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Abstract: In Holoscopic imaging, a single aperture is used to acquire full-colour spatial images
like a fly’s eye by gently altering angles between nearby lenses with a micro-lens array. Due to
its simple data collection and visualisation methods, which provide robust and scalable spatial
information, and its motion parallax, binocular disparity, and convergence, this technique may be
able to overcome traditional 2D imaging issues like depth, scalability, and multi-perspective problems.
A novel disparity-map-generating method uses angular information from a single Holoscopic image’s
micro-images, or Elemental Images (EIs), to create a scene’s disparity map. Not much research has
used EIs instead of Viewpoint Images (VPIs) for disparity estimation. This study investigates whether
angular perspective data may replace spatial orthographic data. Using noise reduction and contrast
enhancement, EIs with a low resolution and lack of texture are pre-processed to calculate the disparity.
The Semi-Global Block Matching (SGBM) technique is used to calculate the disparity between EI
pixels. A multi-resolution approach overcomes EIs’ resolution constraints, and a content-aware
analysis dynamically modifies the SGBM window size settings to generate disparities across different
texture and complexity levels. A background mask and nearby EIs with accurate backgrounds detect
and rectify EIs with erroneous backgrounds. Our method generates disparity maps that outperform
two state-of-the-art deep learning algorithms and VPIs in real images.

Keywords: holoscopic; elemental images; viewpoint images; micro-lenses; disparity; SGBM

1. Introduction

Depth estimation from Holoscopic images is a promising technique that has gained
attention recently due to its advantage of calculating depth using a single-aperture camera.
Holoscopic cameras are based on the same fundamental principles as conventional cameras
but with an additional array of micro-lenses (MLA) in front of the image sensor. In tra-
ditional cameras, the main lens translates the object plane into the camera’s image plane.
The micro-lenses focus light beams from various directions onto a single pixel, thereby
capturing the scene in three dimensions.

The pixels behind each micro-lens record the same data as traditional cameras but
with a greater precision by measuring information from different angles, as shown in
Figure 1. The images formed behind each micro-lens, known as the Elemental Images (EIs),
represent unique angles of light incidence. Thus, by analysing the EIs, the location and
orientation of each light beam can be determined on a pixel-by-pixel basis. A sub-aperture
image of a scene, or a Viewpoint Image (VPI), is created by re-sampling pixels from the
same locations across the EIs. The EIs provide angular information, whereas VPIs provide
spatial information.

Traditionally, disparity estimation is performed on VPIs, which encompass the entire
scene from a certain perspective, whereas EIs only include a portion of it. VPIs share visual
characteristics with 2D orthographic stereo images, allowing existing stereo-image-based
disparity estimation methods to be applied with few adjustments. Additionally, VPIs can
be up-sampled using super-resolution methods [1].
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Figure 1. Light beams from various perspectives (VPIs) hitting the same EI in a Holoscopic sensor.

However, extracting VPIs requires mapping the information gathered from the sensor
to reconstruct the scene, which is not always straightforward and can sometimes lead to
strong aliasing artefacts [2–4]. Lens error correction and camera calibration must firstly be
performed to avoid artefacts. The geometry of the scene must also be considered during
VPI creation to avoid image artefacts in areas not ‘in focus’ [5]. Additionally, some micro-
lens array designs feature multiple micro-lens sizes with different focal lengths, making it
impractical to extract pixels from the same location across all EIs. The convergence of light
rays from multiple VPIs might result in overlapping on the image sensor, complicating
the separation and extraction of individual rays. Therefore, selecting a ‘patch’ of pixels
from each EI might be more effective in increasing the resolution and reducing the artefacts.
However, it is more challenging than choosing a single pixel as these patches depend on
the depth level within the scene; thus, using the same patch size throughout the entire
scene could result in a distorted VPI. For instance, the ideal patch size for displaying
the foreground can be excessively large for the background, leading to the occurrence of
artefacts in the background.

Extracting VPIs from Holoscopic images is time-consuming and requires significant
storage due to the large number of VPIs generated. Estimating depth from video frames
or in real-time scenarios is particularly challenging due to the large number of frames [6].
For these reasons, EIs provide a more straightforward method for estimating disparities,
requiring only lens correction as a pre-processing step. In this paper, disparity estimation
using perspective EIs is employed, contrary to conventional methods that use extracted,
corrected, and up-sampled VPIs.

Perspective projection and orthographic projection are two types of 3D projection.
As seen in Figure 2, perspective projection is comparable to the human visual system,
in which parallel lines in an image appear to converge at a single point; the closer the
object is to the point of convergence, the smaller it appears (change in scale). Orthographic
(orthogonal to the scene) projection assumes parallel lines will continue to be parallel and
disregards the scaling impact.

Understanding depth via perspective projection is far more precise than using an
orthographic technique because, in perspective depth, every light ray is tracked to the
precise pixel of its source, unlike in orthographic depth, where light is considered to be
emanating from infinity [7]. Although perspective projection has shown more accurate
disparity estimation results [8–10], most depth estimation algorithms are performed on
orthographic images due to the simplicity of the capturing mechanisms.
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(a) (b)

Figure 2. (a) Perspective projection. (b) Orthographic projection.

As seen in Figure 1, the EIs in the Holoscopic setup record light from different angles,
resulting in perspective images that contain angular information. Conversely, VPIs are
obtained from various locations on the primary lens, replicating different viewpoints.
These images typically exhibit orthographic projection, predominantly capturing surface
characteristics. The differentiation here between EIs and VPIs is linked to their ways of
spatial representation [11].

