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Abstract: With the increasing demand for space missions, space robots have become the focus
of research and attention. As a typical representative, the free-floating dual-arm space robot has
the characteristics of multiple degrees of freedom, a floating base, and dynamic coupling between
the manipulator and the base, so its modeling and control are very challenging. To address these
challenges, a novel dynamic modeling and control method is proposed for a free-floating dual-arm
space robot. First, an explicit dynamic model of a free-floating dual-arm space robot is established
based on the explicit canonical multi-rigid-body dynamic modeling theory and combined with the
concept of a dynamic equivalent manipulator. The establishment process of this model is not only
simple and canonical to avoid the definition and calculation of many intermediate variables, but the
symbolic result expression of the model also has the characteristics of iteration, which is convenient
for computer automatic modeling. Next, aiming at addressing the problem of trajectory tracking
and the base attitude stability of a free-floating dual-arm space robot with parameter perturbation
and external disturbance, an improved nonlinear model predictive control method introducing the
idea of sliding mode variable structure is proposed. Theoretical analysis shows that the proposed
controller has better robustness than the traditional nonlinear model predictive controller. Then, an
in-orbit service task is designed to verify the effectiveness of the proposed dynamic modeling and
control strategy of the free-floating dual-arm space robot. Finally, the dynamic modeling and control
methods proposed are discussed and summarized. The proposed methods can not only realize the
tracking of the desired trajectory of the arms of the free-floating space robot, but can also realize the
stable control of the base of the free-floating space robot. This paper provides new insights into the
difficult problems regarding the dynamics and control of free-floating dual-arm space robots.

Keywords: free-floating dual-arm space robot; dynamic modeling; sliding mode; nonlinear model
predictive control

1. Introduction

Since the 1990s, space manipulators used to manipulate and capture payloads have
received extensive attention [1–6]. Space manipulator can not only be installed on a space
station to assist astronauts in the maintenance of the space station [7–9], but can also be
installed on an unmanned satellite to carry out in-orbit maintenance of the satellite and
capture space debris [10–13]. In 2007, the US Orbital Express project carried out capture
and maintenance experiments of controlled target satellites using unmanned satellites
equipped with a manipulator [14]. Unlike a manipulator with a fixed base on the ground,
the base of a small space robot composed of a small unmanned satellite and manipulator is
generally movable [15]. This kind of space robot with a movable base is a typical unrooted
tree multibody dynamic system, which has the characteristics of many degrees of freedom
(DOF), strong nonlinearity and strong coupling [16]. Its dynamic modeling and control are
challenging and have attracted increasing attention from researchers in recent years [1,15].

Appl. Sci. 2024, 14, 3333. https://doi.org/10.3390/app14083333 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083333
https://doi.org/10.3390/app14083333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14083333
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083333?type=check_update&version=2


Appl. Sci. 2024, 14, 3333 2 of 26

Compared with single-arm space robots, the establishment of the dynamic model
of a dual-arm space robot is more complicated. So far, according to the different expres-
sions of dynamic equations, the dynamic modeling methods of multibody systems such as
robots are mainly divided into recursive methods based on the Newton–Euler equation
and explicit methods based on the Lagrange equation. Recursive methods can obtain
efficient recursive equations, but they are not suitable for the derivation of a high control
law [17,18]. Compared with recursive methods, the expression of the dynamic equation
of explicit methods is more intuitive. The pseudo inertia matrix method [19,20] and the
generalized momentum method [21] are two common explicit dynamic modeling methods.
However, these two explicit methods both have the problem that many intermediate vari-
ables need to be analyzed and calculated. Recently, an explicit multi-rigid-body dynamic
modeling method was proposed, which can directly obtain the final canonical expression
of a multibody system [22,23].

Unlike ground robots with a fixed base, space robots have dynamic coupling between
the arm and the movable base [24,25]. If this is not controlled, it will lead to accidental
movement of the base and affect the performance of the space robot [7,26,27]. For exam-
ple, to ensure reliable communication with the ground or receive solar energy, the base
of the satellite needs to accurately point in a fixed position, but the dynamic coupling
between the arm and the base will interfere with the attitude of base [7]. Dubowsky and
Papadopoulos [28] divided space robots with movable bases into free-flying space robots
and free-floating space robots according to the different control problems to be solved.
Unlike free-flying space robots that need to control the position and attitude of the base at
the same time, free-floating space robots only needs to consider the control of base attitude,
which can save energy [29]. In order to simplify the kinematic analysis of free-floating space
robots, Vafa and Dubowsky [30] proposed the concept of the virtual manipulator (VM). VM
is a fixed base robot with the same kinematic equivalence as a free-floating space robot, and
its first joint is a passive spherical joint, which represents the free-floating characteristics of
the space robot [31]. Liang [32] extended the concept of VM and proposed the dynamic
equivalent manipulator (DEM), which can simultaneously simplify the kinematics and
dynamics analysis of free-floating space robots.

