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Abstract: The inaccuracy of inhomogeneous sound speed fields in photoacoustic imaging (PAI) can
lead to the blurring and distortion of photoacoustic images. To solve this problem, conventional
methods build speed models by using some a priori information or additional measuring equipment,
which limits the application of PAI greatly. A data-driven speed field inversion method is proposed
in this paper. It combines clustering with updates to the speed field. To reduce the complexity of the
sound speed field model, the model is divided according to the similarity of the same tissue. The
sound speed of the same tissue is regarded as a whole, which reduces the number of sound speed
parameter solutions. Based on the simplified sound speed field model, the proposed method can
adaptively adjust the step length of the sound speeds of various tissues by weight allocation. In this
way, the updated amplitude of sound speeds of various tissues can be balanced and the accuracy of
the sound speed field can be improved. A digital breast model is applied to verify the effectiveness of
the proposed method. The results demonstrate that the method can build an appropriate speed field
without additional information or equipment and improve the imaging performance of PAI.

Keywords: photoacoustic imaging; inhomogeneous sound speed field; root mean square propagation
algorithm; Gaussian mixture model

1. Introduction

Photoacoustic imaging (PAI) is a rapidly developing hybrid imaging modality [1]. In
recent years, it has made significant progress in structural imaging [2], molecular imag-
ing [3], functional imaging [4] and so on. These fields provide technical support for the
further realization of the early diagnosis of diseases. PAI is based on the photoacoustic
effect. When the tissue to be measured is irradiated by a pulsed laser, the chromophore un-
dergoes thermoelastic expansion. The local vibration of the tissue produces photoacoustic
signals with outward propagation. These photoacoustic signals are collected by ultrasonic
transducers. To ensure the accuracy of signals, the transducers currently applied in biologi-
cal imaging technology have been improved with the help of nonlinear optics and machine
learning [5]. Their performance has been significantly improved. After signal collection
is completed, the photoacoustic image is obtained by signal inversion. The photoacoustic
signal-generation, propagation and image-reconstruction processes are shown in Figure 1.
A photoacoustic image can reflect the internal structure and function of biological tissues
through differences in photoacoustic pressure [1,6].

In the practical application of PAI, the sound speed field is the key factor that affects
the imaging performance. Its accuracy is essential for obtaining high-quality photoacoustic
images. However, the sound speed field of biological tissue often presents inhomogeneous
distribution. This inhomogeneity can significantly increase the difficulty of accurately
estimating sound speed fields. The existing image reconstruction algorithms usually
assume that a sound speed field is homogeneous to reduce the computational complexity [7].
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This assumption may lead to serious deviations in the time-of-flight (TOF) of photoacoustic
signals [8,9], which makes photoacoustic images blurred and distorted [10]. To avoid this
situation, it is necessary to accurately estimate inhomogeneous sound speed fields in the
process of image reconstruction.
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Due to the serious impact of the inaccuracy of sound speed fields on the performance
of PAI, how to accurately estimate sound speed fields has become an urgent problem
to be solved in PAI. Some researchers proposed the transformation of the problem of
estimating sound speed fields into a data clustering problem, which directly obtains the
regional distribution of each tissue through photoacoustic pressure data. Wang et al. used
K-means clustering to divide photoacoustic pressure data [11]. Yu et al. extracted the
sparse spectrum of photoacoustic pressure data by basis tracing and processed the data by
using the clustering value of the sparse spectrum and the clustering boundary [12]. Two
methods used different clustering algorithms to obtain regional information about each
tissue. However, they all rely on clinical data for sound speed assignment when estimating
inhomogeneous sound speed fields. In addition, other strategies have been proposed by
several researchers to construct sound speed fields. Huang et al. reported a joint reconstruc-
tion (JR) method based on an alternate optimization scheme, which can simultaneously
obtain the sound speed distribution and absorbed light energy density of photoacoustic
images [13]. Deep learning shows superior performance in improving imaging speed [14].
Some researchers also apply it to solve the problem of sound speed field estimation. Shan
et al. proposed a synchronous reconstruction network (SR-Net), which combines deep learn-
ing with a joint reconstruction algorithm. It can obtain a relatively accurate sound speed
field [15]. Merčep et al. adopted a strategy combining multi-modal imaging techniques.
They developed a hybrid photoacoustic–ultrasonic imaging system that uses ultrasonic
tomography (USCT) equipment to obtain sound speed distribution [16]. The above three
methods can obtain relatively accurate inhomogeneous sound speed fields. However, the
JR algorithm and USCT enhanced reconstruction algorithm have high computational costs
and system complexity. To sum up, the existing sound speed field estimation methods are
still dependent on prior information and additional measurement equipment, and some
methods with superior performance have high computational complexity. The limitations
of these methods greatly limit the application of PAI. To improve the performance of PAI, it
is necessary to develop a speed field inversion method, which can realize the automatic
optimization of sound speed fields with lower computational costs.

A speed field inversion method is proposed to reduce the influence of speed field
inaccuracy on PAI in this paper. It combines clustering with updates to the speed field.
The “K-means + Gaussian mixture model (GMM)” is used to fit the photoacoustic pressure
data. This not only provides the regional location of various tissues for the construction of
the speed field but also reduces the number of sound speed parameters to be estimated
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in the speed field model. Based on the simplified sound speed field model, the root
mean square propagation (RMSprop) algorithm is introduced to optimize the sound speed
of each tissue. To balance the updated sound speed amplitude of different tissues, the
step length of each tissue is adaptively adjusted by weight allocation. This innovative
advantage can effectively reduce the influence of interaction among tissues on the algorithm
convergence process and ensure the convergence of the algorithm to the global optimal
solution. Compared with existing methods, the proposed method can build appropriate
speed fields without additional information or equipment. It adopts the iteration strategy
as a whole. The clustering and RMSprop algorithm are used to alternately optimize the
regional distribution and sound speed of each tissue, and the sound speed field is optimized
automatically in a data-driven way.

