
Citation: Rezaeian, N.; Gurina, R.;

Saltykova, O.A.; Hezla, L.; Nohurov,

M.; Reza Kashyzadeh, K. Novel

GA-Based DNN Architecture for

Identifying the Failure Mode with

High Accuracy and Analyzing Its

Effects on the System. Appl. Sci. 2024,

14, 3354. https://doi.org/10.3390/

app14083354

Academic Editor: Douglas

O’Shaughnessy

Received: 6 March 2024

Revised: 11 April 2024

Accepted: 15 April 2024

Published: 16 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Novel GA-Based DNN Architecture for Identifying the Failure
Mode with High Accuracy and Analyzing Its Effects on the System
Naeim Rezaeian 1,*, Regina Gurina 2, Olga A. Saltykova 1 , Lokmane Hezla 2, Mammetnazar Nohurov 2

and Kazem Reza Kashyzadeh 3,*

1 Department of Mechanics and Control Processes, Academy of Engineering, RUDN University,
Miklukho-Maklaya St., Moscow 117198, Russia

2 Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya St., Moscow 117198, Russia
3 Department of Transport Equipment and Technology, Academy of Engineering, RUDN University,

Miklukho-Maklaya St., Moscow 117198, Russia
* Correspondence: rezaian-n@rudn.ru (N.R.); reza-kashi-zade-ka@rudn.ru (K.R.K.)

Abstract: Symmetric data play an effective role in the risk assessment process, and, therefore,
integrating symmetrical information using Failure Mode and Effects Analysis (FMEA) is essential
in implementing projects with big data. This proactive approach helps to quickly identify risks and
take measures to address them. However, this task is always time-consuming and costly. On the
other hand, there is an essential need for an expert in this field to carry out this process manually.
Therefore, in the present study, the authors propose a new methodology to automatically manage this
task through a deep-learning technique. Moreover, due to the different nature of the risk data, it is not
possible to consider a single neural network architecture for all of them. To overcome this problem, a
Genetic Algorithm (GA) was employed to find the best architecture and hyperparameters. Finally,
the risks were processed and predicted using the new proposed methodology without sending data
to other servers, i.e., external servers. The results of the analysis for the first risk, i.e., latency and real-
time processing, showed that using the proposed methodology can improve the detection accuracy
of the failure mode by 71.52%, 54.72%, 72.47%, and 75.73% compared to the unique algorithm with
the activation function of Relu and number of neurons 32, respectively, related to the one, two, three,
and four hidden layers.

Keywords: neural network; deep-learning technique; genetic algorithm; hyperparameter

1. Introduction

Today, the use of machine-learning methods is growing rapidly in various indus-
tries [1–3]. This is despite the fact that this powerful tool is not always used for prediction.
One of the most important applications of this emerging technology is to detect failures
or breakdowns, for example, identifying unusual events (i.e., abnormalities) in the time
history of monitoring data such as vibration in large industries [4,5]. In this regard, FMEA is
a process that engineers use to identify and evaluate the potential failure modes of a system,
the effects of these failures on the system’s performance or product, and the associated
consequences. In fact, the main purpose of this method is to identify potential problems in
the early stages of development or design in order to minimize the possibility of problems
and their effects during the main operation. To achieve this goal, in addition to identifying
potential failure modes, this method evaluates the severity of damage and also identifies
the causes of failure. Despite all these advantages, there is a big challenge in this method
in that there is no unique algorithm for its implementation and different algorithms are
considered for it in various industries and based on requirements and conditions. In this
regard, some well-known and practical algorithms are Brainstorming [6], Checklist [7],
Failure Data Analysis [8], Fault Tree Analysis [9], Hazard Analysis and Critical Control
Points (HACCP) [10], and Risk Matrices [11]. Regardless of the method used, the secret

Appl. Sci. 2024, 14, 3354. https://doi.org/10.3390/app14083354 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083354
https://doi.org/10.3390/app14083354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3880-6662
https://orcid.org/0000-0003-0552-9950
https://doi.org/10.3390/app14083354
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083354?type=check_update&version=2

Appl. Sci. 2024, 14, 3354 2 of 24

to the success of this technique is to use a diverse group of members with different per-
spectives, expertise, and experiences. Typically, this team includes representatives from
various engineering, manufacturing, quality, and maintenance departments in a factory.
However, this approach can lead to conflicting opinions and ultimately make the process
slower or less effective. But experience has shown that, if the opinions are aligned, the
result obtained is much better than individual performance in a system.

Scientific achievements of scientists show that Artificial Intelligence (AI) can work
better than human experts in some situations, because AI systems are designed to analyze
and process large amounts of data quickly and accurately. AI can process data faster than
a human expert and can identify patterns and correlations that may not be immediately
apparent to a human. In addition to the above, there are several reasons to use Deep Neural
Network (DNN) in FMEA instead of relying on traditional expert analysis. DNN is used to
extract hidden information from symmetry data by employing network-trained indicators
to discover underlying patterns and relationships within the dataset. This can be carried
out by analyzing the outputs of specific layers within the network, particularly the hidden
layers where the network learns complex patterns and data representations. Through
its multiple layers, DNN has the ability to capture complex features and hierarchies that
may not be apparent in the original dataset [12,13]. These advantages include objectivity,
stability, speed, scalability, and improved accuracy [14]. AI can also learn and adapt
over time. Machine-learning algorithms allow AI systems to continuously improve their
performance by analyzing past data and adjusting their predictions or recommendations.

A new method has been presented that uses Monte Carlo simulation to generate
random uncertainty in input parameters and fuzzy sets to represent uncertainty in RPN
evaluation. After that, the scholars used a Fuzzy Inference System (FIS) to combine these
uncertainties and obtain the final RPN [15]. The authors evaluated the effectiveness of
their proposed method using a case study of a hydraulic system in a manufacturing plant.
The results showed that the proposed method can accurately assess RPN and prioritize
mitigation efforts [16]. Moreover, a novel approach has been presented to implement an
intelligent FMEA system using a hierarchy of back-propagation neural networks. Ku et al.
sought an automatic and intelligent system for risk assessment [17]. They proposed a
four-layer architecture for neural networks that are trained using data from failure histories
and expert knowledge. The first to fourth layers are, respectively, responsible for data
preprocessing and feature selection, feature extraction, failure mode classification, and risk
priority assessment for all calculations. Okabe and Otsuka proposed the use of Support
Vector Machine (SVM) to validate the stress–strength model and improve the accuracy of
FMEA [18]. In this research, SVM is trained using historical data on stress and strength,
and then used to predict the probability of failure for a given system. The proposed method
was evaluated using a case study of an automobile braking system and the results were
compared with the results obtained using the traditional FMEA algorithm. A large number
of researchers used neural network algorithms to solve industrial problems. They believe
that the number of hidden layers in a neural network is an important hyperparameter that
can greatly affect the performance of the model [19]. While increasing the number of hidden
layers can increase the model’s capacity to learn complex patterns in the data, it can also
lead to overfitting, where the model becomes too complex and captures noise in the data
rather than the underlying patterns [20]. Therefore, it is necessary to determine the optimal
number of hidden layers in order to balance the complexity and performance of the model.
This goal can be achieved through trial and error, using cross-validation, and network
search techniques. Meanwhile, genetic algorithms can be easily scaled to control many
hyperparameters and applied to large-scale optimization problems [21]. This is despite the
fact that, with the increase of hyperparameters, the trial-and-error technique becomes time-
consuming and actually impractical. However, limited studies have investigated whether
the combination of GA and neural networks can be used together in various applications
such as feature selection, feature extraction, and data modeling [22]. In these studies, GAs
are used to search for the optimal number of hidden layers and hyperparameters in the

Appl. Sci. 2024, 14, 3354 3 of 24

architecture of neural networks, which ultimately lead to better performance and more
accurate results. However, it is not possible to propose a single path for all the investigated
subjects, and the development of machine-learning algorithms and the optimization of the
network architecture, including the number of hidden layers or the number of neutrons
per layer, are an ongoing investigation. Therefore, in the current research, the authors also
seek to find a reliable and high-precision algorithm to identify failure modes and analyze
their effects on the system. In other words, the combination of the FMEA algorithm with
DNN optimized by GA, which is an extension of the traditional FMEA model. As a result,
one of the innovations of this research compared to other studies, in addition to optimizing
the parameters of the number of hidden layers and the number of neutrons, is to optimize
the activation function among the hidden layers.

In the following, the theoretical basis of traditional FMEA, DNN, and GA were ex-
plained in the Section 2. Then, the Section 3 is devoted to the description of the proposed
model. The data and implementation of the proposed algorithm are reported in the
Section 4. The Section 5 is dedicated to the report of the obtained results. Finally, after the
Section 6, the important achievements of this research are reported.

2. The Theoretical Basis of the Algorithms Used in This Research
2.1. Failure Mode and Effects Analysis (FMEA)

FMEA is a systematic and proactive approach used in various industries to identify
and reduce possible failures or errors in processes, products, or systems. This powerful
tool increases quality, reliability, and safety by evaluating the impact of different failure
modes and prioritizing them based on their severity, probability, and detectability [23].
FMEA is structured on the principle of predicting and preventing failures before they occur,
thereby reducing the likelihood of defects, accidents, or inefficiencies. The effectiveness
of this method is ensured by focusing on key components within the system, including
failure mode identification, severity determination, probability assessment, detectability
assessment, risk priority number calculation, risk mitigation and action plans, and continu-
ous monitoring and improvement. The standard method for conducting FMEA includes
calculating the risk assessment as follows [24]:

Risk = Occurrence × Severity × Detectability (1)

in which:

1. Occurrence is the possibility of error or failure. It is usually graded on a scale of 1 to 10,
where 1 represents a very low probability and 10 represents a very high probability.

2. Severity is the degree of impact of the error or failure on the end user or system.
This factor is evaluated on a scale of 1 to 10, where 1 and 10 represent minimum and
maximum effects, respectively.

3. Detectability is the ability to detect errors before they reach the end user. This assess-
ment is also carried out on a scale of 1 to 10, where 1 is easy to detect and 10 is difficult
to detect.

The higher the risk value, the more critical the problem status and the failure situation.
FMEA aims to identify high-risk areas and take action to reduce the risk [25]. In addition to
the above formula, additional parameters and various weighting factors may be included
in FMEA analysis depending on the specific method or industry.

2.2. DNN

DNNs consist of multiple hidden layers of interconnected neurons. Training a DNN
involves adjusting the weights and biases of the neurons in each layer to minimize a
loss function, which measures how well the network’s output matches the desired out-
put. This measurement is typically performed using optimization algorithms such as
Stochastic Gradient Descent, AdaGrad [26], Adam [27], RMSProp [28], and Adadelta [29].
For example, in a two-layer neural network with input neurons d

→
x = (x1, . . . , xd) ∈ Rd,

Appl. Sci. 2024, 14, 3354 4 of 24

weights
→
w = (w1, . . . , wd) ∈ Rd, and bias β j, the value of the hidden neuron is calculated

as follows [30]:

h = σ(w1x1 + w2x2 + · · ·+ wdxd + β) = σ
(

wTx + β
)

(2)

where σ is a non-linear function such as Sigmoid function, Rectified linear unit, Hyperbolic
Tangent, Exponential linear unit, and many other non-linear activation functions. The
mapping is performed using a two-layer neuron network with m hidden neurons and
1 output neuron.

σ
(

bT
k x + ck

)
, k = 1, 2, . . . , m (3)

y = ∑m
k=1 akhk + a0 (4)

A key factor for DNNs is determining the appropriate architecture. If the network
has L layers, then it contains nl neurons. In general, the nL output neurons depend on
the nl input neurons through the function F : Rn1 −→ RnL , whose analytic expression is
unknown, and, therefore, the algorithm will be approximate. However, a fully connected
deep neural network with L hidden layers is computed as follows:

h(1)k = σ

((
b(1)k

)T
x + θ

(1)
k

)
, k = 1, 2, . . . , m(1), (5)

h(l+1)
k = σ

((
b(l+1)

k

)T
hl + θ

(l+1)
k

)
, l = 1, 2, . . . , L − 1, k = 1, 2, . . . , m(l+1) (6)

y =
m(L)

∑
k=1

akh(l)k + a0 (7)

The loss function is a crucial component in the training phase of the neural network.
Training in neural networks corresponds to minimizing the loss function during training,
which is a type of optimization where the goal is to find the optimal set of weights and biases.
Therefore, minimizing the loss function means bringing the predicted output closer to the
actual output. During each training iteration, the neural network calculates the gradients
of the loss function with respect to the weights and biases using Back-Propagation [31]. Let
f (x; θ) be a fully connected neural network with L hidden layers:

f (x; θ) = WLσ(WL1σ(. . . W1σ(W0x) . . .)) (8)

Then,
θ = {W0, W1, . . . , WL} (9)

Now, for data sample (x, y) and a loss function l(f (x; θ), y), let us calculate the
∂E(f (x;θ),y)

∂wl
for some l by the chain rule (derivative of the error with respect to each

weight) [32]. In Equation (10), E is the symbol of the error function.