2. Methodology

A single Holoscopic image records the scene’s spatial and angular details. Hence, it is
possible to compute the scene’s depth map from a single shot. In or proposed method, as
seen in Figure 3, pre-processing is carried out on the EIs, which is crucial before computing
the disparity to improve their quality, as they inherently have a low resolution and lack
texture. This procedure consists of two primary stages: noise reduction by bilateral filtering
and contrast enhancement via histogram equalisation.

The disparity among EI pixels is computed via the Semi-Global Block Matching
(SGBM) algorithm [12], which is favoured due to its flexibility to adapt to the unique fea-
tures of EIs and its optimal balance between precision and computing efficiency. The SGBM
algorithm is enhanced through a multi-resolution approach to address the limitations of
EIs in terms of resolution. This involves creating an upscaled pyramid of EIs to capture
details at different scales and performing a content-aware analysis to adaptively adjust
the SGBM window size parameters. This ensures optimal estimation of disparities across
various texture and complexity levels within the EIs. Ultimately, a weighted least squares
(WLS) filter is employed to further enhance the optimisation process.

EIs are known to be low in resolution, lack texture, and only capture a portion of
the scene. Several deep learning models have been designed to estimate disparity maps,
including many specifically designed for VPIs. Deep learning necessitates a substantial
and comprehensive dataset specifically designed for Holoscopic imagery. Pre-existing,
pre-trained deep learning stereo-matching solutions would not be compatible with EIs
due to differences in training data properties. These solutions are mostly learned using
high-quality images, while EIs have a low resolution and lack texture. Deep learning
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algorithms have the potential to be highly effective in stereo vision tasks, but their ef-
fectiveness is contingent upon the quality and range of the training data. If the training
data lack sufficient representation of scenarios, including low resolutions, limited textures,
and narrow disparity ranges, the model may exhibit poor generalisation in these settings.
Deep learning algorithms may encounter difficulties in generating intricate details in such
situations, resulting in unclear outcomes.

Output

Input Holoscopic Image

(a)

(c)

(b)

SGBM

(d)

`

Depth FusionViewpoint Image Extraction

Two Optimisation Methods

(e)
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Figure 3. The disparity estimation from the EI pipeline. (a) Input raw Holoscopic image. (b) Disparity
map using multi-resolution content-aware SGBM matching. (c) Background correction using back-
ground/foreground masks. (d) Output disparity image after SGBM and background correction.
(e) Output: two optimisation results. Top: extracted central VPI. Bottom: fusing depth from
multiple EIs.

2.1. Pre-Processing of Elemental Images

Before initiating a disparity estimate on the EIs, it is crucial to carry out pre-processing
on the EIs to adequately prepare them to achieve an improved outcome. EIs exhibit a low
resolution and limited texture. Therefore, while implementing pre-processing techniques,
it is crucial to eliminate noise while preserving the critical features.

2.1.1. Noise Reduction through Bilateral Filtering

Applying image blurring is a conventional technique for diminishing image noise.
Particularly with images that have minimal texture, such as the background, there may be
instances where a stepping effect occurs. This effect is caused by discontinuous disparity
levels, resulting in noticeable “steps” in areas with reduced changes in depth, as seen in
the textured map in Figure 4. The limited resolution, subtle variations in lighting, limited
bit depth, and lack of texture can cause seamless transitions to look like sudden shifts.
However, using image blurring will inevitably cause a loss of fine information such as
edges, hence reducing the accuracy of disparity estimation. To address this issue, bilateral
filtering [13] is employed. This technique, known for its ability to preserve edges, is
considered as an advanced way of blurring.
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Figure 4. EI before and after applying bilateral filtering. As seen in the texture map of the original
image, there is a noticeable stepping effect in the background. Although the filter did not eliminate it,
it did assist in reducing the impact while maintaining edge information.

Bilateral blurring is applied to each EI to reduce the noise:

Ifiltered (p) =
1

Wp
∑
q∈S

I(q) · fr(∥I(p)− I(q)∥) · fs(∥p − q∥) (1)

Let Ifiltered (p) represent the filtered intensity of pixel p, I(q) denote the intensity of the
next pixel, S be the set of pixels surrounding p, and W be the normalised factor. The variable
fr represents the spatial range of the kernel, which corresponds to the dimensions of the
neighbouring region. On the other hand, fs denotes the minimum magnitude required
for an edge to be detected. This procedure ensures that only pixels with similar intensity
levels to the core pixel are considered for blurring while maintaining distinct intensity
fluctuations. A lower value of fr leads to a more distinct edge. As the value of fs tends
towards infinity, the equation approaches convergence to a Gaussian blur.

2.1.2. Contrast Enhancement via Histogram Equalisation

Due to their low resolution and the settings under which they are captured (tiny
micro-lenses), EIs often exhibit a lack of contrast. Histogram equalisation is commonly
employed to enhance the image contrast by spreading the intensity levels, hence boosting
feature visibility by:

Iequalised (p) = CDF(I(p)) (2)

where I(p) is the intensity of pixel p in the original image, Iequalised (p) is the intensity of
pixel p in the equalised image, and CDF is the cumulative distribution function of the
original image’s histogram. The function CDF(I(p)) assigns a new intensity value to each
pixel by utilising the cumulative distribution, hence improving the contrast of the image.