2. Methods
2.1. The Influence of Inaccurate Sound Speed Fields on PAI

Assuming that biological tissue is a homogeneous medium, the basic equation of PAI
can be expressed as follows [17]:

∇2 p(r0, t)− 1
v2

∂2 p(r0, t)
∂t2 = − β

C
A(r)

∂I(t)
∂t

. (1)

In Equation (1), p(r0, t) is the photoacoustic pressure received by the ultrasonic transducer
at position r0 at time t. v is the homogeneous sound speed. β is the coefficient of thermal
expansion. C is the specific heat capacity. A(r) represents the light absorption coefficient
distribution function. I(t) represents the time distribution function of the incident laser.
Due to the short duration of the laser pulse, I(t) can be replaced by an excitation pulse
δ(t) approximation [17]. Using the Green function to solve p(r0, t), the general relation-
ship between photoacoustic pressure and the light absorption coefficient is obtained as
follows [17]:

p(r0, t) =
β

4πC
d
dt

∫ A(r)
|r0 − r| δ(t −

|r0 − r|
v

)dr. (2)

The temporal integral function of p(r0, t) is introduced as follows:

G(r0, t) =
4πC

β
t
∫ t

0
p(r0, t)dt. (3)

Equation (2) is brought into Equation (3). The constant terms of the two formulas cancel,
and the time derivative term d/dt in Equation (2) cancels the time integral term

∫ t
0 dt in

Equation (3), so Equation (4) is obtained, as follows:

G(r0, t) =
∫

A(r)
1
v

δ(t − |r0 − r|
v

)dr, (4)

where G(r0, t) represents the spherical Radon transform of the A(r); therefore, the photoa-
coustic image can be obtained by inverting the spherical Radon transform [18]. However,
Equation (4) is only suitable for PAI under homogeneous sound speed fields.

When the presence of an inhomogeneous sound speed field is taken into account in
PAI, the speed field causes photoacoustic signals to refract during propagation [19]. The
sound speed at any position in this sound speed field can be set to v(r′′ ). The TOF of the
photoacoustic signal is obtained by calculating the line integral of the reciprocal of the
sound speed along the approximate propagation path as follows:

t f (r, r0) =
∫

l

1
v(r′′ )

dl, l = |r0 − r|, (5)

where l is the distance from the sound source position r to the ultrasonic transducer r0.
Equation (5) is brought into Equation (2). The relationship between the photoacoustic
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pressure pinh(r0, t) obtained under the inhomogeneous sound speed field and A(r) can be
expressed as follows:

pinh(r0, t) =
β

4πC
d
dt

∫ A(r)
|r0 − r| δ(t − t f (r, r0))dr. (6)

Equations (5) and (6) are brought into Equation (3) as follows:

Ginh(r0, t) =
∫

A(r)
t f (r, r0)

|r0 − r| δ(t − t f (r, r0))dr, (7)

where Ginh(r0, t) is called the generalized Radon transformation of the A(r) in the in-
homogeneous sound speed field. The image reconstruction process can be achieved by
performing the inverse Radon transform on Equation (7) [18].

In the process of image reconstruction, the TOF is related to the propagation path of
photoacoustic signal and depends on the sound speed distribution of biological tissue. If the
inhomogeneous sound speed field is quite different from the real sound speed distribution
in the reconstruction process, the TOF of photoacoustic signals will inevitably have serious
errors. As shown in Equation (7), the change in TOF further leads to the failure of the
photoacoustic signal to achieve focus at the target position, which makes the photoacoustic
image appear as an artifact. The inaccuracy of the inhomogeneous sound speed field can
seriously affect the quality of the photoacoustic image.

2.2. “K-Means + Gaussian Mixture Model” Clustering

In PAI, the sound speed field is one of the important parameters that directly affect the
accuracy and quality of imaging. It is necessary to accurately estimate the inhomogeneous
sound speed field of biological tissues. Since identical tissues in biological tissues have
similar properties, data clustering can be carried out according to the similarity between
the photoacoustic pressure data to extract the regional location information about various
tissues. The application of clustering regards the same tissue region of homogeneous
sound speed as a whole. This reduces the number of sound speeds to be estimated in
the inhomogeneous sound speed field and provides convenience for the further accurate
estimation of sound speed distribution.

The internal structure of biological tissue is reflected through the photoacoustic pres-
sure value of each pixel in a photoacoustic image. The photoacoustic pressure data are ma-
trix data of m × n. The sequence form is expressed as P = {p1, p2, · · · , pN}, N = m × n.
The proposed method combining K-means and GMM is used to cluster the data. Com-
pared with K-means or GMM, this hybrid clustering displays a significant improvement
in clustering performance [20]. It can obtain more accurate regional location information.
K-means is one of the most common clustering analysis algorithms, and its convergence
speed is fast. The application of K-means to pre-process photoacoustic pressure data can
provide relatively accurate initial parameters for GMM and improve computational effi-
ciency. K-means belongs to hard clustering. It takes distance as the similarity index and
calculates the distance between each data and the center of each cluster. Each datum is
divided into the closest cluster.