∂E
∂wl

=
∂E
∂ f

· ∂ f
∂hl+1

·∂hl+1
∂wl

(10)

Since ∂E
∂wl

must be calculated for any l, it is necessary to obtain ∂ f
∂hl

. Therefore, we have:

∂ f
∂hl

=
∂ f
∂hL

·
(

l

∏
j=L−1

∂hj+1

∂hj

)
=

∂ f
∂hl+1

·∂hl+1
∂hl

(11)

Appl. Sci. 2024, 14, 3354 5 of 24

Hence, instead of evaluating ∏l
j=L−1

∂hj+1
∂hj

separately for all l, it can be inversely

calculated from l = L to l = 1. Moreover, in each layer, we simply multiply to get ∂ f
∂hl

.

∂hj+1

∂hj
= diag(σ́(Wlhl(x)))Wl (12)

Additionally, hyperparameters play an important role in neural network training
because they define the architecture and training parameters of the model that cannot
be learned automatically from the data during the training process [33,34]. The efficient
selection of hyperparameters can significantly affect the performance and generalizability
of the model.

2.2.1. Number of Hidden Layers

Choosing the appropriate size of the hidden layer in a DNN is very important to
achieve good performance. If the hidden layer is too small, the neural network may not
be able to learn complex patterns in the data, leading to underfitting [35]. On the other
hand, if the hidden layer is too large, the neural network may become too complex and
start to overfit the training data [36]. Therefore, it is necessary to select an optimal number
of hidden layers that balances the complexity and performance of the model [37]. Another
approach is to use more sophisticated methods (e.g., Bayesian optimization or GAs) to
search for optimal hyperparameters of the neural network, including the number of hidden
layers.

2.2.2. Number of Neurons

The number of neurons in each layer is one of the components of the model-tuning
process. This setting requires experimentation and a detailed analysis of the effect of this
parameter on the quality and performance of the model [38]. A larger number of neurons
in a layer allows the model to capture more complex and abstract dependencies in the
data. However, a large number of neurons in a layer can result in overfitting the model
to the training data. Moreover, a larger number of neurons increases the computational
complexity of the model. On the other hand, if the number of neurons is too small, the
model might become underfitted and fail to capture complex patterns in the data. In such
cases, the model will have low generalization capacity and perform poorly on validation
data. As a result, the learning process slows down, and training requires more resources.
Choosing the right number of neurons in a layer requires balancing the complexity of the
model and its ability to generalize to new data. This process usually involves conducting
experiments with different values and analyzing their impact on the quality of the model
validation data [39,40].

2.2.3. Activation Function

Generally, a non-linear operator or activation function is used in neural networks.
The presence of this function makes the model more powerful than the linear model. It
is well-known that applying the Rectified linear unit (ReLU) activation function in deep
networks increases the training speed. ReLU simply rounds up negative values to zero [41].

ReLU(x) =
{

x i f x ≥ 0
0 i f x ≤ 0

= max[0, x) (13)

It is bounded below by 0 and unbounded above. In many cases, Leaky ReLU has
outperformed ReLU. When the function is not active, it allows a small and non-zero
gradient [42].

Leaky ReLU(x) =
{

x i f x ≥ 0
αx i f x ≤ 0

(14)

Appl. Sci. 2024, 14, 3354 6 of 24

The value of alpha (α) in the Leaky ReLU(x) activation function determines the slope
of the function for negative input values. A common alpha value is 0.01, but it can vary
depending on the specific problem and experiment. Typically, α is constrained to be in
the range of 0 < α ≤ 1 because setting α to a value outside this range may lead to overly
aggressive or ineffective behavior of the Leaky ReLU function. Adjusting the alpha value
allows you to control how much negative inputs affect the function output. In this case, the
range of Leaky ReLU is (−∞,+∞).

Recently, the use of Exponential Linear Units (ELUs) has increased the speed and
accuracy of training. ELU accepts negative values, allowing it to make the average unit
activation closer to zero, like batch normalization, but at a lower computational cost [43].

ELU(x) =

{
x i f x ≥ 0
α(ex − 1) i f x < 0

(15)

In the above equation, α is a hyperparameter to be tuned with the constraint α ≥ 0, that
controls the output of the function for negative inputs. Typically, the value of α is set to −1,
which ensures that the function is smooth and continuous everywhere. However, like other
hyperparameters, α can be adjusted based on the specific problem and experimentation.

The performance of the evolving network is also investigated in the presence of a
Scaled Exponential Linear Unit (SELU) activation function. By adding a little involution to
ELU, SELU is created [44].

SELU(x) = λ

{
x i f x ≥ 0
α(ex − 1) i f x < 0

(16)

in which, α is a negative scaling parameter, and λ represents the involution function.

2.2.4. Regularization

The main issue in machine learning is to generate an algorithm that works well on
training data and new inputs. Several regularization methods have been proposed for deep
learning. This paper uses dropout as a computationally inexpensive but powerful method
for regularization. It avoids overfitting by randomly removing some fully connected layer
nodes during the training phase. In addition, dropout is considered an ensemble method
because it provides different networks during training. L1 regularization, also known as
Lasso regularization, helps feature selection and model simplification by adding a penalty
based on the sum of the absolute values of the model coefficients. L2 regularization, also
known as Ridge regularization, helps stabilize the model and control its complexity by
adding a penalty based on the sum of squared model coefficients [45–47].

2.2.5. Optimization Algorithm

Neural network optimization algorithms are techniques used to effectively train neu-
ral networks by adjusting the weights and biases of the network connections in order
to reduce error or loss function. Choosing the best optimization algorithm for a neural
network depends on various factors, including the nature of the problem, characteristics
of the dataset, network architecture, and available computational resources. There is no
one-size-fits-all answer that can support all issues, as different algorithms perform differ-
ently in certain situations. In this paper, optimization algorithms of Stochastic Gradient
Descent (SGD) [48,49], Adaptive Moment Estimation (Adam) [50], and Root Mean Square
Propagation (RMSProp) [51] were used to search for the best results.

2.3. Genetic Algorithm (GA)

GAs are optimization algorithms inspired by the process of natural selection and
genetic theory. GAs are efficient, parallel, global, random search algorithms for combina-
torial optimization problems [52]. A genetic algorithm deals with a specific problem of

Appl. Sci. 2024, 14, 3354 7 of 24

exploring and exploiting the search space and manages the issue by processing a set of
encoded variable strings. The algorithm starts with the initialization of a population, then
fitness evaluation, parent selection, reproduction via genetic operators, offspring fitness
evaluation, survivor selection, and termination. These steps are repeated until a satisfactory
solution is found. In fact, this algorithm is used to find the best solution among a large set
of possible solutions for optimization problems [53]. The general schematic of a Genetic
Algorithm is shown in Figure 1.

Appl. Sci. 2024, 14, 3354 7 of 25

(SGD) [48,49], Adaptive Moment Estimation (Adam) [50], and Root Mean Square Propa-
gation (RMSProp) [51] were used to search for the best results.

2.3. Genetic Algorithm (GA)
GAs are optimization algorithms inspired by the process of natural selection and ge-

netic theory. GAs are efficient, parallel, global, random search algorithms for combinato-
rial optimization problems [52]. A genetic algorithm deals with a specific problem of ex-
ploring and exploiting the search space and manages the issue by processing a set of en-
coded variable strings. The algorithm starts with the initialization of a population, then
fitness evaluation, parent selection, reproduction via genetic operators, offspring fitness
evaluation, survivor selection, and termination. These steps are repeated until a satisfac-
tory solution is found. In fact, this algorithm is used to find the best solution among a
large set of possible solutions for optimization problems [53]. The general schematic of a
Genetic Algorithm is shown in Figure 1.

Figure 1. General flowchart of genetic algorithm.

In the algorithm used in this research (all risks are not processed at the same time
and this algorithm is used for each risk separately and the results are recorded in the ar-
chive), the initial population uses a randomly generated initialization strategy that is cre-
ated by randomly selecting neurons for the neural network, learning rates, activation
functions, and regularization techniques. It consists of N coded individuals:

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝐼) = 𝐼⋮𝐼 (17)

In the optimization of neural networks using GA, the evaluation step consists of eval-
uating the fitness of each chromosome in the population. This step is very important in
order to find the best solutions and guide the search for better solutions. When optimizing
neural networks, the evaluation step usually involves training and testing the neural net-
work using the chromosome-specified architecture. In the current case, the fitness of a
population in Ga is based on the prediction error. The fitness value of each chromosome
(𝑓) can be calculated as follows:

Moreover, the selection operator (𝑝) of this individual is: 𝑝 = 𝑓∑ 𝑓 (18)

where 𝑓 is the fitness value of the 𝑗𝑡ℎ chromosome, 𝑛 is the number of ANN input data, 𝑚 is the GA population size, and 𝑙 is the error of the 𝑖𝑡ℎ ANN input corresponding to
the 𝑗𝑡ℎ chromosome [54].

Figure 1. General flowchart of genetic algorithm.

In the algorithm used in this research (all risks are not processed at the same time and
this algorithm is used for each risk separately and the results are recorded in the archive),
the initial population uses a randomly generated initialization strategy that is created by
randomly selecting neurons for the neural network, learning rates, activation functions,
and regularization techniques. It consists of N coded individuals:

Population(I) =

 I1
...

IN

 (17)

In the optimization of neural networks using GA, the evaluation step consists of
evaluating the fitness of each chromosome in the population. This step is very important in
order to find the best solutions and guide the search for better solutions. When optimizing
neural networks, the evaluation step usually involves training and testing the neural
network using the chromosome-specified architecture. In the current case, the fitness of a
population in Ga is based on the prediction error. The fitness value of each chromosome
(f j) can be calculated as follows:

Moreover, the selection operator (pj) of this individual is:

pj =
f j

∑m
j=1 f j

(18)

where f j is the fitness value of the jth chromosome, n is the number of ANN input data, m
is the GA population size, and l is the error of the ith ANN input corresponding to the jth
chromosome [54].

Crossover recombines information from the two best parent solutions into what we
hope are even better offspring solutions. The problem is to design a crossover operator that
combines the features of both parent individuals.

For the real-code GA, the crossover operator includes simple, arithmetic, and heuristic
crossovers. In the present study, the arithmetic crossover was used. Therefore, sup-

pose
→
x

1
= (x1

1, . . . , x1
i , . . . , x1

n) and
→
x

2
= (x2

1, . . . , x2
i , . . . , x2

n) are two parent chromo-

Appl. Sci. 2024, 14, 3354 8 of 24

somes selected for the application of the crossover operator and two offspring, namely,
→
y

1
= (y1

1, . . . , y1
i , . . . , y1

n) and
→
y

2
= (y2

1, . . . , y2
i , . . . , y2

n); they are built as follows:

→
y

1
i = rx1

i + (1 − r)x2
i

→
y

2
i = rx2

i + (1 − r)x2
i

(19)

Here, r is a random number from an interval that remains constant for uniform arith-
metic crossover or varies based on the number of generations for non-uniform arithmetic
crossover.

The mutation operation randomly changes the value of each chromosome element
according to the mutation probability. For the real-code GA, the mutation operators include
uniform, non-uniform, multi-non-uniform, boundary, etc. In the present research, the
non-uniform mutation was used.

Assume
→
X = (x1, . . . , xi, . . . , xn) as a chromosome and xi ∈ [ai, bi] as a gene to be

mutated. Then, the gene x́i is as follows:

x́i =

xi + (bi − xi) f (G), i f r1 < α

xi − (bi − xi) f (G), i f r1 ≥ α

xi, othewise

(20)

in which:

f (G) =

(
r1

(
1 − G

Gmax

))b
(21)

Here, ai and bi are the lower and upper bounds of each variable, respectively. G and
Gmax are the number of current generations and the maximum number of generations,
respectively. r1 and r2 are two random numbers between (0 and 1). Moreover, b is a
user-selected parameter that determines the degree of dependency on the number of
iterations [55–57].