In the process of in-orbit service, a space robot will not only be subjected to unknown
disturbances from the outside, but will also be constrained by the uncertainty of internal
parameters of the system caused by the change in fuel quality and other factors [15].
Therefore, designing controllers for space robots is a challenge which has been studied
by many researchers [33–35]. Papadopoulos and Dubowsky [29] noted the similarities
in control between free-floating space robots and ground fixed-base robots. Since then,
many control algorithms designed for ground fixed-base robots have been studied and
applied in space robots. Among them, the PID control method, which has been widely
studied in ground industrial robots, has also been used in space robots [36]. However,
this method has the problem of parameter tuning difficulty when it is applied to control
an in-orbit service space robot with complex disturbances. Sliding mode control (SMC)
is widely applied in the field of nonlinear systems because of its high precision and fast
response [37,38]. Slotine et al. [39] first used SMC to design the controller of a two-DOF
manipulator, and then the researchers conducted much research on the SMC of robots,
representing a typical nonlinear system [40,41]. In recent years, many novel SMC methods
have been proposed for the in-orbit service of space robots [42,43]. Model predictive control
(MPC) is an excellent control method based on a system model to obtain a control signal
by minimizing the objective function [44]. Raimondo et al. [45,46] improved MPC for the
control problem of nonlinear systems and obtained better control performance. In the
field of space robots, compared with other control methods, there is relatively less research
on MPC. When studying the control problem of dual-arm space robots, Shi [47] found
that MPC can achieve higher-precision control performance than SMC when there is no
system disturbance, while SMC shows better robustness than MPC when there is system
disturbance. Tomasz Rybus [44] discussed the possibility of applying a nonlinear model
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predictive controller (NMPC) to a free-floating space robot. Tomasz Rybus [11] proposed a
new concept for a free-floating space robot control system, in which the NMPC controller
introduced a trajectory planning module, but the paper only carried out a numerical
simulation on the planar case of the two-DOF manipulator.

In this paper, the dynamic model of a free-floating dual-arm space robot with styliza-
tion and high computational efficiency is established by using the concept of DEM and the
explicit multi-rigid-body dynamic modeling theory [22,23], and a novel control method is
proposed. This method can be effectively applied to the terminal trajectory tracking and
base attitude stability control of free-floating space robots under the condition of parameter
perturbation and external disturbance. The remainder of this paper is organized as follows:
in Section 2, a free-floating dual-arm space robot is modeled and analyzed by using explicit
multi-rigid-body dynamic modeling theory and DEM. In Section 3, an improved NMPC
controller is designed and its stability is analyzed based on Lyapunov theory. In Section 4,
an in-orbit service task is designed and a numerical simulation is performed to verify
the proposed controller. In Section 5, the dynamic modeling and control methods for the
free-floating space robot are discussed, while the conclusions are provided in Section 6.

2. Dynamic Modeling of Free-Floating Dual-Arm Space Robot

This section mainly introduces and analyzes the dynamic model of a free-floating
dual-arm space robot based on the explicit multi-rigid-body dynamic modeling method
and combined with the concept of DEM, which is used for subsequent control research.
Because kinematics is the foundation of dynamics [17], the kinematic model is introduced
first before the dynamic modeling.

2.1. Kinematic Modeling

The free-floating dual-arm space robot used in this study is a typical unrooted tree
multibody system [16]. The schematic diagram of the free-floating dual-arm space robot
studied in this paper is shown in Figure 1. The topological structure analysis and the
establishment of the reference frames of the space robot are introduced below.
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Figure 1. Schematic diagram of the free-floating dual-arm space robot.