2.2. Content-Aware Multi-Resolution Disparity Estimation Using Semi-Global Block Matching
2.2.1. Overview

Deriving disparity from EIs using SGBM presents challenges, mostly attributed to the
lack of texture and low resolution. Upsampling the EIs would lead to data loss, resulting
in the introduction of noise and a decrease in image quality. Many studies [14,15] have
investigated the computation of disparity at various resolutions to enhance the accuracy
of disparity maps, particularly in the context of developing deep learning models. While
rescaling EIs may result in a loss of image quality, calculating the disparity at multiple
resolutions instead of merely one upsampled resolution still is an effective approach for
handling varying levels of details and textures. Lower resolutions may result in the
loss of some details in the scene, while higher resolutions may exhibit an inconsistent
overall structure. This indicates a trade-off between maintaining structural consistency and
capturing high-frequency details based on the input resolution [15].

Content information can vary across different regions within EIs, particularly at
varying resolutions. By utilising a content-aware approach, the disparity window size
can be dynamically modified according to the characteristics of each location, resulting in
more accurate disparity estimations. When working with areas that have a high level of
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texture, using a smaller window size would be advantageous in capturing intricate details.
Conversely, in areas that lack texture, a larger window size can be used to minimise noise.

2.2.2. Multi-Resolution Elemental Image Pyramid

Typically, when constructing a pyramid with multiple resolutions for any objective,
the procedure commences by taking the original image and reducing its size. However,
when it comes to EIs, the images are already of low resolution. Creating a pyramid
by progressively down-sampling them will result in extremely small images that lack
significant information. Thus, in the instance of the EIs, the pyramid is formed by enlarging
the EIs into two additional layers and down-sampling the image by one layer, as seen in
Figure 5, enabling the algorithm to encompass characteristics that span from large-scale
structures at lower levels to intricate details at higher resolutions. Start with the EI of the
original size as the base level L0, with each level increased by a factor of two using bicubic
interpolation [16]. A minimum resolution threshold is implemented to prevent further
down-sampling of EIs with an extremely low resolution. If the value of the EI is less than
40 × 40, the down-sampling step is omitted.

Original scale

Down-sample by 0.5

Up-sample by 1

Up-sample by 2

Figure 5. Multi-resolution pyramid of EIs.

2.2.3. Multi-Resolution Content Analysis

Content-aware analysis is an essential process for evaluating the visual attributes in
the EIs. Its purpose is to optimise the window size parameters used in disparity estimation
based on the complexity and textures present at different scales. This analysis is particularly
valuable for adjusting window size parameters at both single and multiple scales to enhance
the precision and resilience of the disparity.

EIs possess a high degree of sensitivity. Consequently, a simpler approach involv-
ing edge segmentation and texture analysis is employed. The Sobel filter is utilised for
accomplishing edge detection. The filter’s sensitivity is contingent upon the resolution of
the images. Low-resolution images necessitate a higher threshold for detecting significant
structures, while high-resolution images require a lower threshold to identify finer details
as depicted in Figure 6.



Appl. Sci. 2024, 14, 3335 7 of 22

Figure 6. Examples of extreme edge thresholds show that the sensitivity of the filter depends on the
resolution of the image. High-resolution images need a lower threshold to identify finer structures,
while low-resolution images need a higher threshold to identify significant features.

Textures are ideal to identify intensity patterns which is great for identifying regions
for disparity estimation. Local Binary Patterns (LBPs) are used in this case to identify the
textures in the EIs. Here, the focus is on larger patterns at lower resolutions and finer
textural details at higher resolutions.

LBPn(p) =
P−1

∑
k=0

2k · 1(In(pk) ≥ In(p)) (3)

where LBP is computed for pixel p located at location n within the image used to classify
the texture. P represents the total number of pixels neighbouring to p, with the summation
ranging from k = 0 to P − 1 and 2k represents the weighting factor assigned to each
neighbouring element, which is determined by its location. The neighbouring pixel’s (pk)
intensity is compared with the central pixel In(p). 1(In(pk) ≥ In(p)) returns 1 if it is true
and 0 if false. Texture maps across different scales are shown in Figure 7.

Figure 7. LBP texture maps across different scales before filtering to show the effect.

To enhance simplicity and preserve time, the edge map E and texture map T are
combined to then form a dynamic adaptive window for the computation of disparities.

F(x, y) = α · E(x, y) + (1 − α) · T(x, y) (4)

The combined feature at pixel (x, y) is denoted as F, and it is influenced by a weighted
factor, α, which ranges from 0 to 1. This factor determines the appropriate ratio between
edge and texture data. The value of α has been cautiously adjusted to achieve the ideal
result for each image.
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2.2.4. Multi-Resolution Multi-Window Disparity Estimation Using SGBM

Dynamic Window: Given that the EI’s resolution varies from 50 × 50 to around
400 × 400, it is necessary to select a range of window sizes. The value of Wmin is selected to
be around 5% of the minimum resolution, resulting in an amount of 5. Similarly, the value
of Wmax is chosen to be roughly 20% of the resolution, resulting in a value of 80. The size of
the window adjusts according to the value of the feature map F. The dynamic window size
W at pixel (x, y) can be calculated by:

W(i, j) = Wmin + (Wmax − Wmin) · (1 − Fnorm(i, j)) (5)

Greater values of Fnorm, representing the normalised F values, will result in the selec-
tion of smaller windows for more complicated regions, and vice versa.