3. Description of the Proposed New Model

In this article, the authors attempt to design an optimal neural network architecture
that exhibits significant performance on various FMEA risk datasets. While neural net-
works can learn transferable features, such as changes in data distribution, specific features
of the original domain, noise levels, and data size, dimensionality can impair the effec-
tiveness of a pre-trained neural architecture [58]. However, different datasets using the
same neural architecture may not always yield the desired results. In other words, it is
impossible to present a unique architecture for all the risks studied in this research with
the greatest accuracy. Hence, to achieve optimal performance, the customization of the
neural architecture is essential [54]. To overcome this challenge, we propose the concept of
dataset-specific architecture design, which includes adjusting the network’s depth, width,
activation functions, and regularization techniques to match the characteristics of the
dataset. Therefore, the innovation of the current research, which distinguishes it from other
studies, is the design of a neural network architecture by optimizing all hyperparameters,
while previous studies focused on one or two effective parameters. Designing the proposed
optimal neural network architecture is very challenging because it involves choosing the
appropriate hyperparameters and optimizing the model performance. The traditional
customized GA design provides a systematic and automated approach for exploring the
vast search space of possible network architectures and hyperparameters. Through their
evolutionary nature, GAs can effectively converge to optimal solutions [59,60]. In summary,
the schematic of the proposed new model is demonstrated in Figure 2.

Appl. Sci. 2024, 14, 3354 9 of 24

Appl. Sci. 2024, 14, 3354 9 of 25

Through their evolutionary nature, GAs can effectively converge to optimal solutions
[59,60]. In summary, the schematic of the proposed new model is demonstrated in Figure
2.

Figure 2. Schematic of the proposed new model.

As shown in Figure 2, there are input data to the system that include various types
of risk. Moreover, each risk has a subset of a number of questions. On the other hand, the
number of strings of each entry is different. Therefore, this algorithm was used for each
risk separately and the results are stored in the PyTorch model. It should be remembered
that the PyTorch model is not suitable for running on a mobile application and it is neces-
sary to make changes to the output, which will be discussed in detail in the next step.
Moreover, details of this structure are complex, and it is not possible to see all of it in the
schematic figure above, especially the gray block that acts like a black box. Therefore, more
details of this proposed methodology are presented below.

GA operates by exploring and exploiting based on the encoding method, which con-
sists of three main steps: selection, crossover, and mutation. On the other hand, the neural
network contains various hyperparameters, including network topology selection, which
affects the prediction accuracy. The parameters of the applied GAs are given in Table 1.

Table 1. Genetic algorithm settings and the parameters used to evolve the best neural network ar-
chitecture and their associated values.

Parameter Value
Number of hidden layers Random number [1 and 4]
Number of neurons Random number [8, 16, 32, 64, 128, 256, 512, and 1024]
Optimization algorithm [SGD, Adam, RMSProp]
Activation functions [Sigmoid, Tanh, ReLU, Leaky ReLU, ELU, SoftMax]
Regularization [L1, L2, Dropout Regularization, Early Stopping]
Population 100

Figure 2. Schematic of the proposed new model.

As shown in Figure 2, there are input data to the system that include various types of
risk. Moreover, each risk has a subset of a number of questions. On the other hand, the
number of strings of each entry is different. Therefore, this algorithm was used for each risk
separately and the results are stored in the PyTorch model. It should be remembered that
the PyTorch model is not suitable for running on a mobile application and it is necessary to
make changes to the output, which will be discussed in detail in the next step. Moreover,
details of this structure are complex, and it is not possible to see all of it in the schematic
figure above, especially the gray block that acts like a black box. Therefore, more details of
this proposed methodology are presented below.

GA operates by exploring and exploiting based on the encoding method, which
consists of three main steps: selection, crossover, and mutation. On the other hand, the
neural network contains various hyperparameters, including network topology selection,
which affects the prediction accuracy. The parameters of the applied GAs are given in
Table 1.

Table 1. Genetic algorithm settings and the parameters used to evolve the best neural network
architecture and their associated values.

Parameter Value

Number of hidden layers Random number [1 and 4]
Number of neurons Random number [8, 16, 32, 64, 128, 256, 512, and 1024]
Optimization algorithm [SGD, Adam, RMSProp]
Activation functions [Sigmoid, Tanh, ReLU, Leaky ReLU, ELU, SoftMax]
Regularization [L1, L2, Dropout Regularization, Early Stopping]
Population 100
Crossover factor 0.7
Mutation factors 0.2

In the last step, the GA finds the best architecture and hyperparameters for each FMEA
risk separately.

Appl. Sci. 2024, 14, 3354 10 of 24

4. Experimental Data and Implementation of the Proposed Algorithm

As stated before, the aim of this research is to create a new practical methodology for
forecasting with a trained model using the model server method. Here, the server can be
a cloud-based server, an on-premises server, or even a specialized machine designed to
provide machine-learning models [61,62]. To interact with the deployed model, it is neces-
sary to create an API that enables communication between the client of an application and
the server hosting the model. Since the client’s request was to design a mobile application,
using the server method had several problems. The advantages and disadvantages of using
this method are summarized in Table 2.

Table 2. Comparison of the server and the embedded method used in the present research.

Items Server Method Embedded Method

Latency and real-time processing − +
Privacy and security − +

Offline operation − +
Reduced server cost and overhead − +

Bandwidth efficiency − +
Edge computing − +

Deployment and maintenance + −
Infrastructure and scalability + −

Device variability + −
Model security + −

Prediction speed − +

Embedded models on devices offer several advantages over the server-based method [63].
By running the model locally on the device, latency is minimized and enables real-time
processing for the application. When the model is on the server, the data transfer is carried
out through the Internet platform and the TCP protocol, and it takes time, but, when
it is carried out on the mobile phone, the models are optimized and is on the dataset;
therefore, it uses the mobile processor and performs the next calculations instantly. Since
sensitive information remains on the device, data privacy and security are enhanced.
Offline operation becomes feasible and ensures performance in disconnected environments.
Additionally, reduced server costs, lower bandwidth usage, and alignment with edge
computing principles make embedded models an efficient choice, provided challenges
such as limited device resources and model updates are properly addressed. The next
step is to choose a platform for working with neural networks. The options are usually
considered between IOS and Android operating systems. We selected the iPhone (with
IOS) for several reasons, such as fewer models available on the iPhone platform. However,
they are more standard and have more processing power. On the iPhone platform, there
are three types of chips, including neural engine, which is especially suitable for neural
network tasks [64,65]. After selecting the platform, we need to decide on a framework
for implementing neural networks. To this end, we chose Core ML to work with the
Neural Engine on Apple devices, as it effectively uses the computational capabilities of
the Neural Engine and integrates tightly with Apple ecosystem. As a result, it facilitates
the development of machine-learning applications. Core ML also supports on-device
inference, which is essential for real-time applications, and provides model optimization
capabilities that enable the efficient use of hardware acceleration [66]. Notably, the choice
between Core ML and other technologies, such as TensorFlow Lite [67], OpenVINO [68],
and Nvidia Jetson [69] depends on the application and specific task requirements. Each of
these frameworks has its own features and advantages, and the best choice is determined
based on the specific needs of the project. To better understand this issue, Figure 3 presents
the conversion and optimization diagram of the PyTorch model to the Corel ML for the
embedded device.

Appl. Sci. 2024, 14, 3354 11 of 24

Appl. Sci. 2024, 14, 3354 11 of 25

enable the efficient use of hardware acceleration [66]. Notably, the choice between Core
ML and other technologies, such as TensorFlow Lite [67], OpenVINO [68], and Nvidia
Jetson [69] depends on the application and specific task requirements. Each of these frame-
works has its own features and advantages, and the best choice is determined based on
the specific needs of the project. To better understand this issue, Figure 3 presents the
conversion and optimization diagram of the PyTorch model to the Corel ML for the em-
bedded device.

Figure 3. Conversion and optimization diagram of the PyTorch model to the Corel ML for embed-
ded device.

PyTorch is a versatile open-source machine-learning library developed by Face-
book’s AI Research lab. Its dynamic computational graph feature allows on-the-fly graph
creation during runtime, providing flexibility and ease of debugging. PyTorch provides
powerful tensor operations similar to NumPy and supports automatic differentiation
through its auto package, simplifying gradient computation for neural networks. It pro-
vides the building blocks of neural networks, including modules for defining layers, loss
functions, and optimization algorithms. PyTorch seamlessly integrates with CUDA for
GPU acceleration, enabling faster training.

The next step is to convert the model from PyTorch [70] to Core ML. Here, there are
challenges because PyTorch is based on dynamic graphs, while Core ML works with static
graphs (which are essential for model optimization). Therefore, we have to choose an in-
termediate format. As such a format, we used Open Neural Network Exchange (ONNX)
[71]. Exporting from PyTorch is straightforward, as a result of the ‘torch-onnx’ module.
Then, we improve the models using custom optimizations with the help of the ‘onnx-sim-
plifier’ module. Subsequently, we integrated our trained models into Swift to develop a
mobile application. As shown in the lower part of Figure 3, the user selects a risk category
in the application interface and responds to the corresponding question associated with
that specific risk. Afterward, the user will promptly receive the prediction result.

The project under consideration is a case study started by a well-known company in
Russia (i.e., Blagoveshchensk, Amur region). This project was completed in 14 months and
was one of the largest industrial structures in the world. The two building yards constitute
approximately 32,000 m2 of the total construction space. Since concrete is the primary
building material, each yard has three structures, each with six floors.

This team consists of 12 experts: one customer representative, one project manager,
one worker officer, four occupational health and safety engineers, three quality engineers,
one architect, and one design engineer. Members continuously monitor the work

Figure 3. Conversion and optimization diagram of the PyTorch model to the Corel ML for embed-
ded device.

PyTorch is a versatile open-source machine-learning library developed by Facebook’s
AI Research lab. Its dynamic computational graph feature allows on-the-fly graph creation
during runtime, providing flexibility and ease of debugging. PyTorch provides powerful
tensor operations similar to NumPy and supports automatic differentiation through its auto
package, simplifying gradient computation for neural networks. It provides the building
blocks of neural networks, including modules for defining layers, loss functions, and
optimization algorithms. PyTorch seamlessly integrates with CUDA for GPU acceleration,
enabling faster training.

The next step is to convert the model from PyTorch [70] to Core ML. Here, there
are challenges because PyTorch is based on dynamic graphs, while Core ML works with
static graphs (which are essential for model optimization). Therefore, we have to choose
an intermediate format. As such a format, we used Open Neural Network Exchange
(ONNX) [71]. Exporting from PyTorch is straightforward, as a result of the ‘torch-onnx’
module. Then, we improve the models using custom optimizations with the help of the
‘onnx-simplifier’ module. Subsequently, we integrated our trained models into Swift to
develop a mobile application. As shown in the lower part of Figure 3, the user selects a risk
category in the application interface and responds to the corresponding question associated
with that specific risk. Afterward, the user will promptly receive the prediction result.

The project under consideration is a case study started by a well-known company in
Russia (i.e., Blagoveshchensk, Amur region). This project was completed in 14 months and
was one of the largest industrial structures in the world. The two building yards constitute
approximately 32,000 m2 of the total construction space. Since concrete is the primary
building material, each yard has three structures, each with six floors.

This team consists of 12 experts: one customer representative, one project manager, one
worker officer, four occupational health and safety engineers, three quality engineers, one
architect, and one design engineer. Members continuously monitor the work performed on
the building site. Consequently, they may provide significant information that supports
this case study. The team collaborated to collect the data needed to perform the re-reporting.
We collected data for 20 FEMA risks. Moreover, we started the process by compiling a list
of questions and criteria required for each risk (see Appendix A). Each question was scored
in the range of 0–10. Subsequently, the experts recorded all the data over the course of a
year. Afterward, we generated a dedicated neural network training dataset. In a neural
network, the data are randomly divided into three categories: training data (70% of the
data), testing data (20% of the data), and validation data (10% of the data). After obtaining

Appl. Sci. 2024, 14, 3354 12 of 24

the ANN model, its efficiency was assessed by calculating the Root Mean Square Error
(RMSE) [72]:

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(22)

The RMSE is a criterion used to optimize variance and assigns weight to errors with
larger absolute values. This criterion is commonly used as a standard statistical metric to
evaluate model performance. In addition, the RMSE is less sensitive to outliers than the
Mean Square Error (MSE), as the former takes the square root of the MSE, and reduces
the impact of large errors on the final metric [73]. When dealing with a large number of
samples, the use of RMSE is considered more reliable for the error distribution.