The topology of a robot is usually composed of nodes representing the links (except
the root node) and arcs representing the joints [48]. The schematic diagram of the free-
floating dual-arm space robot is shown in Figure 1, where lkl represents the kinematic
pair composed of parent link l and child link l. Each arm of the free-floating dual-arm
space robot contains three single-DOF revolute pairs. The attitude of the base of the free-
floating space robot has three rotational DOF. According to the concept of DEM, after the
free-floating base of the space robot is equivalent to three single-DOF revolute pairs, the
unrooted free-floating tree-chain space robot can be equivalent to a fixed-base tree-chain
ground robot [31]. According to the above analysis, the topology graph of the free-floating
dual-arm space robot is shown in Figure 2, where i represents the inertial space, b represents
the base, l represents the left arm, r represents the right arm and R represents the revolute
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pair. Except for the root node, the remaining nine nodes in the topology correspond to
the nine DOF of the free-floating dual-arm space robot, and these nodes are numbered in
turn. In addition, unless otherwise specified, the rest of the symbols used in this article are
shown in Table A1 of Appendix A.
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Figure 2. Topology graph of the free-floating dual-arm space robot.

To improve the calibration accuracy of the robot’s structural parameters, we propose
a reference system establishment method based on the Axis-Invariant [49]. The reference
frames and the Axis-Invariant of the left arm of the free-floating dual-arm space robot are
described in Figure 3. The origin of the inertial reference frame Oixiyizi is located at the
center of the Earth. The origin of the base reference frame Obxbybzb is located at the center
of mass of the base. The origins of the joint reference frames Ol xlylzl are located on the
rotation axes of the joints. At the initial moment, the directions of these reference frames
are consistent. The Axis-Invariant lnl is defined as the motion axis vector direction of joint
l. For more background and applications of the Axis-Invariant, refer to [22,23,49–51].
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With the Axis-Invariant lnl as the reference axis, the rotational vector lϕl of the rotating
joint and the translational vector lrl of the prismatic joint can be expressed as follows [22,23]:

lϕl =
lnl ·ϕ

l
l (1)

lrl =
lnl ·r

l
l +

l
0rl (2)

The rotation transformation matrix lQl based on the Axis-Invariant lnl can be ex-
pressed as follows [22,23]:

lQl = 1 + lñl ·sin(ϕl
l)+

l ñ̂2
l ·
(

1 − cos(ϕl
l

))
(3)
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According to the expression of the rotation transformation matrix lQl in Equation (3),
the iterative kinematic equations of multi-joint series based on the Axis-Invariant lnl can be
expressed as follows:

iQl =

i1l

∏
k

kQk (4)

iϕl =

i1l

∑
k

i|kϕk =

i1l

∑
k

iQk·
kϕk (5)

irl =

i1l

∑
k

i|krk =

i1l

∑
k

iQk·
krk (6)

where the left superscript “i|” of the vector represents the projection of the vector under
the inertial reference frame Oixiyizi.

The velocity vector and acceleration vector are the derivative and second derivative
of the displacement vector, respectively. By taking the derivative and second derivative
of Equations (5) and (6), the iterative velocity and iterative acceleration of multi-joint
kinematic chain ill can be expressed as follows:

i .
ϕl =

i1l

∑
k

(
i|k .

ϕk

)
(7)

l ..
ϕi =

i1l

∑
k

(
i

.
ϕ̃k·

i|k .
ϕk +

i|k ..
ϕk

)
(8)

ir.l =

i1l

∑
k

(
i

.
ϕ̃k·

i|krk +
i|k .

rk

)
(9)

i ..rl =

i1l

∑
k

(
i

..
ϕ̃k·

i|krk +
i

.
ϕ̃

2̂

k ·
i|krk + 2·i

.
ϕ̃k·

i|k .
rk +

i|k ..
rk

)
(10)

2.2. Dynamic Modeling

As a classical method of multibody system dynamics modeling, the Lagrange equation
is widely used in the field of robot dynamics [52]. When the free-floating dual-arm space
robot serving in orbit is running in space, the influence of gravity can be ignored, and the
joint type of the robot only contains rotating joints. The Lagrange equation expression
of the space robot tree-chain multibody system based on the Axis-Invariant, which only
contains rotating joints and ignores gravity, is as follows [22,23]:

d
dt

 ∂E i
L

∂
.
ϕ

u
u

−
∂E i

L
∂ϕu

u
= i|unT

u · iLτu (11)

where E i
L is an energy term,

E i
L =

iL

∑
k

(
1
2
·i

.
ϕ

T
k ·

i|kIJkI ·
i .
ϕk +

1
2
·mk·i

.
rT

kI ·i
.
rkI

)
(12)