Semi-Global Block Matching Disparity: The disparity is calculated by comparing
blocks of pixels along the epipolar line and obtaining the associated vertical displacement,
as demonstrated in our previous work [17] (see Figure 8). This problem can be represented
by a comprehensive cost function:

E(D) = ∑
d∈D

C(d) + ∑
d′∈N(d)

P1 I{|d−d′ |=1} + ∑
d′′∈N(d)

P2 I{|d−d′′ |>1}

 (6)

where I is a function that indicates whether an input is true or false and returns 1 or 0
accordingly. (d) is the chosen disparity’s data term similarity metric. A 3D cost structure is
used to hold each similarity cost, and this process is repeated for each pixel block, with a
cost of d. The 3D structure stack’s minimal costs stand for possible disparity estimates.

C(pi, qi) similarity measure presenting the goodness of p and its potential match q

Base image pixel pi Match image pixel qi

3D cost structure 

Figure 8. The produced minimal costs are not highly distinctive, which could result in incorrect
disparity estimation [17].

Disparity Aggregation: The resulting minimum costs may lack significant distinc-
tiveness, thus resulting in an incorrect assessment of disparity. This issue is addressed by
employing cost aggregation within these 3D cost structures. The total cost is determined
by aggregating the lowest costs across various image paths. A total of eight paths were
utilised in this paper. Potential cost values were pooled, and a weighted summing of these
cost possibilities was conducted. The weights were obtained from the normalised feature
map Fnorm (x, y), which characterises the contents (texture and edges) at each scale level.
The feature map underwent normalisation:
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Fnorm (x, y) =
F(x, y)

∑L FL(x, y)
(7)

The function Fnorm represents the normalised feature for pixels (x, y), whereas L is
the scale level. Normalising the feature map guarantees that, throughout the content-
aware analysis, disparities from all resolutions contribute proportionally. Thus, the final
content-aware disparity map Dfinal can be represented as:

Dfinal (x, y) = ∑
i

(
Fi(x, y)

∑j Fj(x, y)

)
· DL(x, y) (8)

where DL is the disparity optimised at each level of resolution. To achieve greater accuracy,
a higher weight is assigned to the original scale, since this method is still sensitive to
multiple scales:

Dfinal(x, y) =

(
α · FL0(x, y)

∑j Fj(x, y) + (α − 1) · FL0(x, y)

)
· DL0(x, y)

+ ∑
i ̸=L0

(
Fi(x, y)

∑j Fj(x, y) + (α − 1) · FL0(x, y)

)
· DL(x, y)

(9)

The expression ∑j Fj(x, y) + (α − 1) · FL0(x, y) ensures normalisation for assigning a
larger weight to FL0 , where FL0 represents the feature map at the original level and α is the
weighting factor.

Penalty terms P1 and P2 are introduced, which are based on the difference in neigh-
bourhood disparities, where N(d) is the neighbour of d. Accordingly, for each pixel, all its
neighbouring pixels along the routes are analysed; the greater the difference between the
lateral parallax axes of the pixel and its neighbours, the greater the penalty, resulting in a
considerable increase in the source value of the matching costs (Figure 9). This procedure
ensures a smooth surface by forcing the strings along the path to be somewhat continuous.
This process is repeated for each path and each correspondence in the image to obtain the
final cost.

S(Pi ,qi) 𝑃! = 8×𝑤𝑖𝑛𝑑𝑜𝑤	𝑠𝑖𝑧𝑒×2
𝑃" = 32×𝑤𝑖𝑛𝑑𝑜𝑤	𝑠𝑖𝑧𝑒×2

Figure 9. The ultimate cost is the sum of the least costs along picture routes. Eight pathways were
used. Cost possibilities are pooled and weighted. P1 and P2 are based on neighbourhood disparities,
where N(d) is d’s neighbour [17].

To minimise the noise in the computed disparity image, a weighted least squares
(WLS) filter [18] is applied [17]. The WLS filter, a well-known edge-preserving smoothing
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technique, has weights that highly depend on the image gradients. The final disparity
image can be seen in Figure 10.

(a) (b)

Figure 10. (a) The final disparity image using EIs before background correction. (b) The final disparity
image using EIs after background correction. In this disparity map, the darker the pixel, the closer it
is to the camera for clarity.

2.3. Background’s Disparity Correction

EI-based disparity estimation allows for the recovery of angular information. However,
as can be seen in Figure 10a, incorrect disparity may emerge from large texture-less areas
such as the background because the EIs only represent segments of the whole scene. Thus,
a solution is implemented in which background extraction is first performed to create a
background mask, and then the disparity is corrected.

Initially, a disparity map D of the same size as the Holoscopic image is filled with
zeros. Then, the Holoscopic image’s EIs are iterated over to select the left and right pairs:

EIL = EI(i, j), EIR = EI(i, j + 1); where i ∈ [0, n], j ∈ [0, m) (10)

where i and j are the EIs’ locations in the Holoscopic image of size (n, m). The disparity for
each left and right pair of EIs is computed and the resulting disparity is filtered. D(i, j) is
filled with the computed disparity map.