5. Results

A large number of simulations were performed considering different architectures for
the neural network, as well as the number of hidden layers in it. Such a comprehensive
analysis was very time-consuming and computationally expensive (see Appendix B).
Moreover, the specifications of the system used to run various codes are as follows:

✓ Processor 12th Gen Intel(R) Core(TM) i9-12900H 2.90 GHz
✓ Installed RAM 32.0 GB (31.7 GB usable)
✓ System type 64-bit operating system, x64-based processor
✓ GPU NVIDIA GeForce RTX 3080 Ti Laptop GPU

Table 3 presents the RMSE value for each type of risk in different neural network
architectures with optimal hyperparameters.

Table 3. The results obtained from different simulations for various risk categories.

Type of Risk Number of Hidden
Layers Neural Network Architecture RMSE Value

Latency and real-time
processing

1 [512, Sigmoid] 0.2451
2 [32, ‘ReLU’, 64, ‘Sigmoid’] 0.3335
3 [1024, ‘Sigmoid’, 32, ‘Tanh’, 128, ‘ReLU’] 0.2205

4 * [1024, ‘Tanh’, 1024, ‘Sigmoid’, 512, ‘ReLU’, 512, ‘Sigmoid’] 0.1817

Compressed gas explosion

1 [1024, ‘Tanh’] 0.4428
2 [1024, ‘Sigmoid’, 64, ‘ReLU’] 0.3031

3 * [512, ‘Sigmoid’, 256, ‘Tanh’, 64, ‘ReLU’] 0.2749
4 [1024, ‘Sigmoid’, 128, ‘Tanh’, 64, ‘ReLU’, 128, ‘Tanh’] 0.3387

Compressor accidents

1 [1024, ‘Tanh’] 0.3355
2 [256, ‘ReLU’, 64, ‘Sigmoid’] 0.2450

3 * [1024, ‘Sigmoid’, 32, ‘Tanh’, 128, ‘Tanh’] 0.1162
4 [512, ‘Sigmoid’, 512, ‘Tanh’, 64, ‘Tanh’, 256, ‘ReLU’] 0.2198

Construction project delivery
failed on time

1 [128, ‘Sigmoid’] 0.2989
2 [1024, ‘Sigmoid’, 64, ‘Tanh’] 0.3459

3 * [512, ‘ReLU’, 64, ‘Sigmoid’, 512, ‘Sigmoid’] 0.1384
4 [512, ‘Sigmoid’, 128, ‘Tanh’, 128, ‘Sigmoid’, 64, ‘Tanh’] 0.2247

Crane accidents

1 * [128, ‘Tanh’] 0.6419
2 [1024, ‘Sigmoid’, 32, ‘Tanh’] 0.7586
3 [128, ‘Sigmoid’, 8, ‘Sigmoid’, 256, ‘ReLU’] 0.8709
4 [32, ‘ReLU’, 16, ‘ReLU’, 8, ‘ReLU’, 16, ‘ReLU’] 0.7090

Crane falls on construction
site

1 [1024, ‘Tanh’] 0.1913
2 * [64, ‘Sigmoid’, 256, ‘Sigmoid’] 0.1773
3 [32, ‘ReLU’, 512, ‘ReLU’, 128, ‘Tanh’] 0.2564
4 [128, ‘Sigmoid’, 512, ‘ReLU’, 32, ‘Tanh’, 64, ‘ReLU’] 0.1972

Cutting and nail-gun
accidents

1 [256, ‘Tanh’] 0.3194
2 [1024, ‘Sigmoid’, 128, ‘Sigmoid’] 0.4482
3 [1024, ‘ReLU’, 512, ‘ReLU’, 64, ‘ReLU’] 0.4157

4 * [128, ‘ReLU’, 256, ‘ReLU’, 32, ‘ReLU’, 256, ‘Tanh’] 0.2152

Appl. Sci. 2024, 14, 3354 13 of 24

Table 3. Cont.

Type of Risk Number of Hidden
Layers Neural Network Architecture RMSE Value

Dust, noise, and vibration

1 [512, ‘Sigmoid’] 0.3900
2 * [256, ‘Sigmoid’, 32, ‘Tanh’] 0.2708
3 [1024, ‘Sigmoid’, 16, ‘ReLU’, 32, ‘Tanh’] 0.4912
4 [128, ‘Sigmoid’, 16, ‘Sigmoid’, 256, ‘ReLU’, 256, ‘Sigmoid’] 0.4350

Electric shock

1 [128, ‘Sigmoid’] 0.4472
2 [128, ‘Tanh’, 512, ‘Sigmoid’] 0.4377

3 * [512, ‘Sigmoid’, 64, ‘Tanh’, 256, ‘Tanh’] 0.1581
4 [1024, ‘Tanh’, 8, ‘Tanh’, 512, ‘Tanh’, 1024, ‘Sigmoid’] 0.2443

Electrocutions

1 [256, ‘Sigmoid’] 0.2742
2 [512, ‘Sigmoid’, 256, ‘Sigmoid’] 0.2550
3 [1024, ‘Sigmoid’, 16, ‘Sigmoid’, 512, ‘ReLU’] 0.2926

4 * [1024, ‘Sigmoid’, 512, ‘Sigmoid’, 64, ‘Sigmoid’, 1024, ‘Sigmoid’] 0.1817

Hit by falling objects

1 * [64, ‘Tanh’] 0.1584
2 [32, ‘ReLU’, 64, ‘Sigmoid’] 0.2625
3 [512, ‘Sigmoid’, 8, ‘Sigmoid’, 256, ‘ReLU’] 0.4482
4 [1024, “Tanh”, 512, “Tanh”, 64, ‘Sigmoid’, 1024, ‘Sigmoid’] 0.3746

Holes in flooring of the
construction site

1 [1024, ‘Sigmoid’] 0.4740
2 [1024, ‘Sigmoid’, 128, ‘Sigmoid’] 0.2545

3 * [512, ‘Sigmoid’, 512, ‘ReLU’, 64, ‘ReLU’] 0.1818
4 [32, ‘ReLU’, 1024, ‘Tanh’, 512, ‘Sigmoid’, 256, ‘ReLU’] 0.4465

Run over by operating
equipment

1 [64, ‘Tanh’] 0.3614
2 [1024, ‘Sigmoid’, 128, ‘Tanh’] 0.3457

3 * [256, ‘Tanh’, 512, ‘Tanh’, 16, ‘Tanh’] 0.2805
4 [256, ‘Sigmoid’, 256, ‘ReLU’, 32, ‘Tanh’, 32, ‘ReLU’] 0.3120

Scaffolding accidents

1 [256, ‘ReLU’] 0.3297
2 [512, ‘Sigmoid’, 32, ‘ReLU’] 0.4009
3 [64, ‘ReLU’, 128, ‘Sigmoid’, 128, ‘Sigmoid’] 0.6002

4 * [128, ‘Sigmoid’, 16, ‘ReLU’, 64, ‘Sigmoid’, 1024, ‘Sigmoid’] 0.2717

Scaffolding falls

1 [128, ‘Tanh’] 0.2952
2 * [64, ‘Sigmoid’, 8, ‘ReLU’] 0.2173
3 [128, ‘Sigmoid’, 128, ‘Sigmoid’, 32, ‘ReLU’] 0.2392
4 [1024, ‘Sigmoid’, 512, ‘Tanh’, 512, ‘Sigmoid’, 64, ‘ReLU’] 0.3132

Solid waste and water waste

1 [1024, ‘Tanh’] 0.2564
2 [1024, ‘ReLU’, 16, ‘Tanh’] 0.2447

3 * [256, ‘ReLU’, 1024, ‘ReLU’, 128, ‘Sigmoid’] 0.1189
4 [128, ‘Tanh’, 8, ‘Sigmoid’, 512, ‘Sigmoid’, 128, ‘ReLU’] 0.2037

Structure failure

1 * [1024, ‘Tanh’] 0.1864
2 [512, ‘Sigmoid’, 512, ‘Sigmoid’] 0.1895
3 [512, ‘Tanh’, 8, ‘ReLU’, 256, ‘Sigmoid’] 0.2428
4 [128, ‘ReLU’, 1024, ‘ReLU’, 128, ‘Tanh’, 16, ‘Tanh’] 0.3943

Toxic and suffocation

1 [128, ‘ReLU’] 0.3619
2 [128, ‘Sigmoid’, 512, ‘ReLU’] 0.3165

3 * [64, ‘Sigmoid’, 64, ‘Sigmoid’, 64, ‘Tanh’] 0.2742
4 [1024, ‘ReLU’, 1024, ‘ReLU’, 512, ‘ReLU’, 1024, ‘Sigmoid’] 0.3425

Welding accidents

1 [256, ‘ReLU’] 0.4674
2 [512, ‘Tanh’, 1024, ‘Tanh’] 0.2881

3 * [512, ‘ReLU‘, 32, ‘Tanh’, 1024, ‘Tanh’] 0.2264
4 [512, ‘ReLU‘, 32, ‘Tanh’, 32, ‘Sigmoid’, 256, ‘Sigmoid’] 0.8547

Falling of the workers from
high floors

1 [1024, ‘Tanh’] 0.2505
2 [512, ‘Tanh’, 16, ‘Tanh’] 0.2402
3 [1024, ‘ReLU’, 32, ‘Sigmoid’, 512, ‘Sigmoid’] 0.2345

4 * [128, ‘Sigmoid’, 64, ‘Tanh’, 8, ‘Tanh’, 512, ‘ReLU’] 0.1849

* The optimal neural network architecture and hyperparameters for each risk selected using the genetic algorithm.

As is clear from the results, even for the one hidden layer, it is not possible to find the
optimal neural network architecture that covers all the risks. For example, if the number
of hidden layers is considered to be 1 and the number of neurons is also considered to
be 512, then, for different risks, the neural network architecture will be different again
because the activation functions will be different. Therefore, we will realize the shining

Appl. Sci. 2024, 14, 3354 14 of 24

point of this research, that it is necessary to optimize all hyperparameters in a neural
network architecture, including the number of hidden layers, the number of neurons in
each layer, and the activation functions. Hence, finding a neural network with constant
architecture for all risks is impossible. Moreover, it can be seen that the accuracy of the
neural network cannot be directly attributed to each of the hyperparameters separately. For
example, from Table 3, the optimum number of neutrons for one risk is 64, and, for another
risk, the number of hidden layers is 3. It means that the accuracy does not always increase
with the increase in the number of neurons or in the number of hidden layers. Therefore,
it is emphasized that the accuracy of the new methodology presented in this article is
significantly higher than other non-combined methods. To prove this statement, the first
risk was analyzed according to the usual methods, and, using the comparison technique,
the percentage of improvement in the prediction accuracy of the new methodology was
investigated, the results of which are given in Appendix C.

Apart from the above explanations, the relationship between the iterations of the
genetic algorithm and the RSME value, as well as the optimal points for each risk in
different layers, is displayed in Figure 4. Next, Table 4 presents the standard deviation
values of the dataset characteristics and objectives for each specific risk. This information
provides insights into the variability and spread of the data points within each risk category,
helping to better understand the distribution of data and potential risks associated with it.

Appl. Sci. 2024, 14, 3354 15 of 25

Figure 4. The relationship between the iterations of the genetic algorithm and the RMSE value.

Table 4. Standard deviation values for each characteristic of risks.

Number of Hidden Layers Objectives
1 2 3 4 O D S

Latency and real-time processing
5.233 ± 2.801 5.982 ± 3.179 5.826 ± 4.310 4.356 ± 2.987 4.077 ± 1.191 3.977 ± 1.472 4.184 ± 1.233

Compressed gas explosion
4.364 ± 2.403 4.459 ± 2.711 4.804 ± 2.665 5.069 ± 3.118 3.800 ± 1.485 3.619 ± 1.505 3.690 ± 1.463

Compressor accidents
4.701 ± 3.789 5.418 ± 3.379 5.587 ± 3.705 5.315 ± 3.341 3.860 ± 1.690 3.740 ± 1.736 3.740 ± 1.721

Construction project delivery failed on time

Figure 4. The relationship between the iterations of the genetic algorithm and the RMSE value.

