size of 1024 × 1024 × 1024 voxels exhibit
fewer of these textured artefacts. However, segmentations may extend beyond the actual
segment due to segmentation errors, as illustrated in Figure 14c, where thin segments
protrude vertically and horizontally beyond the intended boundaries. These protrusions
often occur within the initially segmented slices that include the seed point of the current
segment. In the green upper right marble of the example in Figure 15c, the adjacent slices
directly connected to the seed point were misclassified as not belonging to the marble,
resulting in an early termination of the slice-wise segmentation process.

The inference algorithm with a tile size of 1024 × 1024 × 1024 voxels can only attempt to
segment the segment once as, due to its high field of view, it performs a single volumetric step
per seed point. In contrast, the inference algorithm with a tile size of 48×48×48 voxels iterates
over the volume in multiple steps, providing the ability to compensate for weak and erro-
neous segmentations in subsequent steps. However, this approach tends to under-segment
when a neighbouring segment has already been partially segmented in a previous step.
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(a) Input (b) vit_b 48 (c) vit_b 1024

(d) Reference (e) vit_b 48 (postprocessed) (f) vit_b 1024 (postprocessed)
Figure 14. Slices from a volumetric inference run on three corn kernels of the corn data-set. The
input volume (a), reference volume (d), and the proposed segmentations generated by the pro-
posed algorithm using the two tile sizes: 48 × 48 × 48 voxels (b) and 1024 × 1024 × 1024 voxels (c).
Additionally, the postprocessed volumes are depicted in (e,f).

(a) Input (b) vit_b 48 (c) vit_b 1024

(d) Reference (e) vit_b 48 (postprocessed) (f) vit_b 1024 (postprocessed)
Figure 15. Slices from a volumetric inference run on three marbles of the marbles data-set. The
input volume (a), reference volume (d), and the proposed segmentations generated by the pro-
posed algorithm using the two tile sizes: 48 × 48 × 48 voxels (b) and 1024 × 1024 × 1024 voxels (c).
Additionally, the postprocessed volumes are depicted in (e,f).
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Due to the suboptimal quality of the segmentation, it proves problematic to compute a
definitive overall numerical assessment of the complete segmentation. This difficulty arises
from the ambiguity in assigning each segment unambiguously to a reference segment, a
result of widespread under-segmentation or over-segmentation, which gives rise to various
possible interpretations. Figure 16 shows the correlation matrices for the result of four
inference runs on the Me 163 testing data-sets. Two of the inference runs were performed
using the default SAM model vit_b, while the other two were performed using the fine-
tuned model vit_bCVB . Two of the four experiments used a tile size of 48 × 48 × 48 voxels
and the other two used a tile size of 1024 × 1024 × 1024 voxels. Each experiment was
fine-tuned on the validation data-set using [31].

The correlation matrices show the IoU of each reference segment in relation to each
detected segment. The reference segments are sorted from top to bottom based on their
voxel count, with the segment having the largest voxel count at the top. Similarly, the
columns representing the detected segments are sorted so that the segment with the highest
IoU, if compared with the largest reference segment, is on the left side. The segment with
the highest IoU if compared with the second largest reference segment is then placed in
the second column and so on. Each detected segment can only be linked to one reference
segment once. In an ideal case, we would see a bright diagonal line from the upper left
corner to the lower right corner of the matrix, indicating a perfect match between the
reference and detected segments. Segments outside this diagonal indicate segmentation
errors. Vertical lines indicate under-segmentation, where reference segments extend over
multiple detected segments. Horizontal lines indicate over-segmentation, where reference
segments are falsely split into multiple detected segments.

The individual parameters of the four inference runs can be found in Table 3. Figure 17
displays correlation matrices from Figure 16 but constrained to the detected segments with
the highest IoU.

Table 3. Parameters optimized on the Me 163 validation data-set for the default vit_b and fine-
tuned vit_bCVB SAM model for the tile sizes of 48 × 48 × 48 voxels and 1024 × 1024 × 1024 voxels.
(FG = foreground; – = not applicable; Options marked with * indicate volumetric SAM parameters
as seen in Table 1; Options marked with × indicate FFN related parameters).

vit_b 48 vit_b 1024 vit_bCVB 48 vit_bCVB 1024

best IoU 0.15 0.17 0.07 0.09
movement step * 1 – 1 –
seed FG count * 2 2 1 1
slice FG count * 3 1 1 1
FG threshold * 0.3 0.2 0.2 0.5
prompt type * centre and dense centre centre and dense centre and dense
SAM output channel * index 1 max IoU max IoU with FG max IoU with FG
slice merge rule * IoU to previous

slice > 0.5
IoU to previous

slice > 0.25
IoU to previous

slice > 0.5 always

slice median * ✓ × × ×
CCA * ✓ ✓ × ×
volume median * × ✓ × ✓
check step width × 13 – 19 –
accumulator update × FG FG always always
restrict movement × FG (128 steps) eroded FG eroded FG (128 steps) FG
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(d) vit_bCVB 1024

Figure 16. Correlation matrix of default and fine-tuned volumetric SAM with multiple tiles of size
48 × 48 × 48 voxels or a single tile of size 1024 × 1024 × 1024 voxels of the Me 163 testing data-set.
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(d) vit_bCVB 1024
Figure 17. Correlation matrix of default and find-tuned volumetric SAM with multiple tiles of size
48 × 48 × 48 voxels or a single tile of size 1024 × 1024 × 1024 voxels of the Me 163 testing data-set.
Detected segments have been limited to the best matches for each reference segment.
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As can be seen, the vit_bCVB models tends to generate more noise outside the main
diagonal. Figure 17d especially depicts many over- and under-segmented segments. This
can also be observed in the corresponding segmentation volume slice shown in Figure 18e,j.
The correlation matrix of the fine-tuned vit_bCVB model with tile size 48 × 48 × 48 voxels
in Figure 17c seems to perform best with respect to diagonal segments. But comparing
the corresponding segmentation volume slice in Figure 18h shows that this model, tile,
and parameter combination tends to miss most of the foreground segments. It seems that
the default vit_b model with tile size 1024 × 1024 × 1024 voxels produces the visually best
results, followed by the fine-tuned vit_bCVB model with tile size 48 × 48 × 48 shown in
Figure 18c.