To separate background EIs from foreground EIs, the background threshold value
bgth, which is in the range [0, 1] based on the disparity map, is defined. The ratio between
non-zero disparity values and the total number of values in the disparity map is computed
as r. If this ratio is greater than bgth, EI(i, j) is labelled as a foreground EI; otherwise,
it is labelled as a background EI. Increasing the value of bgth will add more images to
background EIs, and vice versa.

EI(i, j)
{

Mbg, r <= bgth
M f r, r > bgth

(11)

Background EIs’ disparity values are corrected using the correct background disparity
values in the foreground EIs, as seen in Figure 11 using colour descriptors [19,20]. To obtain
a mask for background regions within foreground EIs (bgr f g), the mean and standard
deviation of each channel (RGB) of foreground EIs are generated. A pixel in the foreground
of an EI is considered to be part of the background if its value is less than one standard
deviation from the mean (across all three RGB channels). This presupposes that the majority
of foreground image pixels are part of the background region. This implies that the average
pixel value should be within one standard deviation of the intensity of the background
pixels at the very least. Finally, calculate the mode of the disparity values for bgr f g.
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Correct foreground EIs' 
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Figure 11. Background EIs’ disparity values are corrected using the foreground EIs’ background
disparity values. Left: Holoscopic image showing background and foreground EIs. Right: Holoscopic
disparity map showing incorrect background EIs being corrected by the background information of
the correct disparity of the foreground EIs.

Finally, the mode (mean or median) of the disparity values for bgr f g is substituted for
the disparity values (in D) of all background EIs. This acts as a disparity correction step
for EIs that only contain background images since stereo SGBM will fail to work for such
pairs. Instead, the background disparity is corrected by replacing it with disparity from
background regions in foreground EIs. The output result can be seen in Figure 10b, where
the background disparity information is fixed.

3. Evaluation
3.1. Dataset

The methodology underwent three evaluations: one comparing the method on VPIs
against EIs, another evaluating the method across multiple resolutions, and a third evaluat-
ing the method on the same dataset but against two other deep learning methods. This study
utilised two Holoscopic datasets to determine the effectiveness of the methodology. The first
is a synthetic dataset [21] that was specifically created to replicate the features of Brunel’s
Holoscopic full-frame camera sensor (Figure 12), which has a sensor size of 35 × 24 mm
and a resolution of 40 megapixels, resulting in image dimensions of 7900 × 5300 pixels.
This dataset has five EI resolutions: 20 × 20, 40 × 40, 60 × 60, 80 × 80, and 100 × 100 pixels.
The simulated images were used to evaluate different resolutions and compare them with
deep learning techniques. The second dataset was acquired using Brunel’s Holoscopic
camera. This dataset is utilised because the synthetic one provides flawless VPI and EI pixel
mapping, resulting in perfect VPIs that are free from lens effects, distortion, and artefacts.
Hence, it is not feasible to directly compare the disparity outcomes between EIs and VPIs
derived from the synthetic images.
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Figure 12. Brunel Holoscopic camera that includes a prime lens, a microlens array, a relay lens to
focus light beams onto the sensor, and a CMOS imaging sensor.

3.2. Metrics

Two types of metrics were used to assess the accuracy of the disparity estimation
methodology: non-ground truth metrics and ground truth metrics. Ground-truth-based
metrics provide dependable evaluation outcomes, but real images from the Brunel camera
lack ground truth disparity, necessitating alternative measurements.

Non-ground truth metrics: The consistency check metric, or left–right disparity
consistency, evaluates disparity uniformity between left and right images, ensuring pixel
correspondence. It is used for refining disparities by scanning both disparities to identify
errors at the pixel level, with the error value indicating precision in the disparity map:

E = | dl(x, y)− dr(x − dl(x, y), y) | ≤ θ (12)

The average error, Eavg, calculates the mean disparity error for each pixel:

Eavg =
1
N ∑

x,y
|dl(x, y)− dr(x − dl(x, y), y)| (13)

Edge alignment evaluates disparity near the edges using the Sobel operator for
edge detection. The Mean Absolute Error (MAE) and its normalised version assess the
disparity accuracy:

MAE =
1
N ∑

(x,y)
|Ie(x, y)− de(x, y)| (14)

MAEnorm = 1 − MAE
MAEmax

(15)

Non-ground truth metrics, though less reliable, provide insight into disparity errors.
Ground truth metrics: For synthetic datasets, ground truth metrics include the Mean

Absolute Error (MAE) for the average absolute difference between predicted and actual
disparities, and the Percentage of Bad Pixels (PBP) for recognising significantly incorrect
disparity pixels:

MAE =
1
N

W

∑
x=1

H

∑
y=1

|de(x, y)− dgr(x, y)| (16)

PBP =
1

NP
∑
(x,y)

(|d(x, y)− dT(x, y)| > δ) · 100 (17)
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Both MAE and PBP metrics are utilised for evaluation, with values normalised
for simplicity.

3.3. Elemental Image Compared to Viewpoint Image

VPIs and EIs are two image structures that can be obtained from Holoscopic images.
Previous research has shown significant results in estimating disparity maps utilising VPIs.
VPIs can be created by extracting a single pixel from each EI and arranging them in a tiled
manner. However, the process of extracting VPIs does not consistently provide ideal images,
unlike the VPIs found in synthetic datasets and those obtained from Lytro (the camera’s
performance was hindered by extensive pre-processing, resulting in a slow performance).
The production of these images involves a significant amount of pre-processing. Occasion-
ally, these procedures may require choosing a group of pixels instead of just one, employing
shift and integration techniques, and utilising other methodologies to remove artefacts.