Appl. Sci. 2024, 14, 3354 15 of 24

Table 4. Standard deviation values for each characteristic of risks.

Number of Hidden Layers Objectives

1 2 3 4 O D S

Latency and real-time processing
5.233 ± 2.801 5.982 ± 3.179 5.826 ± 4.310 4.356 ± 2.987 4.077 ± 1.191 3.977 ± 1.472 4.184 ± 1.233

Compressed gas explosion
4.364 ± 2.403 4.459 ± 2.711 4.804 ± 2.665 5.069 ± 3.118 3.800 ± 1.485 3.619 ± 1.505 3.690 ± 1.463

Compressor accidents
4.701 ± 3.789 5.418 ± 3.379 5.587 ± 3.705 5.315 ± 3.341 3.860 ± 1.690 3.740 ± 1.736 3.740 ± 1.721

Construction project delivery failed on time
3.799 ± 2.809 5.027 ± 3.619 3.509 ± 3.081 2.728 ± 2.095 4.362 ± 1.116 3.211 ± 1.419 4.752 ± 1.214

Crane accidents
5.958 ± 4.079 5.186 ± 3.410 5.214 ± 3.634 4.733 ± 3.465 4.380 ± 2.672 3.860 ± 1.616 3.670 ± 1.743

Crane falls on construction site
4.826 ± 3.293 4.809 ± 2.875 5.687 ± 3.209 5.041 ± 2.975 4.050 ± 1.429 3.840 ± 1.490 4.120 ± 1.431

Cutting and nail-gun accidents
4.324 ± 2.753 4.608 ± 2.859 4.516 ± 3.303 4.574 ± 3.337 3.640 ± 1.396 3.492 ± 1.505 3.390 ± 1.465

Dust, noise, and vibration
4.313 ± 3.152 4.840 ± 3.200 5.277 ± 3.821 4.451 ± 3.421 3.680 ± 1.347 3.477 ± 1.458 3.280 ± 1.363

Electric shock
5.053 ± 3.304 5.738 ± 4.148 4.833 ± 2.850 4.776 ± 3.125 3.800 ± 1.370 3.681 ± 1.435 3.700 ± 1.389

Electrocutions
4.761 ± 3.835 5.441 ± 3.537 5.514 ± 3.892 5.083 ± 3.346 3.860 ± 1.690 3.740 ± 1.736 3.740 ± 1.721

Hit by falling objects
5.638 ± 3.850 4.970 ± 3.028 5.381 ± 3.551 4.248 ± 3.132 4.220 ± 2.705 3.751 ± 1.585 3.660 ± 1.655

Holes in flooring of the construction site
4.347 ± 3.383 4.791 ± 3.434 5.024 ± 3.879 4.665 ± 3.497 3.680 ± 1.347 3.481 ± 1.461 3.280 ± 1.363

Run over by operating equipment
4.979 ± 3.251 5.469 ± 3.802 5.003 ± 3.063 4.796 ± 3.064 3.800 ± 1.370 3.681 ± 1.435 3.700 ± 1.389

Scaffolding accidents
5.546 + 3.733 4.828 ± 2.844 5.447 ± 3.465 4.293 ± 3.118 4.220 ± 2.705 3.761 ± 1.582 3.660 ± 1.655

Scaffolding falls
4.646 + 2.689 4.931 ± 3.056 5.165 ± 3.267 4.715 ± 3.249 3.960 ± 1.456 3.788 ± 1.501 4.020 ± 1.389

Solid waste and water waste
5.152 + 3.971 6.137 ± 3.909 6.115 ± 3.663 5.276 ± 3.794 4.020 ± 1.660 3.800 ± 1.726 4.020 ± 1.693

Structure failure
4.751 + 2.808 4.807 ± 3.614 5.802 ± 4.201 5.584 ± 3.515 4.231 ± 1.345 3.772 ± 1.534 4.180 ± 1.110

Toxic and suffocation
4.379 + 3.208 5.037 ± 3.398 5.060 ± 3.736 4.520 ± 3.351 3.680 ± 1.347 3.477 ± 1.459 3.280 ± 1.363

Welding accidents
4.089 + 2.814 4.752 ± 3.092 4.140 ± 3.379 4.506 ± 3.677 3.640 ± 1.396 3.480 ± 1.515 3.390 ± 1.465

Falling of the workers from high floors
6.524 + 3.950 5.087 ± 3.516 5.575 ± 4.229 6.107 ± 4.477 4.402 ± 1.149 4.490 ± 1.099 4.070 ± 1.543

In Figure 4, each part contains several color charts. The legend is located at the top,
which separates the number of hidden layers. For example, the blue lines represent analyses
for different risks with a neural network including one hidden layer. Moreover, in each
risk, various analyses were performed for four different states of hidden layers (i.e., one,
two, three, and four layers), and, for every state, there is an optimal point that detects the
interaction between the hyperparameters in such a way that the neural network model

Appl. Sci. 2024, 14, 3354 16 of 24

has the highest prediction accuracy. These points are also shown in the Figure 4. As is
clear from this figure, it confirms the previous statement (in relation to Table 3) because the
co-ordinates of the optimal points are not the same in all parts and diagrams.

From Table 4, the value of the standard deviation is high for the architecture with
different hidden layers. It should be noted that, if a unique architecture was used for
all risks, then this value would be too small for one risk and too high for another risk.
Therefore, these values are obtained based on the presented methodology. Another reason
for this is the nature of the risks, which are different from each other, and, since this
research was based on industrial data, it was not possible to use better data and the fact
was reported. Another reason is the scattering of data in each of the evaluation questions in
a risk. This issue can be seen in different industries. For example, in the issue of the fatigue
phenomenon in engineering, according to the ISO-1143 standard, the acceptable amount
of scattering is reported to be 50%. Now, in this research, we delved into the amount of
evaluation for a question: one expert can give a full score of one and another expert can
give a score of zero, which creates exactly the same conditions as mentioned.

Finally, Figure 5 illustrates the Kernel Density Estimation (KDE) [74] of the features of
the dataset for each specific risk, highlighting the distribution and density of the data points.
In fact, it represents the relationship between the KDE graphs and the hidden layers of the
neural network and explains how data features correspond to the intermediate processing
layers of the network.

Appl. Sci. 2024, 14, 3354 17 of 25

Figure 5. KDE graphs for each risk across neural network layers.

6. Discussion
This paper develops an optimal neural network architecture for FMEA data analysis

to predict risks in diverse datasets. In the proposed method, since the training data show
changes in data distribution, noise levels, and scatter, among other factors, using the same
neural network architecture often reduces its effectiveness and performance and leads to
unsatisfactory results. This problem is solved by using an accurate selection of the hy-
perparameter for the neural network. Typically, this is carried out by experts in the field
of neural networks who rely on their extensive personal experience. The proposed method
uses GA to find the optimal architecture separately for each data type by determining the
relevant hyperparameters. As shown in Table 3, this approach yielded the best and most
optimal architecture for each individual FMEA risk. In addition, the running time of the
code as well as the comparison of the accuracy of the proposed model with the conven-
tional unique model are presented in Appendix B and Appendix C, respectively.

The relationship between the standard deviation of features and neural network ar-
chitecture can affect the training and performance of a neural network. If the standard
deviation of the input data is too high, it may be necessary to use a deeper or wider net-
work to capture the complexity of the data. The standard deviation is often used as a
measure of the spread or variability of data. Choosing the architecture (width and depth)
of the neural network depends on the characteristics of the input data, such as the stand-
ard deviation. Data characteristics also affect the gradient descent method during neural
network training, particularly how quickly and stably the neural network converges to
the optimal weights. When the standard deviation is large, the gradients can become
larger and lead to rapid weight updates. In such cases, selecting an excessively large learn-
ing rate can result in divergence. High or low values of the feature can lead to vanishing
or exploding gradients, creating challenges during training. Therefore, choosing appro-
priate weight initialization methods, data normalization techniques, and optimization
methods is very important to successfully train a network.

Next, we employed a method that enabled data processing in embedded devices.
This choice was motivated by the need to prioritize data privacy, especially since FMEA
information typically contains sensitive company data. Users are generally opposed to
transmitting their confidential information to external servers. We converted the trained
neural network model from PyTorch to Core ML and improved the models through cus-
tom optimizations using the ‘onnx-simplifier’ module. As a result, this model gained the
ability to predict data on embedded devices in real time and significantly improved the
speed and accuracy.

7. Conclusions
In this article, the use of artificial intelligence algorithms for risk assessment was com-

prehensively studied. Traditionally, risk calculation often relies on the expertise of spe-
cialists. However, this approach is costly and time-consuming. Moreover, since it often
includes subjective factors such as expert opinions, experience level, and psychological
pressures, it can create negative biases in risk assessment. Therefore, an artificial

Figure 5. KDE graphs for each risk across neural network layers.

6. Discussion

This paper develops an optimal neural network architecture for FMEA data analysis
to predict risks in diverse datasets. In the proposed method, since the training data show
changes in data distribution, noise levels, and scatter, among other factors, using the same
neural network architecture often reduces its effectiveness and performance and leads
to unsatisfactory results. This problem is solved by using an accurate selection of the
hyperparameter for the neural network. Typically, this is carried out by experts in the field
of neural networks who rely on their extensive personal experience. The proposed method
uses GA to find the optimal architecture separately for each data type by determining
the relevant hyperparameters. As shown in Table 3, this approach yielded the best and
most optimal architecture for each individual FMEA risk. In addition, the running time
of the code as well as the comparison of the accuracy of the proposed model with the
conventional unique model are presented in Appendices B and C, respectively.

The relationship between the standard deviation of features and neural network
architecture can affect the training and performance of a neural network. If the standard
deviation of the input data is too high, it may be necessary to use a deeper or wider network
to capture the complexity of the data. The standard deviation is often used as a measure of
the spread or variability of data. Choosing the architecture (width and depth) of the neural
network depends on the characteristics of the input data, such as the standard deviation.
Data characteristics also affect the gradient descent method during neural network training,
particularly how quickly and stably the neural network converges to the optimal weights.
When the standard deviation is large, the gradients can become larger and lead to rapid

Appl. Sci. 2024, 14, 3354 17 of 24

weight updates. In such cases, selecting an excessively large learning rate can result in
divergence. High or low values of the feature can lead to vanishing or exploding gradients,
creating challenges during training. Therefore, choosing appropriate weight initialization
methods, data normalization techniques, and optimization methods is very important to
successfully train a network.

Next, we employed a method that enabled data processing in embedded devices.
This choice was motivated by the need to prioritize data privacy, especially since FMEA
information typically contains sensitive company data. Users are generally opposed to
transmitting their confidential information to external servers. We converted the trained
neural network model from PyTorch to Core ML and improved the models through custom
optimizations using the ‘onnx-simplifier’ module. As a result, this model gained the ability
to predict data on embedded devices in real time and significantly improved the speed and
accuracy.

7. Conclusions

In this article, the use of artificial intelligence algorithms for risk assessment was
comprehensively studied. Traditionally, risk calculation often relies on the expertise of
specialists. However, this approach is costly and time-consuming. Moreover, since it often
includes subjective factors such as expert opinions, experience level, and psychological
pressures, it can create negative biases in risk assessment. Therefore, an artificial intelligence
system based on neural networks was employed to address these challenges. One of the
critical aspects of using neural networks is designing the network architecture to achieve the
highest performance of the quality. For this purpose, the search for the optimal architecture
and hyperparameters was automated using a GA, an evolutionary algorithm. Various
experiments were conducted to evaluate this approach in 20 different types of risk. Finally,
a system that enables the offline execution of the trained neural network model was used
after recognizing the highly confidential nature of risk information for companies. This
system processes data in embedded devices without transmitting data to external servers
and ensures data privacy. Based on the analysis of risk data, significant interdependence
between risks in a specific domain was identified. Using this insight, we recommend
designing a neural network using a tensor that can accommodate multimodal capabilities.
By simultaneously exploiting the full potential of all available symmetry information, a
holistic core can be created that integrates the most influential aspects of different risks
for superior results. As a result, the proposed neural network architecture promises
to improve risk assessment processes and achieve more accurate predictions by using
combined knowledge from diverse risk domains.