The iterative partial derivative equation based on the Axis-Invariant is [22,23]

∂irnS

∂ϕk
k

=
∂i .

rnS

∂
.
ϕ

k
k

=
∂i ..rnS

∂
..
ϕ

k
k

= i|kñk·i|krnS (13)
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∂i
.
ϕn

∂
.
ϕ

k
k

=
∂i

..
ϕn

∂
..
ϕ

k
k

= i|knk (14)

Substituting Equations (1)–(10) and (13) and (14) into Equations (11) and (12), after
simplifying the results, the explicit canonical dynamic expression of the space robot tree-
chain multibody system that ignores gravity and only contains rotating joints can be
obtained:

i|unT
u ·M

[u][∗]
R · ..

q + i|unT
u ·h

[u]
R = i|unT

u ·iLτu (15)

where M[u][∗]
R is a 3 × 3 inertia matrix for revolute pairs and h[u]

R is a 3D bias force vector for
revolute pairs,

M[u][∗]
R · ..

q =

i1u
∑
l

(
uL
∑
j

(
i|jIJjI − mj·i|u r̃jI ·i|l r̃jI

)
·i|lnl ·

..
ϕ

l
l

)

+
uL
∑
k

(
kL
∑
j

(
i|jIJjI − mj·i|u r̃jI ·i|k r̃jI

)
·i|knk·

..
ϕ

k
k

) (16)

h[u]
R =

i1u
∑
l

{(
uL
∑
k

(
i|kIJkI − mk·i|u r̃kI ·i|l r̃kI

))
·i

.
ϕ̃l ·i|l

.
ϕl

}
+

uL
∑
k

{(
kL
∑
j

(
i|jIJjI − mj·i|u r̃jI ·i|k r̃jI

))
·i

.
ϕ̃k·i|k

.
ϕk

}

+
uL
∑
k

(
mk·i|u r̃kI ·

i1kI
∑
l

(
i

.
ϕ̃

2̂

l ·i|lrl + 2·i
.
ϕ̃l ·i|l

.
rl

))
+

uL
∑
k

(
i

.
ϕ̃k·i|kIJkI ·i

.
ϕk

)
(17)

According to Equation (15) and the above topological analysis, the explicit canonical
dynamic model of the base, left arm and right arm of the free-floating dual-arm space robot
can be obtained as follows:

base :


inT

1 ·M
[1][•]
R · ..

q + inT
1 ·h

[1]
R = inT

1 ·iLτ1
i|1nT

2 ·M
[2][•]
R · ..

q + i|1nT
2 ·h

[2]
R = i|1nT

2 ·iLτ2
i|2nT

3 ·M
[3][•]
R · ..

q + i|2nT
3 ·h

[3]
R = i|2nT

3 ·iLτ3

left arm :


i|3nT

4 ·M
[4][•]
R · ..

q + i|3nT
4 ·h

[4]
R = i|3nT

4 ·iLτ4
i|4nT

5 ·M
[5][•]
R · ..

q + i|4nT
5 ·h

[5]
R = i|4nT

5 ·iLτ5
i|5nT

6 ·M
[6][•]
R · ..

q + i|5nT
6 ·h

[6]
R = i|5nT

6 ·iLτ6

right arm :


i|3nT

7 ·M
[7][•]
R · ..

q + i|3nT
7 ·h

[7]
R = i|3nT

7 ·iLτ7
i|7nT

8 ·M
[8][•]
R · ..

q + i|7nT
8 ·h

[8]
R = i|7nT

8 ·iLτ8
i|8nT

9 ·M
[9][•]
R · ..

q + i|8nT
9 ·h

[9]
R = i|8nT

9 ·iLτ9

(18)
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The above Equation (18) can be rewritten as follows:



M[1][1] M[1][2] M[1][3] · · · · · · M[1][7] M[1][8] M[1][9]

M[2][1] M[2][2] M[2][3] · · · · · · M[2][7] M[2][8] M[2][9]

M[3][1] M[3][2] M[3][3] · · · · · · M[3][7] M[3][8] M[3][9]

...
...

... · · · · · ·
...

...
...

...
...

... · · · · · ·
...

...
...