As depicted in Figure 13, the Holoscopic images used have undergone calibration and
rectification, ensuring that the grid of the EIs aligns perfectly to extract the VPI images
accurately. VPI images are extracted using traditional methods, obtaining one pixel per EI.
Figure 14 displays three extracted VPIs from different locations. These images exhibit a
lower clarity, higher noise, and a reduced resolution when compared to the images typically
obtained from publicly available VPI datasets that have undergone extensive pre-processing.
The difference in clarity between the EIs and VPIs can be seen in Figures 13 and 14.

Figure 13. The Holoscopic image was calibrated and rectified, resulting in a total of 68 × 45 EIs,
with each EI measuring 74 × 74 in size.

(50, 20)(0, 0) (68, 45)

Figure 14. VPIs extracted from three different positions (0, 0), (50, 20), (68, 45).
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Utilising pixel patches instead of single pixels to extract VPIs during pre-processing
might lead to better outcomes, as demonstrated in Figure 15. However, increasing the size
of the extracted patch leads to a decrease in angular information, as the number of VPIs
obtained is dramatically reduced. The number of VPIs is directly related to the resolution
of the EI, which represents the amount of angular information captured. Moreover, while
examining Figure 15, it is apparent that the images require additional pre-processing to
enhance the outcome. The process of obtaining VPIs also results in a substantial rise in the
image generation time. This process can become particularly cumbersome when dealing
with Holoscopic videos.

Figure 15. Holoscopic image, Spiderman: (64 × 34 MLA) 5160 × 2743 and sample images from
different VPIs retrieved using patch sizes ranging from 5 × 5 pixels to 21 × 21 pixels (p). As seen in
the extracted VPIs, they still exhibit some artefacts.

The disparity map was obtained from the EIs of the dataset captured by the Brunel
Holoscopic camera using our approach, and subsequently obtained from the extracted VPIs.
The disparity maps obtained from VPIs are then transformed to generate EIs, enabling a
comparison between EIs with direct disparity estimates and EIs with disparity estimations
derived from VPIs, as seen in Figure 16. The closeup crops from the Holoscopic image
reveal that the disparity calculated by the EIs is distinct and clear, whereas the EIs obtained
from the disparity generated by the VPIs are distorted and ambiguous, as depicted in
Figure 17.

Calibrated and rectified 
holoscopic image 

Estimated 
disparity using EIs

VPIs disparities 
extracted from 

the raw disparity 
extracted from EIs

The associate 
VPIs

Calibrated and rectified 
holoscopic image 

(22, 34)(22, 34)

(0, 0) (0, 0)

(45, 68) (45, 68)

Sample of 3 
VPIs from 3 

different 
locations

(22, 34)

(0, 0)

(45, 68)

(22, 34)

(0, 0)

(45, 68)

The associate 
VPIs 

disparities

Raw Holoscopic disparity 
image created from the 

disparities extracted from 
VPI

(a)

(b)

Disparity  
estimation 
using EIs

VPIs 
extraction

Disparity  
estimation 
using VPIs

Remapping 
VPIs 

disparities to 
raw 

holoscopic
disparities

Figure 16. Disparity map derived from EIs and VPIs. (a) The disparity is calculated directly from
the EIs using the raw Holoscopic image. Within the red-coloured box, there are a few extracted VPI
disparities from the EI-based disparity. Their clarity is compromised by the low resolution. (b) VPIs
are extracted from calibrated and rectified Holoscopic images, and the disparity map is obtained
from them. These VPI disparities are then mapped back to EIs, allowing for a comparison between
VPI-based and EI-based disparity maps.
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Cropped EIs grid Disparity map 
estimated from the EIs

Disparity map 
calculated from the 

VPIs after its pixels are 
transformed to EIs

Raw holoscopic image 

Figure 17. This is a close-up view of a raw Holoscopic image, along with the disparity maps derived
from EIs and VPIs. The disparity map created from EIs has greater clarity compared to the one
derived from VPIs.

The disparity map, evaluated by the consistency check metric, utilises the entire raw
Holoscopic image to optimise the efficiency and minimise the amount of time and effort
required. However, the evaluation of disparity using an edge-preserving approach is
conducted between individual EIs. This metric is capable of detecting both the grid of EIs
and the edges of the features within them. By utilising individual EIs, more reliable results
can be obtained.

The edge alignment bar graph in Figure 18(top) illustrates the MAE values for
12 distinct raw real Holoscopic images, which range between approximately 0.352 and 0.781.
The changes seen can be attributed to disparities in the scene, texture, colour, and complex-
ity throughout the images. The results generally show lower values (better) in comparison
to the edge-alignment metric results derived using VPI disparity where the range of values
for different images is approximately 0.498 to 0.797. Overall, EIs demonstrate better results
in comparison to VPIs, with an average MAE of approximately 0.523, whereas VPIs have
an average MAE of approximately 0.681, which can be viewed in the averaged bar “All”.
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Figure 18. The bar graphs display the edge-alignment matrices (top) and consistency check matrices
(bottom) calculated from 12 raw Holoscopic images captured by the Brunel Holoscopic camera.
The averaged result is labelled as “All”. EIs generally outperform VPIs, as seen by their lower average
MAE and consistency check metric.
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The bar graph depicted in Figure 18(bottom) illustrates the range of values for the
consistency check metric derived from the disparity of EIs and VPIs. The values vary
between approximately 0.334 and 0.756. The results exhibit lower values when compared
to the consistency check metric results generated using VPI disparity, where the values
range between approximately 0.548 and 0.881 for different images. Overall, EIs yield
better results compared to VPIs, exhibiting average values of roughly 0.520, while VPIs
demonstrate an average value of around 0.731. A selection of four raw Holoscopic images
is shown in Figure 19. Simple scenes were captured to compare the disparity of EIs vs. VPIs
directly, rather than assessing the algorithm in a complicated scene configuration.