Author Contributions: Conceptualization, N.R. and K.R.K.; methodology, N.R.; software, N.R.;
validation, O.A.S.; formal analysis, N.R.; investigation, N.R., L.H., M.N. and K.R.K.; resources,
R.G.; data curation, O.A.S. and L.H.; writing—original draft preparation, N.R.; writing—review
and editing, K.R.K.; visualization, N.R. and K.R.K.; supervision, N.R.; project administration, R.G.;
funding acquisition, R.G. All authors have read and agreed to the published version of the manuscript.

Funding: This publication has been supported by the RUDN University Scientific Projects Grant
System, project N◦ “202192-2-000”.

Data Availability Statement: The datasets can be made available upon request from the first author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

FMEA Failure Mode and Effect Analysis
GA Genetic Algorithm
HACCP Hazard Analysis and Critical Control Points
AI Artificial Intelligence
DNN Deep Neural Network

Appl. Sci. 2024, 14, 3354 18 of 24

FIS Fuzzy Inference System
SVM Support Vector Machine
ReLU Rectified Linear Unit
ELU Exponential Linear Unit
SELU Scaled Exponential Linear Unit
SGD Stochastic Gradient Descent
Adam Adaptive Moment Estimation
RMSprop Root Mean Square Propagation
ONNX Open Neural Network Exchange
RMSE Root Mean Square Error
MSE Mean Square Error
KDE Kernel Density Estimation

Appendix A

The list of questions and criteria considered to evaluate each risk (collected data for
use in the neural network as input parameters) is as follows (Table A1):

Table A1. List of different risks along with questions.

No. Risk Question

1 Latency and real-time
processing

• Bad design
• Misunderstanding of the design
• Wrong construction
• Foundation failure
• Abnormal loads

2 Compressed gas explosion

• Misuse of equipment
• Lack of safety training
• No fire protection system
• Use of electrical equipment

(welding—cutting—shearing) in the gas zone

3 Compressor accidents

• Lack of technical training
• Misuse of equipment
• Lack of training on safety systems
• Poor quality of compressor
• Technical issues

4 Construction project
delivery failed on time

• Work has been suspended due to the coronavirus
epidemic (2 weeks for 20% of the total number of
workers)

• Technical error in the building structure in some
places needs to be reconstructed

• Work speed is slow in winter due to the harsh
weather conditions (40 degrees below zero)

• Lack of knowledge of some officials about the goals
and dates set by the company

• A severe shortage of funding for raw materials such
as iron and concrete leads to delays in
implementation

5 Crane accidents

• Misuse of cranes
• Technical issues
• Difficult climatic conditions
• Lack of safety training

6 Crane falls on construction
site

• Strong winds
• Absence of crane monitor
• Technical defect in the crane structure
• No communication between crane driver and crane

controller
• The load is heavier than the required weight of the

crane

Appl. Sci. 2024, 14, 3354 19 of 24

Table A1. Cont.

No. Risk Question

7 Cutting and nail-gun
accidents

• Weakness in the use of protection and safety systems
• Misuse of equipment
• Worker safety culture is weak
• Non-use of personal protective equipment

8 Dust, noise, and vibration

• Lack of personal protective equipment
• The quality of the working machines used in the

construction field
• Weakness in the use of protection and safety systems
• Lack of security culture
• Lack of control safety

9 Electric shock

• Construction workers are exposed to electric
current-carrying cables

• Worker safety culture is weak
• Construction workers are exposed to machinery

current while working
• Rain and snow during work

10 Electrocutions

• Construction workers are exposed to electric
current-carrying cables

• Worker safety culture is weak
• Construction workers are exposed to machinery

current while working
• Miscellaneous supervision by supervisors and

foremen
• Rain and snow during work

11 Hit by falling objects

• Personal protective equipment is not used
• Worker safety culture is weak
• Absence of safety control
• Lack of a safety system for heights

12 Holes in flooring of the
construction site

• No censorship
• Lack of a safety system for building holes
• Lack of definition and sensitivity to the large number

of holes in the building
• Filling the concrete incorrectly
• Inefficiency of some construction workers

13 Run over by operating
equipment

• Lack of strict implementation of safety regulations
• Misuse of equipment
• Worker safety culture is weak
• Lack of a safety system for workers zone

14 Scaffolding accidents

• Non-use of personal protective equipment
• Low quality of scaffolding
• Difficult weather conditions
• Lack of technical training

15 Scaffolding falls

• Strong winds
• Lack of a safety system
• Technical defect in structure
• Lack of control
• Inefficiency of some construction workers

16 Solid waste and water
waste

• Lack of technical guide
• Lack of environmental protection culture
• Weakness in the use of protection and safety systems
• Iron and wood waste in construction
• Concrete waste in construction

17 Structure failure

• Bad design
• Misunderstanding of the design
• Wrong construction
• Foundation failure
• Abnormal loads

Appl. Sci. 2024, 14, 3354 20 of 24

Table A1. Cont.

No. Risk Question

18 Toxic and suffocation

• Improper use of environmentally friendly materials
• Absence of sterilization before and after work
• Work for a long time in the dusty place
• Lack of safety culture
• Eating while working

19 Welding accidents

• Misuse of equipment
• Lack of safety training
• Non-use of personal protective equipment
• Absence of safety control

20 Falling of the workers
from high floors

• Falling roof structures and columns
• Falling through existing openings
• Falling down from stairs
• Work at height without safety equipment
• Lack of a safety system for heights

Appendix B

The runtime (seconds) for the codes written in order to obtain the most optimal
neural network architecture considering different numbers of hidden layers is as follows
(Table A2):

Table A2. Runtime of different algorithms according to the risk (unit is in seconds).

No. Risk
Number of Hidden Layers

1 2 3 4

1 Latency and real-time processing 6517 8774 11781 15420

2 Compressed gas explosion 6536 8616 11848 14941

3 Compressor accidents 6542 8568 12038 15029

4 Construction project delivery failed on time 6534 8675 12188 14971

5 Crane accidents 6519 8676 12058 15079

6 Crane falls on construction site 6568 8566 11997 14869

7 Cutting and nail-gun accidents 6529 8604 12211 15084

8 Dust, noise, and vibration 6534 8682 12203 14900

9 Electric shock 6569 8848 12158 14830

10 Electrocutions 6575 8895 11925 14955

11 Hit by falling objects 6543 8612 12220 15037

12 Holes in flooring of the construction site 6569 8630 12171 15138

13 Run over by operating equipment 6542 8656 12164 15046

14 Scaffolding accidents 6571 8705 12296 14985

15 Scaffolding falls 6541 8586 12120 15029

16 Solid waste and water waste 6532 8918 12206 14821

17 Structure failure 6535 8605 11859 14937

18 Toxic and suffocation 6537 8587 12153 15147

19 Welding accidents 6604 9027 12893 14192

20 Falling of the workers from high floors 6555 8875 12328 14749

As is clear from the results, with the increase in the number of hidden layers, the
solution time increases, and the computational costs also increase.

Appl. Sci. 2024, 14, 3354 21 of 24

Appendix C

To compare the accuracy improvement of the proposed method, i.e., the optimized
neural network architecture by considering all hyperparameters with the conventional
neural network architecture (the activation function of ReLU), the analysis for the first
risk of the data collected in this research was carried out. The following figure shows
the schematic of the mental idea for the proposed neural network architecture (a), the
conventional neural network architecture considering a specific activation function (b), and,
finally, the optimal neural network architecture obtained in this research (c).

(a)

Appl. Sci. 2024, 14, 3354 21 of 25

Table A2. Runtime of different algorithms according to the risk (unit is in seconds).

No. Risk
Number of Hidden Layers

1 2 3 4
1 Latency and real-time processing 6517 8774 11781 15420
2 Compressed gas explosion 6536 8616 11848 14941
3 Compressor accidents 6542 8568 12038 15029
4 Construction project delivery failed on time 6534 8675 12188 14971
5 Crane accidents 6519 8676 12058 15079
6 Crane falls on construction site 6568 8566 11997 14869
7 Cutting and nail-gun accidents 6529 8604 12211 15084
8 Dust, noise, and vibration 6534 8682 12203 14900
9 Electric shock 6569 8848 12158 14830
10 Electrocutions 6575 8895 11925 14955
11 Hit by falling objects 6543 8612 12220 15037
12 Holes in flooring of the construction site 6569 8630 12171 15138
13 Run over by operating equipment 6542 8656 12164 15046
14 Scaffolding accidents 6571 8705 12296 14985
15 Scaffolding falls 6541 8586 12120 15029
16 Solid waste and water waste 6532 8918 12206 14821
17 Structure failure 6535 8605 11859 14937
18 Toxic and suffocation 6537 8587 12153 15147
19 Welding accidents 6604 9027 12893 14192
20 Falling of the workers from high floors 6555 8875 12328 14749

As is clear from the results, with the increase in the number of hidden layers, the
solution time increases, and the computational costs also increase.

Appendix C
To compare the accuracy improvement of the proposed method, i.e., the optimized

neural network architecture by considering all hyperparameters with the conventional
neural network architecture (the activation function of ReLU), the analysis for the first risk
of the data collected in this research was carried out. The following figure shows the sche-
matic of the mental idea for the proposed neural network architecture (a), the conven-
tional neural network architecture considering a specific activation function (b), and, fi-
nally, the optimal neural network architecture obtained in this research (c).

(a)

(b)

Appl. Sci. 2024, 14, 3354 22 of 25

(b)

(c)

The result of this comparison is as follows:

Risk No.
Number of Hidden

Layers
Initialization Architecture RMSE Best Architecture RMSE

Improvement
(%)

1

1 [32, ReLU] 0.8619 [512, Sigmoid] 0.2451 71.52
2 [32, ReLU, 32, ReLU] 0.7366 [32, ‘ReLU’, 64, ‘Sigmoid’] 0.3335 54.72

3 [32, ReLU, 32, ReLU, 32, ReLU] 0.8011
[1024, ‘Sigmoid’, 32, ‘Tanh’, 128,

‘ReLU’]
0.2205 72.47

4 [32, ReLU, 32, ReLU, 32, ReLU, 32, ReLU] 0.7489
1024, ‘Tanh’, 1024, ‘Sigmoid’,
512, ‘ReLU’, 512, ‘Sigmoid’]

0.1817 75.73

References
1. Maleki, E.; Unal, O.; Seyedi Sahebari, S.M.; Reza Kashyzadeh, K.; Danilov, I. Application of deep neural network to predict the

high-cycle fatigue life of AISI 1045 steel coated by industrial coatings. J. Mar. Sci. Eng. 2022, 10, 128.
https://doi.org/10.3390/jmse10020128.

2. Amiri, N.; Farrahi, G.H.; Kashyzadeh, K.R.; Chizari, M. Applications of ultrasonic testing and machine learning methods to
predict the static & fatigue behavior of spot-welded joints. J. Manuf. Process. 2020, 52, 26–34. https://doi.org/10.1016/j.jma-
pro.2020.01.047.

3. Kashyzadeh, K.R.; Ghorbani, S. New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of
machining parameters. Eng. Fail. Anal. 2023, 146, 107128. https://doi.org/10.1016/j.engfailanal.2023.107128.

4. Fahmi, A.T.W.K.; Reza Kashyzadeh, K.; Ghorbani, S. Fault Detection in the Gas Turbine of the Kirkuk Power Plant: An Anomaly
Detection Approach Using DLSTM Autoencoder. Eng. Fail. Anal. 2024, 160, 108213. https://doi.org/10.1016/j.eng-
failanal.2024.108213.

5. Fahmi, A.T.W.K.; Reza Kashyzadeh, K.; Ghorbani, S. Enhanced-ARIMA Model for Anomaly Detection in Power Plant Opera-
tions. Int. J. Eng. 2024, in press.

6. Mikulak, R.J.; McDermott, R.; Beauregard, M. The Basics of FMEA, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2017.
https://doi.org/10.1201/b16656.

7. Mohammadfam, I.; Gholamizadeh, K. Assessment of Security Risks by FEMA and Fuzzy FEMA Methods, A Case Study: Com-
bined Cycle Power Plant. J. Occup. Hyg. Eng. 2021, 8, 16–23. https://doi.org/10.52547/johe.8.2.16.