M[7][1] M[7][2] M[7][3] · · · · · · M[7][7] M[7][8] M[7][9]

M[8][1] M[8][2] M[8][3] · · · · · · M[8][7] M[8][8] M[8][9]

M[9][1] M[9][2] M[9][3] · · · · · · M[9][7] M[9][8] M[9][9]





..
ϕ

i
1

..
ϕ

1
2

..
ϕ

2
3

...

...
..
ϕ

3
7

..
ϕ

7
8

..
ϕ

8
9


+



h[1]

h[2]

h[3]

...

...
h[7]

h[8]

h[9]


=



τ[1]

τ[2]

τ[3]

...

...
τ[7]

τ[8]

τ[9]


(19)

According to Equations (16) and (17), the inertia matrix M[·][·] and the bias force vector
h[·] in Equation (19) can be defined by Equations (A1)–(A9) and Equations (A10)–(A15) in
Appendix B, respectively.

3. Design of the Improved NMPC Controller

In this section, an improved NMPC controller is designed for the trajectory tracking
control of a free-floating dual-arm space robot serving in orbit. The principle of the
improved NMPC controller designed in this paper is shown in Figure 4. As shown in
Figure 4, the controller proposed in this paper is mainly composed of a predictive control
unit for the rolling optimization of a nominal dynamic model and a sliding mode variable
structure control unit for the purposes of weakening the influence of disturbance. The
improved NMPC controller introduced the idea of SMC control and added the sliding
mode variable structure control technology to suppress the disturbance, which improved
the performance of the traditional NMPC controller.
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Figure 4. The principle block diagram of the proposed controller.

According to Figure 4, the control law of the proposed controller can be expressed
as follows:

u = um + uc (20)

where um is the torque generated by the predictive control unit and uc is the torque
generated by the sliding mode variable structure control unit.

3.1. Design of the NMPC Controller

The designed predictive controller refers to the classical NMPC control algorithm
developed in [53]. NMPC is essentially a kind of optimal control that aims to minimize the
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trajectory tracking error during control. Therefore, the cost function of the NMPC is often
expressed as [53,54]:

Jcost =
1
2

∫ T2

T1

e(t + τ)Te(t + τ)dτ (21)

where e(t + τ) = q(t + τ) − qd(t + τ) is the prediction error at time t + τ and τ is the
prediction time. q(t + τ) and qd(t + τ) represent the actual and desired joint angles of the
system at time t + τ, respectively.

The truncated Taylor series is applied to expand q(t + τ) as follows:

q(t + τ) = q(t) + τ
.
q(t) +

τ2

2
..
q(t) (22)

If T(t)= [I9×9τ·I9×9
τ2

2 ·I9×9], ρ (t)= [q(t)
.
q(t)

..
q(t)]T, and ρd(t)= [qd(t)

.
qd(t)

..
qd(t)]

T are
taken, then q(t + τ) and qd(t + τ) can be expressed as:

q (t + τ) = T(t)·ρ(t)
qd(t + τ) = T(t)·ρd(t)

(23)

According to Equation (23), the prediction error e(t + τ) can be re-expressed as:

e(t + τ) = T(t)(ρ(t)− ρd(t)) (24)

The nominal dynamic model of the free-floating dual-arm space robot under ideal
conditions can be expressed as follows:

M̂· ..
q(t) + ĥ = u (25)

where M̂ and ĥ are the nominal inertia matrix and nominal bias force vector of the free-
floating dual-arm space robot constructed in the second section of this paper under ideal
conditions.

According to Equation (25), the vector ρ(t) can be expressed as

ρ(t) =

q(t)
.
q(t)
..
q(t)

 =

 q(t)
.
q(t)

−M̂−1·ĥ

+

 09×1
09×1

M̂−1·u

 (26)

According to Equation (26), the cost function Jcost in Equation (21) can be re-expressed
as

Jcos t =
1
2
(ρ(t)− ρd(t))

T
Π(ρ(t)− ρd(t)) (27)

The matrix Π in the above formula is expressed as

Π =
∫ T2

T1
T(t)TT(t)dτ

=

 Tr·I9×9
Tr

2

2 ·I9×9
Tr

3

6 ·I9×9
Tr

2

2 ·I9×9
Tr

3

3 ·I9×9
Tr

4

8 ·I9×9
Tr

3

6 ·I9×9
Tr

4

8 ·I9×9
Tr

5

20 ·I9×9

 (28)

where the rolling period Tr = T2 − T1.
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The system control law um of the predictive control unit can be solved according to
∂Jcost
∂um

= 0:

um = −M̂



[
10

3Tr 2 ·I9×9
5

2Tr
·I9×9 I9×9

]
·

\

 q(t)− qd(t).
q(t)− .

qd(t)
−M̂−1·ĥ − ..

qd(t)


 (29)

According to e(t) = q(t) − qd(t) and
.
e(t) =

.
q(t) − .

qd(t), Equation (29) can be re-
expressed as

um = −M̂·[A1·e(t) + A2·
.
e(t)] + ĥ + M̂· ..

qd(t) (30)

where A1 = 10
3Tr 2 ·I9×9, A2 = 5

2Tr
·I9×9.