K-means needs to pre-specify the number of clusters, K, namely, the number of
categories of the tissue. The elbow method is usually used to select the appropriate K value
by comparing the sum of squared errors (SSE) of the clustering results corresponding to
different clustering values. Four groups of randomly generated data in Figure 2a are taken
as examples to explain the method as follows:

SSE =
K

∑
k=1

M

∑
i=1

∣∣pi,k − µk
∣∣2. (8)
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where K is the number of clusters, M represents the number of data contained in the kth
cluster, pi,k represents the ith data point in the kth cluster and µk is the mean of all data in
the kth cluster. The SSE value is used to evaluate the clustering result, which gradually
decreases with the increase in clustering degree. As shown in Figure 2b, the SSE will
decrease sharply when K reaches the most suitable clustering value and then plateau
with increasing K values. The fitting map of SSE and K is the shape of an elbow, and
the corresponding K value of the elbow is the best cluster number of the sample data. In
addition, the elbow method can also provide the initial center point of each cluster for
K-means to improve the accuracy of the clustering result.
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The photoacoustic pressure data are trained several times by the elbow method. The
most suitable clustering value K and the corresponding initial center are selected. They
are brought into the K-means to obtain preliminary clustering results. Because K-means
can only fit the data by spherical clusters, for biological tissues with complex distribution,
the clustering result obtained by this algorithm can only roughly describe the regional
distribution of various tissues. To obtain a more accurate tissue distribution, the GMM is
selected to further iteratively optimize the rough clustering result. The GMM belongs to
soft clustering. It makes clustering by calculating the posterior probability that the data
belong to each Gaussian distribution [21]. Compared with hard clustering, this algorithm
can divide the category of tissue boundary region more flexibly. The GMM can fit data
through arbitrary ellipsoidal clusters, which are more suitable for dealing with the regional
division of complex biological tissues.

However, the GMM is very sensitive to the setting of initial parameters, and the
number of clusters needs to be set in advance. The clustering result of K-means can provide
it with the initial values of these parameters, avoiding the influence of the randomness of
the initial parameters on the GMM. The GMM is a parametric probabilistic model. This
model is given as follows:

f (pi) = ∑K
k=1 ak Nk(pi, µk, Σk). (9)

where Nk(pi, µk, Σk) stands for the probability density function of the kth Gaussian dis-
tribution. ak is the weight coefficient, which represents the proportion of each type of
tissue. µk is the mean value, which corresponds to the central position of the distribution of
each tissue. Σk is the variance, which describes the distribution of data around the mean
value. When the GMM is applied to fit the photoacoustic pressure data, the data need to be
allocated to K Gaussian distributions, and each Gaussian distribution corresponds to the
distribution information of a class of tissues. The initial parameters are set based on the
clustering result of K-means. The cluster center point of the kth cluster can be set directly
to the initial mean value of the kth Gaussian distribution. The initial weight coefficient
of the kth Gaussian distribution is obtained according to the proportion of the number of
data M in the kth cluster to the total data. The initial mean and the number of data M are
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brought into Equation (10). The initial variance parameter of the kth Gaussian distribution
can be obtained.

Σ0,k =
∑M

i (pi − µ0,k)(pi − µ0,k)
T

M
. (10)

After the initial parameters of the GMM are obtained, the expectation–maximization
(EM) algorithm is used to iteratively optimize these parameters to obtain a set of optimal
model parameters. The posteriori probability is estimated by the current model parameters
in E-step of the EM algorithm, namely, the probability that the data pi belong to the kth
Gaussian distribution as follows [20]:

γnew
i,k =

ak Nk(pi, µk, Σk)

∑K
k=1 ak Nk(pi, µk, Σk)

. (11)

The updated model parameters are calculated through the M-step of the EM algorithm
as follows:

µnew
k =

∑N
i (γnew

i,k pi)

∑N
i γnew

i,k

, (12)

Σnew
k =

∑N
i γnew

i,k (pi − µnew
k )(pi − µnew

k )T

∑N
i γnew

i,k

, (13)

anew
k =

∑N
i γnew

i,k

N
. (14)

In Equation (14), N represents the total number of photoacoustic pressure data. From
Equations (12)–(14), a set of more accurate model parameters can be obtained. The GMM
described by the set of model parameters is closer to the real distribution of biological
tissues. These parameters are used to calculate the log-likelihood function of the GMM
as follows:

ln f (pi) = ∑N
i=1 ln

{
∑K

k=1 anew
k Nnew

k (pi, µnew
k , Σnew

k )
}

. (15)

If the log-likelihood function does not converge, the model parameters need to return
to E-step again for iterative updates. When the log-likelihood function of the model reaches
the convergence state, the fitting effect of the GMM to the data also reaches its best. The
current model parameter is the optimal model parameter. Each photoacoustic pressure
datum is assigned to the Gaussian distribution with the largest probability according to the
posteriori probability, and the clustering result can be obtained.

2.3. Root Mean Square Propagation Algorithm

“K-means + GMM” fits the photoacoustic pressure data into K Gaussian distributions;
namely, the regional distribution information about K tissues is obtained. To further
improve the accuracy of the sound speed field, it is necessary to search for more accurate
sound speeds for each tissue based on regional distribution information. The clinical data
information about biological tissues is usually selected for sound speed assignment in the
reported methods. However, this method relies heavily on clinical data. Moreover, there
are differences in tissue sound speeds among different individuals. The selection of sound
speed based on clinical data may still be inaccurate. To avoid these problems, the RMSprop
algorithm is used in this paper to realize the automatic optimization of the sound speed
field. The RMSprop algorithm is an improved algorithm based on the gradient descent
(GD) method, which continues the optimization strategy of the GD method. The fixed step
length of the GD method is improved to the adaptive step length to improve the stability
of the algorithm.