(c)

Appl. Sci. 2024, 14, 3354 22 of 25

(b)

(c)

The result of this comparison is as follows:

Risk No.
Number of Hidden

Layers
Initialization Architecture RMSE Best Architecture RMSE

Improvement
(%)

1

1 [32, ReLU] 0.8619 [512, Sigmoid] 0.2451 71.52
2 [32, ReLU, 32, ReLU] 0.7366 [32, ‘ReLU’, 64, ‘Sigmoid’] 0.3335 54.72

3 [32, ReLU, 32, ReLU, 32, ReLU] 0.8011
[1024, ‘Sigmoid’, 32, ‘Tanh’, 128,

‘ReLU’]
0.2205 72.47

4 [32, ReLU, 32, ReLU, 32, ReLU, 32, ReLU] 0.7489
1024, ‘Tanh’, 1024, ‘Sigmoid’,
512, ‘ReLU’, 512, ‘Sigmoid’]

0.1817 75.73

References
1. Maleki, E.; Unal, O.; Seyedi Sahebari, S.M.; Reza Kashyzadeh, K.; Danilov, I. Application of deep neural network to predict the

high-cycle fatigue life of AISI 1045 steel coated by industrial coatings. J. Mar. Sci. Eng. 2022, 10, 128.
https://doi.org/10.3390/jmse10020128.

2. Amiri, N.; Farrahi, G.H.; Kashyzadeh, K.R.; Chizari, M. Applications of ultrasonic testing and machine learning methods to
predict the static & fatigue behavior of spot-welded joints. J. Manuf. Process. 2020, 52, 26–34. https://doi.org/10.1016/j.jma-
pro.2020.01.047.

3. Kashyzadeh, K.R.; Ghorbani, S. New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of
machining parameters. Eng. Fail. Anal. 2023, 146, 107128. https://doi.org/10.1016/j.engfailanal.2023.107128.

4. Fahmi, A.T.W.K.; Reza Kashyzadeh, K.; Ghorbani, S. Fault Detection in the Gas Turbine of the Kirkuk Power Plant: An Anomaly
Detection Approach Using DLSTM Autoencoder. Eng. Fail. Anal. 2024, 160, 108213. https://doi.org/10.1016/j.eng-
failanal.2024.108213.

5. Fahmi, A.T.W.K.; Reza Kashyzadeh, K.; Ghorbani, S. Enhanced-ARIMA Model for Anomaly Detection in Power Plant Opera-
tions. Int. J. Eng. 2024, in press.

6. Mikulak, R.J.; McDermott, R.; Beauregard, M. The Basics of FMEA, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2017.
https://doi.org/10.1201/b16656.

7. Mohammadfam, I.; Gholamizadeh, K. Assessment of Security Risks by FEMA and Fuzzy FEMA Methods, A Case Study: Com-
bined Cycle Power Plant. J. Occup. Hyg. Eng. 2021, 8, 16–23. https://doi.org/10.52547/johe.8.2.16.

The result of this comparison is as follows:

Appl. Sci. 2024, 14, 3354 22 of 24

Risk No.
Number of

Hidden Layers
Initialization
Architecture

RMSE Best Architecture RMSE
Improvement

(%)

1

1 [32, ReLU] 0.8619 [512, Sigmoid] 0.2451 71.52

2 [32, ReLU, 32, ReLU] 0.7366 [32, ‘ReLU’, 64, ‘Sigmoid’] 0.3335 54.72

3
[32, ReLU, 32, ReLU, 32,

ReLU]
0.8011

[1024, ‘Sigmoid’, 32,
‘Tanh’, 128, ‘ReLU’]

0.2205 72.47

4
[32, ReLU, 32, ReLU, 32,

ReLU, 32, ReLU]
0.7489

1024, ‘Tanh’, 1024,
‘Sigmoid’, 512, ‘ReLU’,

512, ‘Sigmoid’]
0.1817 75.73

References
1. Maleki, E.; Unal, O.; Seyedi Sahebari, S.M.; Reza Kashyzadeh, K.; Danilov, I. Application of deep neural network to predict the

high-cycle fatigue life of AISI 1045 steel coated by industrial coatings. J. Mar. Sci. Eng. 2022, 10, 128. [CrossRef]
2. Amiri, N.; Farrahi, G.H.; Kashyzadeh, K.R.; Chizari, M. Applications of ultrasonic testing and machine learning methods to

predict the static & fatigue behavior of spot-welded joints. J. Manuf. Process. 2020, 52, 26–34. [CrossRef]
3. Kashyzadeh, K.R.; Ghorbani, S. New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of

machining parameters. Eng. Fail. Anal. 2023, 146, 107128. [CrossRef]
4. Fahmi, A.T.W.K.; Reza Kashyzadeh, K.; Ghorbani, S. Fault Detection in the Gas Turbine of the Kirkuk Power Plant: An Anomaly

Detection Approach Using DLSTM Autoencoder. Eng. Fail. Anal. 2024, 160, 108213. [CrossRef]
5. Fahmi, A.T.W.K.; Reza Kashyzadeh, K.; Ghorbani, S. Enhanced-ARIMA Model for Anomaly Detection in Power Plant Operations.

Int. J. Eng. 2024; in press.
6. Mikulak, R.J.; McDermott, R.; Beauregard, M. The Basics of FMEA, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2017.

[CrossRef]
7. Mohammadfam, I.; Gholamizadeh, K. Assessment of Security Risks by FEMA and Fuzzy FEMA Methods, A Case Study:

Combined Cycle Power Plant. J. Occup. Hyg. Eng. 2021, 8, 16–23. [CrossRef]
8. Xu, Z.; Dang, Y.; Munro, P.; Wang, Y. A Data-Driven Approach for Constructing the Component-Failure Mode Matrix for FMEA.

J. Intell. Manuf. 2020, 31, 249–265. [CrossRef]
9. Wessiani, N.A.; Yoshio, F. Failure Mode Effect Analysis and Fault Tree Analysis as a Combined Methodology in Risk Management.

IOP Conf. Ser. Mater. Sci. Eng. 2018, 337, 012033. [CrossRef]
10. Arvanitoyannis, I.S.; Varzakas, T.H. Application of ISO 22000 and Failure Mode and Effect Analysis (FMEA) for Industrial

Processing of Salmon: A Case Study. Crit. Rev. Food Sci. Nutr. 2008, 48, 411–429. [CrossRef] [PubMed]
11. Baybutt, P. Calibration of Risk Matrices for Process Safety. J. Loss Prev. Process Ind. 2015, 38, 163–168. [CrossRef]
12. Maleki, E.; Unal, O.; Seyedi Sahebari, S.M.; Reza Kashyzadeh, K. A novel approach for analyzing the effects of almen intensity

on the residual stress and hardness of shot-peened (TiB + TiC)/Ti–6Al–4V composite: Deep learning. Materials 2023, 16, 4693.
[CrossRef] [PubMed]

13. Maleki, E.; Unal, O.; Sahebari, S.M.S.; Kashyzadeh, K.R.; Amiri, N. Enhancing Friction Stir Welding in Fishing Boat Construction
through Deep Learning-Based Optimization. Sustain. Mar. Struct. 2023, 5, 1–14. [CrossRef]

14. Li, M.; Andersen, D.G.; Smola, A.J.; Yu, K. Communication Efficient Distributed Machine Learning with the Parameter Server. In
Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, Montreal, QC, Canada, 8–13 December 2014; Volume 27.

15. Wu, X.; Wu, J. The Risk Priority Number Evaluation of FMEA Analysis Based on Random Uncertainty and Fuzzy Uncertainty.
Complexity 2021, 2021, 8817667. [CrossRef]

16. Rafie, M.; Samimi Namin, F. Prediction of Subsidence Risk by FMEA Using Artificial Neural Network and Fuzzy Inference
System. Int. J. Min. Sci. Technol. 2015, 25, 655–663. [CrossRef]

17. Ku, C.; Chen, Y.S.; Chung, Y.K. An Intelligent FMEA System Implemented with a Hierarchy of Back-Propagation Neural
Networks. In Proceedings of the 2008 IEEE Conference on Cybernetics and Intelligent Systems, Chengdu, China, 21–24 September
2008; pp. 203–208. [CrossRef]

18. Okabe, T.; Otsuka, Y. Proposal of a Validation Method of Failure Mode Analyses Based on the Stress-Strength Model with a
Support Vector Machine. Reliab. Eng. Syst. Saf. 2021, 205, 107247. [CrossRef]

19. Maleki, E.; Kashyzadeh, K.R. Effects of the hardened nickel coating on the fatigue behavior of CK45 steel: Experimental, finite
element method, and artificial neural network modeling. Iran. J. Mater. Sci. Eng. 2017, 14, 81–99. [CrossRef]

20. Ke, J.; Liu, X. Empirical Analysis of Optimal Hidden Neurons in Neural Network Modeling for Stock Prediction. In Proceedings of
the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, 19–20 December
2008; pp. 828–832. [CrossRef]

21. Balaprakash, P.; Salim, M.; Uram, T.D.; Vishwanath, V.; Wild, S.M. DeepHyper: Asynchronous Hyperparameter Search for Deep
Neural Networks. In Proceedings of the 2018 IEEE 25th International Conference on High Performance Computing (HiPC),
Bengaluru, India, 17–20 December 2018; pp. 42–51. [CrossRef]

https://doi.org/10.3390/jmse10020128
https://doi.org/10.1016/j.jmapro.2020.01.047
https://doi.org/10.1016/j.engfailanal.2023.107128
https://doi.org/10.1016/j.engfailanal.2024.108213
https://doi.org/10.1201/b16656
https://doi.org/10.52547/johe.8.2.16
https://doi.org/10.1007/s10845-019-01466-z
https://doi.org/10.1088/1757-899X/337/1/012033
https://doi.org/10.1080/10408390701424410
https://www.ncbi.nlm.nih.gov/pubmed/18464031
https://doi.org/10.1016/j.jlp.2015.09.010
https://doi.org/10.3390/ma16134693
https://www.ncbi.nlm.nih.gov/pubmed/37445007
https://doi.org/10.36956/sms.v5i2.875
https://doi.org/10.1155/2021/8817667
https://doi.org/10.1016/j.ijmst.2015.05.021
https://doi.org/10.1109/ICCIS.2008.4670758
https://doi.org/10.1016/j.ress.2020.107247
https://doi.org/10.22068/ijmse.14.4.81
https://doi.org/10.1109/PACIIA.2008.363
https://doi.org/10.1109/HiPC.2018.00014

Appl. Sci. 2024, 14, 3354 23 of 24

22. Susmi, S.J. Hybrid Dimension Reduction Techniques with Genetic Algorithm and Neural Network for Classifying Leukemia
Gene Expression Data. Indian J. Sci. Technol. 2016, 9, 1–8. [CrossRef]

23. Sharma, K.D.; Srivastava, S. Failure Mode and Effect Analysis (FMEA) Implementation: A Literature Review. J. Adv. Res. Aeronaut.
Space Sci. 2018, 5, 1–17.

24. Sankar, N.R.; Prabhu, B.S. Modified Approach for Prioritization of Failures in a System Failure Mode and Effects Analysis. Int. J.
Qual. Reliab. Manag. 2001, 18, 324–336. [CrossRef]

25. Moreira, A.C.; Ferreira, L.M.D.F.; Silva, P. A Case Study on FMEA-Based Improvement for Managing New Product Development
Risk. Int. J. Qual. Reliab. Manag. 2021, 38, 1130–1148. [CrossRef]

26. Dubey, S.R.; Chakraborty, S.; Roy, S.K.; Mukherjee, S.; Singh, S.K.; Chaudhuri, B.B. DiffGrad: An Optimization Method for
Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4500–4511. [CrossRef]

27. Zhang, Z. Improved Adam Optimizer for Deep Neural Networks. In Proceedings of the 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2. [CrossRef]

28. Ida, Y.; Fujiwara, Y.; Iwamura, S. Adaptive Learning Rate via Covariance Matrix Based Preconditioning for Deep Neural Networks.
In Proceedings of the Twenty-Sixth International Joint Conferences on Artificial Intelligence Organization, Melbourne, Australia,
19–25 August 2017; pp. 1923–1929. [CrossRef]

29. Yang, J.; Bagavathiannan, M.; Wang, Y.; Chen, Y.; Yu, J. A Comparative Evaluation of Convolutional Neural Networks, Training
Image Sizes, and Deep Learning Optimizers for Weed Detection in Alfalfa. Weed Technol. 2022, 36, 512–522. [CrossRef]

30. Vieira, S.; Lopez Pinaya, W.H.; Garcia-Dias, R.; Mechelli, A. Deep Neural Networks. Mach. Learn. Methods Appl. Brain Disord.
2020, 157–172. [CrossRef]

31. Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Fundamentals of Artificial Neural Networks and Deep Learning. In
Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer: Cham, Switzerland, 2022; pp. 379–425. Available
online: https://link.springer.com/chapter/10.1007/978-3-030-89010-0_10 (accessed on 28 August 2023).