3.2. Design of an Improved NMPC Controller Based on Sliding Mode Variable Structure

During the in-orbit service of an actual space robot, the dynamic parameters will
change due to factors such as fuel consumption, and the space robot will inevitably be
affected by external disturbances. Therefore, considering the influence of parameter un-
certainty and external disturbances, the practical dynamic model of the in-orbit service
free-floating dual-arm space robot is

M· ..
q(t) + h = u + d (31)

where M and h are the actual inertia matrix and the actual bias force vector of the free-
floating dual-arm space robot, respectively, and d is the external disturbance.

The sliding mode function is taken as

s =
.
e(t) + P·e(t) + V·

∫ t

0
e(t)dt (32)

where e(t) = q(t)− qd(t),
.
e(t) =

.
q(t)− .

qd(t), P = 2Λ, V = Λ2, Λ is a positive definite
diagonal matrix of size 9 × 9, λi is a diagonal element of Λ, and λi > 0.

The sliding mode hyperplane is

.
s =

..
e(t) + P· .

e(t) + V·e(t) (33)

According to
..
e(t) =

..
q(t)− ..

qd(t), Equation (33) can be re-expressed as

.
s =

..
q(t)− [

..
qd(t)− P· .

e(t)− V·e(t)] (34)

The reference acceleration
..
qr(t) is taken as

..
qr(t) =

..
qd(t)− P· .

e(t)− V·e(t) (35)

Then, Equation (34) can be re-expressed as

.
s =

..
q(t)− ..

qr(t) (36)

According to Equation (31), we can obtain

..
q(t) = M−1·(u + d − h) (37)

According to Equation (37), Equation (36) can be re-expressed as

.
s = M−1·[u + d − h − M· ..

qr(t)] (38)
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By substituting Equations (20), (30) and (35) into Equation (38), we can obtain

.
s = M−1·(uc + ∆u) (39)

where ∆u is the uncertainty of the system.
According to Equation (39), we can obtain

sT· .
s = sT·M−1·(uc + ∆u) (40)

Theorem 1. Suppose there is a positive definite matrix B ∈ Ra×a of a × a and there is a positive
real number b > 0 such that b·I > B holds, where I is the identity matrix of size a × a. Suppose any
vector y ∈ Ra and ∥y∥ ≤ ρ; then, for any vector x ∈ Ra, the following inequality holds:

xT·B·y ≤ b·ρ·∥x∥ (41)

According to Theorem 1, we can obtain

sT·M−1·∆u ≤ 1
m_
·ρ·∥s∥ (42)

where m_ is the infimum of M.

Because ∥s∥ ≤
9
∑

i=1
|si|, then according to Equations (40) and (42), we can obtain

sT· .
s ≤ 1

m_
·ρ·

9

∑
i=1

|si|+ sT·M−1·uc (43)

3.3. Analysis of Stability

The sliding mode boundary thickness is denoted as σi. If the control process of the
closed-loop control system from the initial state to the sliding mode surface is expected to
satisfy Lyapunov stability, then

1
2
· d
dt

(
sT·s

)
≤ −

9

∑
i=1

(ηi·(|si| − ϕi)) < 0 (44)

Because sT· .
s = 1

2 ·
d
dt
(
sT·s

)
, according to Equations (43) and (44), to ensure the stability

of the system, it is necessary to select uc to meet the following conditions:

1
m_
·ρ·

9

∑
i=1

|si|+ sT·M−1·uc ≤ −
9

∑
i=1

(ηi·|si| − ηi·ϕi) < 0 (45)

Equation (45) can be re-expressed as

sT·M−1·uc ≤ −
9

∑
i=1

((
ρ

m
+ ηi

)
·|si| − ηi·ϕi

)
(46)

According to Equation (46), the control law of the sliding mode variable structure
control unit can be constructed as

uc = −G·Ω(si)·s (47)

where G is a positive definite diagonal matrix of size 9 × 9, gi(si) is a diagonal element of
G and gi(si) is a positive definite function; Ω is also a positive definite diagonal matrix of
size 9 × 9, and 1/|si| is a diagonal element of Ω.
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By substituting Equation (47) into Equation (46), we can obtain

m·sT·M−1·G(si)·Ω(si)·s ≥ m·
9

∑
i=1

((
ρ

m
+ ηi

)
·|si| − ηi·ϕi

)
(48)

where m is the supremum of M.