To highlight the improvement purpose of the RMSprop algorithm, the GD method is
first introduced. The GD method is an optimization algorithm used to solve the extreme
value problem of function [22]. It iteratively optimizes the independent variables of function
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by calculating the negative gradient direction of the objective function. It is hoped that the
optimal solution of the corresponding independent variables can be obtained when the
objective function converges. It is known that the purpose of correcting the inhomogeneous
sound speed field is to improve the quality of photoacoustic images and make it closer
to the real distribution of biological tissue. When the GD method is applied to solve the
optimal sound speed, the function evaluating the quality of photoacoustic images can be
set as the objective function. The sound speed of each tissue is the K parameter of the
objective function. This method can identify the best search direction of the sound speed
field and realize the automatic update of the sound speed of each tissue.

In the GD method, the initial sound speed vector and objective function are first set
as follows:

V0 = [v0,1, v0,2, · · · , v0,k, · · · , v0,K]
T , (16)

W1 =

√
(

pm+1,n − pm−1,n

2
)2 + (

pm,n+1 − pm,n−1

2
)2, (17)

F = −
∑NW2

W2

NW2

. (18)

For the convenience of calculation, the sound speed of each tissue in the inhomogeneous
sound speed field is formed into a sound speed vector in a fixed order. Equation (16) is
the initial sound speed vector formed by the initial sound speed field. In Equation (17),
W1 represents the gradient value of the pixel at the (m,n) position. pm,n represents the
photoacoustic pressure value of the pixel at the (m,n) position in the photoacoustic image.
As shown in Equation (18), W2 represents the photoacoustic pressure gradient values at
each tissue boundary extracted from the W1 data. NW2 represents the number of tissue
boundary gradient values in W2. The objective function F can be obtained by calculating
the negative average of all the gradient values in W2.

It is known that there are differences in photoacoustic pressure values in different
tissue areas and the photoacoustic pressure values of the same type of tissue are very similar.
When Equation (17) is applied to calculate the gradient, the gradient value of the pixels
in the internal region of the tissue tends to be 0 due to the similarity of the tissues. The
gradient value of the pixel in the tissue boundary region is determined by the photoacoustic
pressure difference value of the tissue on both sides of the boundary. Its gradient value is
larger relative to the gradient value inside the tissue. The photoacoustic pressure gradient
value W2 of each tissue boundary can be extracted by setting a threshold value. When the
imaging effect is better, the photoacoustic pressure value in the tissue boundary area shows
a “cliff-like” change. The gradient amplitude value of the boundary area extracted by the
threshold is larger and the boundary is more accurate. When the imaging effect is poor,
the photoacoustic pressure value in the tissue boundary region shows a gentle “stepped”
change due to the possible blurring and artifacts in the image. This makes the gradient
amplitude value lower in the border area. The above analysis shows that the gradient
values of each tissue boundary in a photoacoustic image can reflect the quality of the image.
When Equation (18) is applied to calculate the value of the objective function, the better the
quality of the photoacoustic image, the smaller the value of the objective function.

Taking the sth iteration as an example, the gradient vector of the objective function
at the sound speed vector Vs is calculated. The gradient vector contains K derivatives.
When the derivative of each type of tissue is calculated, only the sound speed of this tissue
is changed and the sound speeds of other tissues remain unchanged, ∂vs,k is obtained.
The value of the objective function before and after changing v is calculated to obtain the
D-value ∂Fs,k. The derivative of the kth tissue region is gs,k = ∂Fs,k/∂vs,k. The gradient
vector for this iteration is as follows:

∇F(Vs) = [gs,1, gs,2, · · · , gs,k, · · · , gs,K]
T . (19)



Appl. Sci. 2024, 14, 3381 8 of 21

The negative direction of the gradient vector is the direction with the fastest descent at Vs.
Along this search direction, the sound speeds of various tissues are updated as follows:

Vs+1 = Vs − λ∇F(Vs). (20)

where Vs+1 represents the updated sound speed vector and λ is the predefined constant
step length.

The distribution size of different tissues in real biological tissues may be very different.
When calculating the derivative of each tissue, the objective function is more sensitive
to changes in the sound speed of the tissue with large regional distribution. This causes
its derivative to differ from that of other tissues. In this case, if the fixed step length is
applied to update the sound speed value, it may lead to large differences in the updated
amplitude of the sound speed values of various tissues. The sound speed of tissue with
large regional distribution may converge faster and even incorrectly compensate for sound
speed errors in other tissues. It not only interferes with the updates to the sound speed of
other tissues and seriously affects the stability of the convergence process, but also may trap
the sound speed field into a local optimum. To solve this problem, the RMSprop algorithm
is introduced to realize the improvement in the constant step length in the GD method.
The RMSprop algorithm adaptively adjusts the step length of the sound speed of each
tissue according to the weighted average of the square of the historical derivatives of the
corresponding tissue [23]. If the derivative of the tissue is larger, the RMSprop algorithm
will automatically reduce its step length. If the derivative of the tissue is smaller, its step
length will automatically increase accordingly. The step length of adaptive adjustment can
balance the amplitude of the sound speed update, which makes the convergence process
more stable, and the accuracy of the sound speed field can be improved.

The RMSprop algorithm uses the idea of the exponential weighted moving average
(EWMA) method to calculate the exponential mean of the latest h iterations of the derivative
squared of various tissues, as shown in the following:

θs,k = αθs−1,k + (1 − α)g2
s,k, (21)

h =
1

1 − α
. (22)

In Equation (21), θs,k is the exponential mean of the derivative squared of the kth tissue
in the sth iteration. θs−1,k is the exponential mean of the derivative squared of the kth
tissue in the (s−1)th iteration. g2

s,k represents the derivative squared of the kth tissue in the
sth iteration. α represents the hyperparameter. h is the number of historical derivatives
required to calculate the average value of the index. Based on the idea of the EWMA
method, Equation (21) weights the derivative squared of the latest h iterations to control
the contribution of the historical derivative squared to the exponential mean. The closer
the derivative squared is to the current iteration, the greater the weight it multiplies.
According to the weight size, the data information about derivative squared is extracted.
The exponential mean obtained from Equation (21) provides reference data for the adaptive
adjustment of step length.