32. Janocha, K.; Czarnecki, W.M. On Loss Functions for Deep Neural Networks in Classification. arXiv 2017, arXiv:1702.05659.
[CrossRef]

33. Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep-Learning: Investigating Deep Neural Networks Hyper-Parameters and
Comparison of Performance to Shallow Methods for Modeling Bioactivity Data. J. Chemin. 2017, 9, 42. [CrossRef] [PubMed]

34. Huuskonen, J.; Salo, M.; Taskinen, J. Aqueous Solubility Prediction of Drugs Based on Molecular Topology and Neural Network
Modeling. J. Chem. Inf. Comput. Sci. 1998, 38, 450–456. [CrossRef] [PubMed]

35. Basheer, I.A.; Hajmeer, M. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. J. Microbiol. Methods
2000, 43, 3–31. [CrossRef]

36. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
37. Yu, X.; Hu, X.; Liu, Z.; Wang, C.; Wang, W.; Ghannouchi, F.M. A Method to Select Optimal Deep Neural Network Model for

Power Amplifiers. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 145–148. [CrossRef]
38. Alvarez, J.M.; Salzmann, M. Learning the Number of Neurons in Deep Networks. Learning the number of neurons in deep

networks. Adv. Neural Inf. Process. Syst. 2016, 29, 1–9.
39. Sheela, K.G.; Deepa, S.N. Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Math. Probl. Eng. 2013,

2013, 425740. [CrossRef]
40. Shen, Z. Deep Network Approximation Characterized by Number of Neurons. Commun. Comput. Phys. 2020, 28, 1768–1811.

[CrossRef]
41. Zeiler, M.D.; Ranzato, M.; Monga, R.; Mao, M.; Yang, K.; Le, Q.V.; Nguyen, P.; Senior, A.; Vanhoucke, V.; Dean, J.; et al. On

Rectified Linear Units for Speech Processing. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3517–3521. [CrossRef]

42. Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex Made More Practical: Leaky ReLU. In Proceedings of the 2020 IEEE Symposium
on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [CrossRef]

43. Ding, B.; Qian, H.; Zhou, J. Activation Functions and Their Characteristics in Deep Neural Networks. In Proceedings of the 2018
Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 1836–1841. [CrossRef]

44. Kiliçarslan, S.; Celik, M. RSigELU: A Nonlinear Activation Function for Deep Neural Networks. Expert. Syst. Appl. 2021, 174,
114805. [CrossRef]

45. Khan, S.H.; Hayat, M.; Porikli, F. Regularization of Deep Neural Networks with Spectral Dropout. Neural Netw. 2019, 110, 82–90.
[CrossRef] [PubMed]

46. Yang, T.; Zhu, S.; Chen, C. Gradaug: A New Regularization Method for Deep Neural Networks. Adv. Neural Inf. Process. Syst.
2020, 33, 14207–14218.

47. Nusrat, I.; Jang, S.-B. A Comparison of Regularization Techniques in Deep Neural Networks. Symmetry 2018, 10, 648. [CrossRef]
48. Yazan, E.; Talu, M.F. Comparison of the stochastic gradient descent based optimization techniques. In Proceedings of the 2017

International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017; pp. 1–5.
[CrossRef]

49. Qian, N. On the Momentum Term in Gradient Descent Learning Algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef]

https://doi.org/10.17485/ijst/2016/v9iS1/70384
https://doi.org/10.1108/02656710110383737
https://doi.org/10.1108/IJQRM-06-2020-0201
https://doi.org/10.1109/TNNLS.2019.2955777
https://doi.org/10.1109/IWQoS.2018.8624183
https://doi.org/10.24963/ijcai.2017/267
https://doi.org/10.1017/wet.2022.46
https://doi.org/10.1016/B978-0-12-815739-8.00009-2
https://link.springer.com/chapter/10.1007/978-3-030-89010-0_10
https://doi.org/10.4467/20838476SI.16.004.6185
https://doi.org/10.1186/s13321-017-0226-y
https://www.ncbi.nlm.nih.gov/pubmed/29086090
https://doi.org/10.1021/ci970100x
https://www.ncbi.nlm.nih.gov/pubmed/9611785
https://doi.org/10.1016/S0167-7012(00)00201-3
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1109/LMWC.2020.3038821
https://doi.org/10.1155/2013/425740
https://doi.org/10.4208/cicp.OA-2020-0149
https://doi.org/10.1109/ICASSP.2013.6638312
https://doi.org/10.1109/ISCC50000.2020.9219587
https://doi.org/10.1109/CCDC.2018.8407425
https://doi.org/10.1016/j.eswa.2021.114805
https://doi.org/10.1016/j.neunet.2018.09.009
https://www.ncbi.nlm.nih.gov/pubmed/30504041
https://doi.org/10.3390/sym10110648
https://doi.org/10.1109/IDAP.2017.8090299
https://doi.org/10.1016/S0893-6080(98)00116-6

Appl. Sci. 2024, 14, 3354 24 of 24

50. Dogo, E.M.; Afolabi, O.J.; Nwulu, N.I.; Twala, B.; Aigbavboa, C.O. A Comparative Analysis of Gradient Descent-Based Optimiza-
tion Algorithms on Convolutional Neural Networks. In Proceedings of the 2018 International Conference on Computational
Techniques, Electronics and Mechanical Systems (CTEMS), Belgaum, India, 21–22 December 2018; pp. 92–99. [CrossRef]

51. Kurbiel, T.; Khaleghian, S. Training of Deep Neural Networks Based on Distance Measures Using RMSProp. arXiv 2017,
arXiv:1708.01911. [CrossRef]

52. Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm- A Literature Review. In Proceedings of the 2019 International Conference
on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384.
[CrossRef]

53. Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80,
8091–8126. [CrossRef]

54. Reza Kashyzadeh, K.; Amiri, N.; Ghorbani, S.; Souri, K. Prediction of Concrete Compressive Strength Using a Back-Propagation
Neural Network Optimized by a Genetic Algorithm and Response Surface Analysis Considering the Appearance of Aggregates
and Curing Conditions. Buildings 2022, 12, 438. [CrossRef]

55. Whitley, D.; Sutton, A.M. Genetic Algorithms—A Survey of Models and Methods. In Handbook of Natural Computing; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 637–671.

56. Kim, Y.K.; Song, W.S.; Kim, J.H. A Mathematical Model and a Genetic Algorithm for Two-Sided Assembly Line Balancing. Comput.
Oper. Res. 2009, 36, 853–865. [CrossRef]

57. Stepanov, L.V.; Koltsov, A.S.; Parinov, A.V.; Dubrovin, A.S. Mathematical Modeling Method Based on Genetic Algorithm and Its
Applications. J. Phys. Conf. Ser. 2019, 1203, 012082. [CrossRef]

58. Chen, G.; Fu, K.; Liang, Z.; Sema, T.; Li, C.; Tontiwachwuthikul, P.; Idem, R. The Genetic Algorithm Based Back Propagation
Neural Network for MMP Prediction in CO2-EOR Process. Fuel 2014, 126, 202–212. [CrossRef]

59. David, O.E.; Greental, I. Genetic Algorithms for Evolving Deep Neural Networks. In Proceedings of the Companion Publication of
the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; pp. 1451–1452.
[CrossRef]

60. Pham, T.A.; Tran, V.Q.; Vu, H.-L.T.; Ly, H.-B. Design Deep Neural Network Architecture Using a Genetic Algorithm for Estimation
of Pile Bearing Capacity. PLoS ONE 2020, 15, e0243030. [CrossRef] [PubMed]

61. Verhelst, M.; Moons, B. Embedded Deep Neural Network Processing: Algorithmic and Processor Techniques Bring Deep Learning
to IoT and Edge Devices. IEEE Solid-State Circuits Mag. 2017, 9, 55–65. [CrossRef]

62. Loni, M.; Sinaei, S.; Zoljodi, A.; Daneshtalab, M.; Sjödin, M. DeepMaker: A Multi-Objective Optimization Framework for Deep
Neural Networks in Embedded Systems. Microprocess. Microsyst. 2020, 73, 102989. [CrossRef]

63. Hou, X.; Breier, J.; Jap, D.; Ma, L.; Bhasin, S.; Liu, Y. Security Evaluation of Deep Neural Network Resistance Against Laser Fault
Injection. In Proceedings of the 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits
(IPFA), Singapore, 20–23 July 2020; pp. 1–6. [CrossRef]

64. Izbassarova, A.; Duisembay, A.; James, A.P. Speech Recognition Application Using Deep Learning Neural Network. In Deep
Learning Classifiers with Memristive Networks; Springer: Cham, Switzerland, 2020; pp. 69–79.

65. Dlužnevskij, D.; Stefanovič, P.; Ramanauskaité, S. Investigation of YOLOv5 Efficiency in IPhone Supported Systems. Balt. J. Mod.
Comput. 2021, 9, 333–344. [CrossRef]

66. Sujaini, H.; Ramadhan, E.Y.; Novriando, H. Comparing the Performance of Linear Regression versus Deep Learning on Detecting
Melanoma Skin Cancer Using Apple Core ML. Bull. Electr. Eng. Inform. 2021, 10, 3110–3120. [CrossRef]

67. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; et al. TensorFlow Lite
Micro: Embedded Machine Learning on TinyML Systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811.

68. Demidovskij, A.; Gorbachev, Y.; Fedorov, M.; Slavutin, I.; Tugarev, A.; Fatekhov, M.; Tarkan, Y. OpenVINO Deep Learning
Workbench: Comprehensive Analysis and Tuning of Neural Networks Inference. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 783–787.

69. Mittal, S. A Survey on Optimized Implementation of Deep Learning Models on the NVIDIA Jetson Platform. J. Syst. Archit. 2019,
97, 428–442. [CrossRef]

70. Imambi, S.; Prakash, K.B.; Kanagachidambaresan, G.R. PyTorch. In Programming with TensorFlow: Solution for Edge Computing
Applications; Springer: Cham, Switzerland, 2021; pp. 87–104. [CrossRef]

71. Jin, T.; Bercea, G.-T.; Le, T.D.; Chen, T.; Su, G.; Imai, H.; Negishi, Y.; Leu, A.; O’Brien, K.; Kawachiya, K.; et al. Compiling ONNX
Neural Network Models Using MLIR. arXiv 2020, arXiv:2008.08272. [CrossRef]

72. Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in
the Literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [CrossRef]

73. Wang, W.; Lu, Y. Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding
Model. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012049. [CrossRef]

74. Chen, Y.-C. A Tutorial on Kernel Density Estimation and Recent Advances. Biostat. Epidemiol. 2017, 1, 161–187. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CTEMS.2018.8769211
https://doi.org/10.48550/arXiv.1708.01911
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.3390/buildings12040438
https://doi.org/10.1016/j.cor.2007.11.003
https://doi.org/10.1088/1742-6596/1203/1/012082
https://doi.org/10.1016/j.fuel.2014.02.034
https://doi.org/10.1145/2598394.2602287
https://doi.org/10.1371/journal.pone.0243030
https://www.ncbi.nlm.nih.gov/pubmed/33332377
https://doi.org/10.1109/MSSC.2017.2745818
https://doi.org/10.1016/j.micpro.2020.102989
https://doi.org/10.1109/IPFA49335.2020.9261013
https://doi.org/10.22364/bjmc.2021.9.3.07
https://doi.org/10.11591/eei.v10i6.3178
https://doi.org/10.1016/j.sysarc.2019.01.011
https://doi.org/10.1007/978-3-030-57077-4_10
https://doi.org/10.48550/arXiv.2008.08272
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1088/1757-899X/324/1/012049
https://doi.org/10.1080/24709360.2017.1396742

	Introduction
	The Theoretical Basis of the Algorithms Used in This Research
	Failure Mode and Effects Analysis (FMEA)
	DNN
	Number of Hidden Layers
	Number of Neurons
	Activation Function
	Regularization
	Optimization Algorithm

	Genetic Algorithm (GA)

	Description of the Proposed New Model
	Experimental Data and Implementation of the Proposed Algorithm
	Results
	Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