(a) Input (b) vit_b 48 (c) vit_bCVB 48 (d) vit_b 1024 (e) vit_bCVB 1024

(f) Reference (g) vit_b 48
(main diagonal)

(h) vit_bCVB 48
(main diagonal)

(i) vit_b 1024
(main diagonal)

(j) vit_bCVB 1024
(main diagonal)

Figure 18. Exemplary slices of the proposed volumetric inference output performed by default and
fine-tuned SAM models on the Me 163 reference data-set (a,f). For the remaining figures, the top row
(b–e) shows all segments depicted in Figure 16 while the bottom row (g–j) only shows the segments
corresponding to the main diagonal in Figure 17.

Figure 19 presents multiple renderings of the seven largest reference segments in the
Me 163 testing data-set, alongside their corresponding segment predictions generated by
different SAM snapshots using the volumetric algorithm and fine-tuned parameters. The
true positive voxels are coloured green, the reference segments are coloured blue, and the
false positive voxels are coloured orange. It is evident that the volumetric segmentation of
the data-sets using tiles of size 1024 × 1024 × 1024 voxels yields visually more appealing
segments compared to using a tile size of 48 × 48 × 48 voxels.

The predicted segmentation using the tile size of 48 × 48 × 48 voxels often appears
empty, as only a small count of voxels has been segmented correctly. This is because the seg-
mentation quality of the algorithm is too poor to generate connected tiles and so often, only
a limited amount of steps (see Section 2.3.2) will be iterated for each segment. The segments
are interrupted and only found in pieces. However, using a tile size of 48 × 48 × 48 voxels
also often leads to under-segmentation. Figure 20 exemplifies this, showcasing two ortho-
gonal slices from the fine-tuned vit_bCVB model’s segmentation output. On the left, we
present the reference segments and on the right, the corresponding predictions. Here, three
adjacent segments were mistakenly connected by a single predicted segment.

But even the segmentation with a tile size of 1024 × 1024 × 1024 voxels is often insuf-
ficient, as both large-scale under-segmentations and over-segmentations occur, as can be
seen from the correlation matrices in Figure 17 and the cross-sectional images in Figure 18j.
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Figure 19. Renderings of the seven largest segments of the reference data-set and their corresponding
predictions (pred) created with different snapshots of SAM and the volumetric algorithm. The
colour coding is as follows: blue reference segment, green true positives (TP), and orange
false positives.
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Reference Prediction

XY

XZ

Figure 20. Slices obtained using the fine-tuned vit_bCVB model and tile size of 48 × 48 × 48 voxels.
Due to under-segmentation, the predicted segment erroneously intersects and merges multiple
reference segments.

4. Discussion

The transferability of the SAM model to instance segmentation of volumetric XXL-
CT data-sets requires careful consideration. The presented results indicate that its two-
dimensional image-based segmentation quality is insufficient for this specific problem
domain. This limitation becomes particularly evident when dealing with the concaten-
ation of numerous intertwined cross-sectional images in the volumetric case. The low
contrast and high noise in these images pose challenges in accurately delineating indi-
vidual segments. Additionally, using domain specific fine-tuning and improving slice-wise
predictions did not yield substantial improvements for volumetric predictions.

One potential source of error in the presented method might be the limited computa-
tional resources allocated for both fine-tuning and subsequent hyperparameter search. A
more thorough optimization process could potentially improve the results. Furthermore,
the availability of labelled training data-sets of sufficient quality in this problem domain
was relatively limited for training the vision transformers included in SAM. Specifically, the
absence of neighbouring voxels when adding the 512 voxel wide border around the data-set
for the Me 163 data-set may have possibly contributed to a decrease in segmentation quality.

Additionally, considering improved algorithms for merging the slice-wise predictions
could be an initial step in the further development process. Previous studies [26–28] have
demonstrated ample opportunities for the development of more sophisticated algorithms
in this area. Implementing and embedding such algorithms into the processing pipeline
has the potential to significantly enhance the segmentation quality.
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5. Conclusions

The primary objective of this study was the exploration and possible applicability
of the SAM algorithm for general image delineation to instance segmentation in XXL-CT
volumetric data-sets.

In conclusion, our study highlights the potential of SAM for instance segmentation
in XXL-CT volumetric data-sets, while acknowledging that there is still significant room
for improvement. Furthermore, our research contributes to the following areas: (1) the
evaluation of SAM on data-sets from the field of non-destructive testing based on CT image
data, (2) the exploration of various methods for integrating and fusing the output from
image-based SAM with volumetric data-sets, (3) the introduction of a tile-based approach
for segmenting objects of arbitrary size, and (4) the utilization of dense prompts for tile
combination using an accumulator. Separately and in combination, these contributions
provide novel insights to the community and hence establish a foundation for further
advancements in this field.
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