In addition, the exponential mean calculated by the RMSprop algorithm in the early
iteration may be inaccurate. To solve this problem, Equation (23) is applied to correct the
deviation of the exponential mean to improve the accuracy of the early exponential mean.

ˆ
θs,k =

{
θs,k

1−αs , s < h,
θs,k

1−αh , s ≥ h.
(23)

In Equation (23),
ˆ
θs,k is the corrected value of the exponential mean of the kth tissue in the

sth iteration. The corrected value of the exponential mean of each tissue is calculated by
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Equation (23), which can provide the weight vector w for adaptively adjusting the step
length of the sound speed of each tissue.

w =

 1√
ˆ
θs,1

,
1√
ˆ
θs,2

, · · · ,
1√
ˆ
θs,k

, · · · ,
1√
ˆ
θs,K


T

. (24)

The global step length is set to λ2, and its initial value is λinitial. To avoid the sound
speed parameter producing a small range of oscillation in the later stage of iteration, the
global step length slowly decays with iteration.

λ2 = λinitial · ηs. (25)

where η is the attenuation coefficient of global step length. Along the direction of the
negative gradient vector, various tissues use the corresponding step length to calculate the
updated sound speed as follows:

Vs+1 = Vs − λ2w ⊙∇F(Vs). (26)

where the ⊙ symbol is the Hadamard product, which refers to the new vector obtained by
multiplying the elements at the corresponding positions of two vectors.

The RMSprop algorithm can balance the updated amplitude of sound speed by adap-
tively adjusting the step length of the sound speed of each tissue. It alleviates the interaction
between various tissues in the process of updating sound speed. If a tissue with a large
proportion reaches the convergence state, the small range change of its sound speed value
may still have an impact on other tissues. To solve this problem, the sound speed values
of several successive iterations after this tissue convergence can be selected to create an
average, and the average value is taken as the optimal solution of this tissue’s sound speed.
The sound speed value of this tissue is fixed as the optimal solution in the subsequent
iterations to ensure the stability of the convergence process for other tissues.

In summary, the proposed algorithm optimizes the inhomogeneous sound speed field
iteratively through two steps. “K-means + GMM” is used to update the regional location
information about various tissues, and the RMSprop algorithm is applied to update the
sound speed value of each tissue. When the sound speed values of various tissues begin to
converge, the objective function values reach saturation. The final inhomogeneous sound
speed field and photoacoustic image can be obtained.

3. Results and Analyses
3.1. Numerical Model and Configuration

A lifelike digital breast model is applied to verify the effectiveness of the proposed
method. The digital breast model is generated from clinical magnetic resonance angiog-
raphy data collected at Washington University School of Medicine in St. Louis. Magnetic
resonance data are obtained from a breast with fibroglands in an extremely dense state [24].
Figure 3a shows the y−z slice of a dense fibrogland breast model at x = 4.0 × 10−2 m.
For better method validation, the microvessels are deleted from the original digital breast
model, and two tumors are added at the border between fat and fibroglands. The digital
breast model contains five components: water, fibroglands, fat, skin, and tumor. There
is inhomogeneous sound speed distribution in this model. As shown in Figure 3a, the
approximate locations of the five components are marked according to the serial numbers
of each component specified in Table 1.

The digital breast model is simulated and reconstructed using the k-Wave toolbox
in MATLAB R2019a [25]. The model is placed in a computational grid of 900 × 900. Its
size is 0.18 m × 0.18 m. The two tumor sizes in the model are set as follows: tumor 1 is a
circular tumor with a diameter of 8.0 × 10−3 m, and tumor 2 is an irregular tumor with



Appl. Sci. 2024, 14, 3381 10 of 21

a maximum diameter of 1.2 × 10−2 m. Figure 3b shows the sound speed distribution
map of the real sound speed field. The sound speed values of various components are set
with reference to the sound speed range of biological tissues in the published literature, as
shown in Table 1 [26]. The transducer is arranged in a ring array. A total of 800 ultrasonic
transducers are uniformly arranged on a ring with a radius of 7.6 × 10−2 m centered on the
center of the computing grid to collect the photoacoustic signal in the forward simulation
process. After obtaining the photoacoustic signal, the TR algorithm is applied to image the
model. The use of the same computational grid for forward simulation and reconstruction
during the calculation may mask potential errors; therefore, the reconstruction grid is set to
700 × 700 on the same model size.
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Table 1. Real sound speed values of various components in the digital breast model [26].

Serial Number Coupling Medium and Biological Tissues Real Sound Speed (m/s)

1 water 1500.00
2 fibrogland 1515.00
3 fat 1440.00
4 skin 1540.00
5 tumor 1470.00

3.2. Algorithm Implementation

In the proposed method, photoacoustic pressure data and photoacoustic image are
obtained based on the homogeneous sound speed of 1495 m/s, as shown in Figure 4.
This homogeneous sound speed value is selected from empirical values in the published
literature. Comparing Figure 4 with the digital breast model in Figure 3a, it is observed that
there are many artifacts in the photoacoustic image under a homogeneous sound speed.
The boundaries of various tissues are blurred. The significant difference between the homo-
geneous and the real sound speed field seriously degrades the quality of the photoacoustic
image. However, the photoacoustic pressure data obtained at a homogeneous sound speed
can be used to provide initial regional position information about the sound speed field in
the initial iteration. Figure 5 is a cluster deviation map of the photoacoustic pressure data
at a homogeneous sound speed. As shown in Figure 5, the K value corresponding to the
“elbow” is the optimal number of clusters, and the elbow method also provides the initial
cluster center corresponding to K = 5.