Wizard

Keyboard

Truck

Truck

Raw holoscopic image Disparity from EIs Disparity from VPIs Raw holoscopic image Disparity from EIs Disparity from VPIs

Cropped grid Close ups

Figure 19. The algorithm was tested on a total of 12 real Holoscopic images. This is a collection of
four images showcasing close-up sections to illustrate the disparity between EIs and VPIs.

3.4. Elemental Image Compared to Viewpoint Image Resolution

The algorithm’s performance was assessed by utilising 24 synthetic Holoscopic images
with five distinct EI resolutions: 20 × 20, 40 × 40, 60 × 60, 80 × 80, and 100 × 100, as shown
in Figure 20. The MAE and PBP were calculated for all resolutions. As depicted in Figure 21,
an increase in the EI’s resolution does not consistently result in an improved accuracy. EIs
with a high resolution are expected to lead to a high score. Yet, the clarity of the EIs
relies on the clarity of the produced VPIs. Smaller EIs typically originate from VPIs with
higher resolutions compared to those larger EIs (trade-off in resolution), which allows for
more information to be presented in the EIs. This ultimately leads to a sharper image,
as seen in Table 1. This table displays a single EI on various scales. Although the EI with a
resolution of 100 × 100 is larger, it is noticeable that the circles on the dice in the EI with a
resolution pf 60× 60 are more defined and sharper. As the scale increases, the EI loses more
information, resulting in the presence of noisy features. Future research can employ this
dataset with many resolutions to construct a multi-resolution pyramid, thereby capturing
all the accessible information at each level of resolution.
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Table 1. EIs of three different scales, original, down-sampled, and up-sampled.

EI Slice
Resolution 20 × 20 40 × 40 60 × 60 80 × 80 100 × 100

Original
Resolution

Scaled-Down
(20 × 20)

Scaled-Up
(100 × 100)

Extracted VPI
Disparity from raw 
holoscopic image

Extracted VPI from 
raw holoscopic 
disparity

Closeup from raw 
holoscopic image

Disparity from raw 
holoscopic image

Extracted VPI from 
raw holoscopic 
disparity

Closeup from raw 
holoscopic image

Disparity from raw 
holoscopic image

Extracted VPI from 
raw holoscopic 
disparity

Closeup from raw 
holoscopic image

20x20 40x40 60x60 80x80 100x100Resolutions

Figure 20. Example of three Holoscopic images alongside their calculated disparities at various
resolutions. Observing the disparity from the low-resolution images is difficult. Consequently,
close-up views are offered.

As seen in Figure 21, the MAE values for the methodology across different resolutions
reveal varying degrees of accuracy. The MAE for the 20× 20 resolution ranges between 0.673
and 0.804, suggesting a significant amount of errors. For the 40 × 40 resolution, the MAE
ranges between 0.613 and 0.755, indicating a significantly enhanced performance in com-
parison to the 20 × 20 resolution. The 60 × 60 resolution’s MAE ranges from 0.430 to 0.650,
demonstrating a significant improvement in accuracy compared to the lower resolutions.
The MAE for the 80 × 80 resolution varies between 0.419 and 0.625, indicating a higher
level of precision. At a resolution of 100 × 100, the MAE varies between 0.462 and 0.640,
suggesting a somewhat lower level of precision compared to the 80 × 80 resolution.

The PBP for the 20× 20 resolution ranges from 68.8% to 86.1%, suggesting a significant
presence of bad pixels. The PBP of the 40 × 40 resolution falls within the range of 72.7%
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to 87.0%, indicating comparable performance to that of the 20 × 20 resolution. Moving to
60 × 60 resolution, the range is from 49.4% to 66.9%, suggesting a significant reduction in
bad pixels compared to the lower levels. With an 80 × 80 resolution, the PBP falls between
39.6% and 64.1%, indicating a significant enhancement in performance and a reduction in
the number of bad pixels. Finally, at 100 × 100 resolution, the range is from 44.7% to 64.3%,
exhibiting an accuracy that is slightly lower than 80 × 80.
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Figure 21. The bar graph illustrates the performance of disparity calculated at five different resolu-
tions. The graph shows that the EIs achieve the highest level of precision at a resolution of 80 × 80,
followed by 100 × 100.

Images with a low resolution, such as 20 × 20 and 40 × 40 images, still have a notice-
ably reduced accuracy. This is because achieving accurate disparity typically requires a
combination of a wide baseline and a high-resolution image. Since larger EIs demonstrate
a greater baseline and a reduced number of texture-less EIs, as depicted in Figure 22, the
results for high-resolution EIs are better than the accuracy in low-resolution images.