“K-means + GMM” is used to divide the photoacoustic pressure data into five types
of regions, and the initial clustering result is shown in Figure 6a. Figure 6b is the initial
inhomogeneous sound speed field. In practical applications, the substance set in the
background area is usually a coupling medium with a known sound speed. The coupling
medium in the model is water, so the sound speed in this area can be fixed at 1500 m/s.
The sound speeds of the other tissues to be measured are unknown, and the initial sound
speed in these regions is set to 1495 m/s based on empirical values. The photoacoustic
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image shown in Figure 6c is obtained based on the sound speed field shown in Figure 6b.
Since the location information and sound speed of each region are inaccurate in the initial
inhomogeneous sound speed field, the boundaries of fat and fibrogland in Figure 6c are
confused. The focusing effect of various tissues is poor, and in particular, the shape of
tumor 2 is severely distorted.
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Figure 7 shows the fitting curve of the objective function value and the number of
iterations. It can be observed from this figure that there is a transient irregular oscillation
phenomenon before the objective function value reaches saturation, which may be caused
by the following two reasons:

(a) In the process of solving, the step length of the updated sound speed of some tissues
is too large, which affects the trend of gradient direction change and leads to the
instability of the iterative process.

(b) The objective function may be trapped in a local minimum, and the algorithm tries
to escape from the local minimum, resulting in a transient oscillation of the objective
function value [27].

The objective function value gradually converges in the middle and late iteration.
This shows that the unique advantage of adaptively adjusting step length in the proposed
method enhances the convergence of the algorithm. As shown in Figure 7, the objective
function value of the photoacoustic image reaches saturation after 30 iterations.
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Figure 8 illustrates the optimal clustering result, optimal sound speed field and pho-
toacoustic image obtained by the proposed method. As shown in Figure 8b, the sound
speed distribution of various tissues in the final obtained inhomogeneous sound speed
field is very close to the real sound speed field. The photoacoustic image obtained based
on this sound speed field is compared with the image at the homogeneous sound speed in
Figure 4. The artifacts of the photoacoustic image in Figure 8c are significantly reduced,
and the boundaries of various tissues are clearer.

To fully evaluate the effectiveness of the proposed method, the k-means sound speed
estimation method is used to estimate the sound speed field of the digital breast model [11].
The result obtained is set as a control group for the proposed method. The k-means sound
speed estimation method first performs Hilbert transformation on the photoacoustic image
obtained at the homogeneous sound speed. This image is transformed into a unipolar
photoacoustic image. After that, k-means is used to cluster the photoacoustic pressure
values of each pixel in the unipolar photoacoustic image to obtain the regional distribution
of each tissue. Finally, the sound speed of each tissue in the sound speed field is assigned
according to the corresponding relationship between clinical data and clustering result.
The photoacoustic image is obtained based on the updated sound speed field.

Figure 9 shows the results obtained by the k-means sound speed estimation method.
Among them, the sound speed field shown in Figure 9b is obtained from the real sound
speed values in Table 1. Since the regional distribution of each tissue in the sound speed
field is quite different from the real distribution, the quality of the photoacoustic image
obtained based on this sound speed field is not effectively improved.



Appl. Sci. 2024, 14, 3381 13 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 23 
 

 
Figure 8. The optimal results obtained by the proposed method. (a) Optimal clustering map. (b) 
Optimal inhomogeneous sound speed field. (c) Photoacoustic image obtained by using the optimal 
inhomogeneous sound speed field. 

Figure 9 shows the results obtained by the k-means sound speed estimation method. 
Among them, the sound speed field shown in Figure 9b is obtained from the real sound 
speed values in Table 1. Since the regional distribution of each tissue in the sound speed 
field is quite different from the real distribution, the quality of the photoacoustic image 
obtained based on this sound speed field is not effectively improved. 

Figure 8. The optimal results obtained by the proposed method. (a) Optimal clustering map.
(b) Optimal inhomogeneous sound speed field. (c) Photoacoustic image obtained by using the
optimal inhomogeneous sound speed field.Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 23 

 

 
Figure 9. The results obtained by k-means sound speed estimation method. (a) Clustering map. (b) 
Inhomogeneous sound speed field. (c) Photoacoustic image. 

3.3. Analysis of Clustering Results 
To verify the effectiveness of the proposed method, the accuracy of the optimal sound 

speed field and the quality of the photoacoustic image are evaluated. It is known that the 
proposed method applies a clustering algorithm to characterize the regional distribution 
of various tissues in the sound speed field. As one of the factors affecting the accuracy of 
the speed field, it is necessary to evaluate the clustering results.  

According to the clustering results obtained by the proposed method and the k-
means sound speed estimation method, the regional distribution of each tissue is observed 
and compared one by one. Figure 10 shows the real regional distribution of each tissue in 
the digital breast model. Figure 11 and Figure 12, respectively, show the regional distri-
bution of each tissue in the initial and optimal clustering maps obtained based on the pro-
posed method. The regional distribution of each tissue in the cluster map obtained by the 
k-means sound speed estimation method is shown in Figure 13.  

Figure 9. The results obtained by k-means sound speed estimation method. (a) Clustering map.
(b) Inhomogeneous sound speed field. (c) Photoacoustic image.

3.3. Analysis of Clustering Results

To verify the effectiveness of the proposed method, the accuracy of the optimal sound
speed field and the quality of the photoacoustic image are evaluated. It is known that the
proposed method applies a clustering algorithm to characterize the regional distribution of
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various tissues in the sound speed field. As one of the factors affecting the accuracy of the
speed field, it is necessary to evaluate the clustering results.

According to the clustering results obtained by the proposed method and the k-means
sound speed estimation method, the regional distribution of each tissue is observed and
compared one by one. Figure 10 shows the real regional distribution of each tissue in the
digital breast model. Figures 11 and 12, respectively, show the regional distribution of each
tissue in the initial and optimal clustering maps obtained based on the proposed method.
The regional distribution of each tissue in the cluster map obtained by the k-means sound
speed estimation method is shown in Figure 13.
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The regional distribution of each tissue in the initial and optimal clustering maps is
compared with the corresponding real distribution. By observing Figures 10–12, it can be
seen that the regional boundary of each tissue in the optimal clustering map is clearer than
that in the initial clustering map. Its regional distribution is closer to the real distribution of
various tissues in the model. This shows that the proposed method can effectively improve
the accuracy of each tissue distribution in the sound speed field through several iterations
of cluster analysis. Next, the clustering results of the proposed method and k-means sound
speed estimation method are compared by observing Figures 10, 12 and 13. The regional
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distribution of each tissue in the optimal clustering map is better than that of the k-means
sound speed estimation method, which is closer to the real distribution. This indicates
that the clustering performance of the proposed method is superior to that of the k-means
sound speed estimation method.

To verify the clustering result as a whole, the clustering evaluation index is used to
compare the clustering results obtained by the proposed method and the k-means sound
speed estimation method. For clustering results, the higher the degree of intra-cluster
aggregation and the greater the degree of inter-cluster dispersion, the better the clustering
effect. The SSE index is used to evaluate the degree of intra-cluster aggregation of the
clustering result. This index is calculated by the formula shown in Equation (8), which
is the SSE of the intra-cluster sound pressure data with the intra-cluster mean. The SSE
value is smaller, which indicates the intra-cluster aggregation of clustering result is better.
The degree of inter-cluster dispersion is evaluated by the separation (SP) index, which
represents the average distance between the center points (means) of various clusters
as follows:

SP =
2

K ∗ (K − 1)

K

∑
k1=1

K

∑
k2=k1+1

∥∥µk1 − µk2

∥∥
2. (27)

where K represents the number of clusters in the clustering result. µk1 represents the mean
of the k1st cluster. µk2 represents the mean of the k2nd cluster. The SP value is larger, which
indicates the inter-cluster dispersion of clustering result is better.

Table 2 presents the SSE and SP values of the clustering results obtained by the two
methods. In the clustering results obtained by the proposed method, the SSE value of the
optimal clustering result is smaller than that of the initial clustering result, and the SP value
is larger. Its clustering effect is better than the initial clustering result. This also shows that
the proposed method can correct the regional distribution of each tissue in the sound speed
field. Next, the SSE value and SP value of the optimal clustering result obtained by the
proposed method are compared with the k-means sound speed estimation method. The
results show that the SSE and SP values of the optimal clustering result are better than the
k-means sound speed estimation method. The optimal clustering results obtained by the
proposed method have a higher degree of intra-cluster aggregation and a greater degree of
inter-cluster dispersion.

Table 2. The SSE values and SP values of the clustering results obtained by the proposed method and
the k-means sound speed estimation method.

Method
Proposed Method

K-Means Method
Initial Clustering Result Optimal Clustering Result

SSE 2.1497 × 107 9.0447 × 106 4.7271 × 107

SP 0.1817 0.2697 0.1955

Whether observing and comparing the regional distribution of various tissues one
by one or evaluating the overall clustering results through clustering indexes, the two
comparison results show that the proposed method can significantly improve the regional
distribution of each tissue in the sound speed field. Compared with the k-means sound
speed estimation method, the optimal clustering result obtained by the proposed method
is closer to the regional distribution of the real sound speed field, and its clustering perfor-
mance is superior.

3.4. The Error Analysis of Sound Speed

The accuracy of the inhomogeneous sound speed field is further evaluated from the
angle of sound speed error. The sound speeds of various tissues are extracted from the
real, initial and optimal sound speed fields. The absolute error of the sound speed of each
tissue in the initial and optimal inhomogeneous sound speed fields relative to the real
sound speed is calculated. As shown in Table 3, ∆v1 represents the absolute error between
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the sound speed of each tissue in the initial sound speed field and the real sound speed.
∆v2 represents the absolute error between the sound speed of each tissue in the optimal
sound speed field and the real sound speed. Comparing the absolute error in Table 3, it
can be seen that the absolute values of the ∆v2 of various tissues are much smaller than
the absolute value of ∆v1. These indicate that the sound speeds of various tissues in the
optimal sound speed field are closer to the real sound speed. The proposed method can
significantly improve the accuracy of the sound speed of each tissue.

Table 3. The absolute error of the sound speed of each tissue in the initial and optimal sound speed
fields relative to the real sound speed.

Coupling Medium and
Biological Tissues

Real Sound
Speed (m/s)

Initial Sound Speed (m/s) Optimal Sound Speed (m/s)

Sound Speed ∆v1 Sound Speed ∆v2

water 1500.00 1500.00 0.00 1500.00 0.00
fibrogland 1515.00 1495.00 −20.00 1510.62 −4.38

fat 1440.00 1495.00 55.00 1440.68 0.68
skin 1540.00 1495.00 −45.00 1537.98 −2.02

tumor 1470.00 1495.00 25.00 1470.50 0.50

The sound speed field obtained by the k-means sound speed estimation method is
assigned according to the real sound speed values in Table 1. However, the sound speeds
in the optimal sound speed field obtained by the proposed method still have small errors
with the true sound speed values. Therefore, only from the angle of sound speed error, the
accuracy of the sound speed of each tissue obtained by the proposed method is slightly
worse than that of the k-means sound speed estimation method.