20x20  Elemental Image

(a)

100x100  Elemental Image

(b)

Figure 22. (a) shows the output of 20 × 20 pixel EIs with a significant texture-less area, leading to an
incorrect disparity computation. In (b), the outcome of 100 × 100 EIs taken from the same point with
a wider baseline and a larger portion of the objects presented is a more accurate disparity.
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3.5. Comparative Analysis of Stereo-Matching Networks

The results from raw Holoscopic images (EIs) were also compared against two state-
of-the-art deep learning stereo-matching algorithms: the methods by Zhang et al. [22] and
Chang and Chen [23]. Zhang et al. [22] proposed a technique to enhance the generalisation
abilities of stereo-matching networks. Their main objective was to maintain the consistency
of features between corresponding pixels. Their methodology combines pixel-level con-
trastive learning with a stereo-selective whitening loss to enhance the consistency of features
across various domains. This technique is highly versatile and may be easily integrated into
pre-existing networks without any disruptions.

Chang and Chen [23] employed supervised learning and convolutional neural net-
works (CNNs) to address the task of estimating disparities from stereo image pairs. They
proposed a Pyramid Stereo-Matching Network (PSMNet) as an alternative to the patch-
based Siamese networks commonly employed in current architectures. The PSMNet
overcomes the limitation of incorporating contextual information in uncertain regions by
incorporating spatial pyramid pooling and a 3D CNN.

Both of the pre-trained models were used to extract disparity from all 24 raw Holo-
scopic images in the dataset, and an 80 × 80 resolution was chosen based on the accuracy
level from the previous section. These results were then compared with those obtained
from this paper’s method applied to the same dataset. The disparity outcome of a basic
EI of both deep learning models was highly blurred and undefined, as seen in Figure 23.
These outcomes can be attributed to various factors, including the dissimilar characteris-
tics of the higher-resolution stereo images utilised for training the models developed by
Zhang et al. [22] and Chang and Chen [23] compared to the low-resolution and low-texture
EIs. Therefore, when these models are employed on the EIs, they struggle with accurately
capturing intricate details. Furthermore, the efficacy of these models is greatly influenced
by their specific architecture, particularly Chang and Chen [23]’s PSMNet, which further
reduces the resolution of low-resolution EIs, resulting in unsatisfactory outcomes.

Multi-resolution SGBM Zhang et al. (2022) Chang and Chen (2018)Raw Holoscopic image

Figure 23. Both deep learning algorithms result in blurry and undefined EIs compared to our
result [22,23].

As depicted in Figure 24, MAE values for this paper’s method ranged from 0.419 to 0.625,
which were considerably lower than the MAE values reported by Zhang et al. [22], ranging
from 0.637 to 0.801, and Chang and Chen [23], ranging from 0.686 to 0.798. Regarding the
PBP, this paper’s method achieved percentages ranging from 39.6% to 64.1%, which indicates
a superior performance. In comparison, Zhang et al. [22] and Chang and Chen [23] obtained
greater percentages, with ranges of 63.3% to 78.7% and 65.7% to 77.9%, respectively.
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Figure 24. The bar graph depicts the comparative performance of the extracted disparity to that of the
methods of Zhang et al. [22] and Chang and Chen [23], demonstrating that our method outperforms
both methods’ algorithms.

4. Conclusions

This study introduces a novel method for disparity estimation in Holoscopic 3D imag-
ing, leveraging angular information from Elemental Images (EIs) over traditional spatial data
from Viewpoint Images (VPIs). Our goal was to evaluate if EIs could serve as a more accurate
foundation for disparity estimation, offering an alternative to conventional methods.

Through detailed experimentation, we developed an approach that not only gener-
ates accurate disparity maps from EIs but also surpasses both traditional strategies and
advanced deep learning algorithms. This achievement stems from an innovative applica-
tion of the Semi-Global Block Matching (SGBM) method, enhanced by multi-resolution
techniques and content-aware analysis, optimizing the use of EIs’ angular data.

Our findings indicate that EIs, even without extensive manipulation, provide a more
reliable basis for disparity estimation than VPIs. This suggests that the inherent angular
information in EIs is better suited for precise disparity assessments, paving the way for
advancements in Holoscopic 3D imaging technology.

Furthermore, our method outperformed comparable deep learning models, a result
attributable to EIs’ unique characteristics, notably their lower texture and resolution. This
highlights a critical gap in current deep learning approaches: the lack of training on
datasets specifically designed for the nuances of EIs. Our study underscores the urgent
need to create comprehensive EI datasets for training deep learning models for EI-based
applications, promising significant progress in automated disparity estimation.

Moreover, our investigation into EI resolutions revealed that higher resolutions do not
always equate to a better disparity estimation accuracy. We identified an optimal resolution
range for EIs, challenging the assumption that higher is always better and offering insights
into how resolution influences angular information extraction for disparity calculations.

Additionally, the potential of EIs for developing compact depth-sensing devices opens
new possibilities for their use in microscopes, mobile devices, medical instruments like
endoscopes, and real-time depth estimation applications such as autonomous vehicles and
medical diagnostics. This is due to EIs’ ability to be captured directly by image sensors,
simplifying the depth estimation process.

In conclusion, our research confirms the viability of using angular perspective data
from EIs for disparity estimation in Holoscopic 3D imaging, marking a significant advance-
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ment over traditional methods. The implications for future 3D imaging technologies are
vast, necessitating continued research to unlock the full potential of EIs in enhancing the
depth estimation accuracy and efficiency across various applications.
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