The above evaluation results show that the proposed method can significantly im-
prove the accuracy of the inhomogeneous sound speed field from the two perspectives
of clustering results and sound speed errors. In addition, the comparison results with
the k-means sound speed estimation method show that the proposed method has better
clustering performance. The region distribution of each tissue in the optimal sound speed
field obtained by this method is more accurate. However, the sound speed error of each
tissue is not completely eliminated, and the accuracy of the sound speed value is slightly
worse than that of the k-means estimation method. In this case, the sound speed field
obtained by the two methods is unable to accurately judge which one has better quality. The
photoacoustic images based on these two sound speed fields need to be evaluated to further
prove whether the sound speed field obtained by the proposed method is more accurate.

3.5. The Quality Evaluation of Photoacoustic Image

The performance of the proposed method is further verified by evaluating the quality
of photoacoustic images. The photoacoustic image obtained by the proposed method is
compared with the images obtained based on a homogeneous sound speed field and the
k-means sound speed estimation method. Figure 14 gathers the real digital breast model
and the photoacoustic images obtained by the above three sound speed estimation methods.
As shown in Figure 14b, there are many artifacts in the photoacoustic image obtained based
on the homogeneous sound speed field, and the boundaries of each tissue are blurred.
The shape of the tumor tissue is distorted and the position of the skin tissue is obviously
deviated. Figure 14c shows the photoacoustic image obtained based on the k-means sound
speed estimation method. The artifacts of this image are reduced and the shape of the
tumor tissue is closer to a real tumor shape. However, the sharpness of the image is still
poor, and many details of the model are not shown. The photoacoustic image obtained by
the proposed method is shown in Figure 14d. Compared with the photoacoustic images
obtained by the other two methods, the sharpness of this image is significantly improved.
Not only is the position of each tissue accurately located, but also, the details in the image
are very clear.
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Figure 14. Digital breast model and photoacoustic images obtained by three sound speed estimation
methods. (a) Digital breast model. (b) Photoacoustic image obtained by homogeneous sound speed.
(c) Photoacoustic image obtained by the k-means sound speed estimation method. (d) Photoacoustic
image obtained by the proposed method.

The quality of the photoacoustic image is quantitatively evaluated by the photoacoustic
pressure amplitude error map. In Figure 14, the photoacoustic pressure amplitude marked
by white dashed lines in the four images is extracted for error analysis. The absolute error
of the photoacoustic pressure amplitude of the three sound speed estimation methods
relative to the true amplitude is shown in Figure 15. In this figure, gray dotted line boxes
are used to identify the three parts with the most obvious contrast of errors. Dotted line
boxes 1 and 2 indicate skin, and dotted line box 3 indicates tumor 2. Through observing
these three parts, it can be seen that the amplitude error of the homogeneous sound speed
field and k-means sound speed estimation method is significantly larger than the error of
the proposed method. The comparison results of absolute error show that the photoacoustic
image obtained by the proposed method has higher fidelity.
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The quality of the photoacoustic image obtained based on the proposed method is
quantitatively analyzed by the commonly used image evaluation index. The peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM) of the photoacoustic images
obtained by the above three methods are calculated. Among them, the PSNR is used
to measure the difference between the reconstructed image and the original image. The
larger PSNR value indicates the better quality of the reconstructed image and the smaller
error. SSIM evaluates the similarity between the reconstructed image and the original
image from the perspectives of brightness, contrast, and structure. Its value range is [0, 1].
When the SSIM value is closer to 1, the quality of the reconstructed image is better. As
shown in Table 4, the PSNR and SSIM values of the photoacoustic image obtained by
the proposed method are both higher than those obtained by the other two methods.
The quality evaluation data of photoacoustic images show that the photoacoustic image
obtained based on the proposed method has fewer errors and higher fidelity.

Table 4. Quantitative evaluation results of photoacoustic image.

Method PSNR (db) SSIM

Homogeneous sound speed 13.610 0.435
K-means method 17.435 0.461
Proposed method 26.719 0.703

The photoacoustic image qualitative and quantitative evaluation results show that
the photoacoustic image obtained based on the proposed method has higher quality and
fidelity. This proves that the optimal sound speed field obtained by the proposed method is
more accurate than that estimated by the other two methods, which is helpful for improving
the performance of PAI.

4. Conclusions

In summary, a speed field inversion method is proposed to reduce the influence of
speed field inaccuracy on PAI in this paper. It combines clustering with updates to the
speed field. “K-means + GMM” is used to fit the photoacoustic pressure data. This not only
provides the regional location of various tissues for the construction of the speed field, but
also reduces the complexity of the sound speed field model. Based on the simplified sound
speed field model, the step length of each tissue is adjusted adaptively by weight allocation
to balance the updated amplitude of the sound speed of each tissue. This can ensure that the
algorithm converges to the global optimal solution and obtains the inhomogeneous sound
speed field closest to the real sound speed distribution. A lifelike digital breast model is
applied to verify the effectiveness of the proposed method. Based on the research results,
the initial sound speed field and the optimal sound speed field obtained by the proposed
method are compared. The comparison results show that the proposed method significantly
improves the accuracy of the inhomogeneous sound speed field by iterative optimization.
In addition, the comparison results with other speed estimation methods also show that the
proposed method has significant advantages in dealing with complex sound speed field
inversion problems. The method proposed in this paper can assist PAI in reconstructing
high-quality images of complex breast models. The PSNR value of the photoacoustic image
obtained by this method reaches 26.719 db, and the SSIM value reaches 0.703. This indicates
that this method has potential applications in the clinical diagnosis of breast disease and
helps to improve the accuracy of disease detection. At present, the proposed method still
cannot completely avoid the influence of tissue interaction on algorithm convergence. Our
future research will be devoted to developing more intelligent optimization algorithms to
avoid this problem more effectively.
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