Theorem 2. Consider M ∈ Ra×a to be a positive definite matrix of size a × a and K ∈ Ra×ato
be a diagonal positive definite matrix of size a × a. If there exists a positive real number m >
0 and m·I ≥ M, then for any vector x ∈ Ra, the following equation holds:

m·xt·M−1·K·x ≥ xt·K·x (49)

The proof of Theorem 2 is given in Equations (A16)–(A18) in Appendix C.
According to Theorem 2, we can obtain

m·sT·M−1·G(si)·Ω(si)·s ≥ sT·G(si)·Ω(si)·s

\ =
9
∑

i=1
(gi(si)·si·dsgn(si)) ≥ 0

(50)

According to Equations (48) and (50), to ensure the stability of the system, the following
equation needs to be satisfied:

9

∑
i=1

(gi(si)·si·dsgn(si)) ≥ m·
9

∑
i=1

((
ρ
m_
+ ηi

)
·|si| − ηi·ϕi

)
(51)

The above Equation (51) can be re-expressed as

gi(si) > m·
(

ρ
m_
+ ηi

)
− m·ηi·ϕi

|si|
(52)

The control law of the sliding mode variable structure control unit in Equation (47) is
equivalent to

u[i]
c = −gi(si)·

1
|si|

·si = −gi(si)·dsgn(si) (53)

Since the slope of the sign function dsgn() in Equation (53) is infinite, the control
signal of the system has a serious jitter problem in the switching process. In this paper, the
hyperbolic tangent function tanh() with a gentler slope is introduced to replace the sign
function dsgn() to improve it. According to Equations (52) and (53), the improved u[i]

c can
be expressed as

u[i]
c = −gi(si)·tan h(si) = −m·

(
ρ
m_
+ ηi

)
·tan h(si) (54)

According to Equation (54), we can obtain the control law uc of the sliding mode
variable structure control unit of the system as

uc = −G·tanh(s) (55)

4. Simulation

In this section, an in-orbit service task as shown in Figure 5 is designed for a free-
floating dual-arm space robot, in which one manipulator performs the capture operation
on the target object and the other manipulator performs the maintenance operation on the
captured object. The parameters of the free-floating dual-arm space robot are shown in
Table 1.
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Figure 5. Schematic diagram of the designed in-orbit service task.

Table 1. Initial parameters of the free-floating dual-arm space robot.

Parameter Symbol Value

Axis-Invariant

in1
1n2, 3n4, 3n7
2n3, 4n5, 5n6, 7n8,
8n9

[1 0 0]T

[0 1 0]T

[0 0 1]T

Initial linear position (m)

1
0r2; 2

0r3; 3
0r4;

4
0r5; 5

0r6; 3
0r7;

7
0r8; 8

0r9

[0 0 0]T; [0 0 0]T; [−0.5 0.5 0]T;
[0 0.2 0]T; [0 0.3 0]T; [0.5 0.5 0]T;
[0 0.2 0]T; [0 0.3 0]T

Center position of the link
mass (m)

1r1I ;
2r2I ;

3r3I ;
4r4I ;

5r5I ;
6r6I ;

7r7I ;
8r8I ;

9r9I

[0 0 0]T; [0 0 0]T; [0 0 0.1]T;
[0 0.1 0]T; [0 0.15 0]T; [0 0.1 0]T;
[0 0.1 0]T; [0 0.15 0]T; [0 0.1 0]T

Link mass (kg) m1; m2; m3; m4; m5;
m6; m7; m8; m9

0; 0; 300; 30; 10;
5; 30; 10; 5

Link MOI (kg·m2)

1IJ1I ;
2IJ2I ;

3IJ3I
4IJ4I ;

5IJ5I ;
6IJ6I ;

7IJ7I ;
8IJ8I ;

9IJ9I

diag(0,0,0); diag(0,0,0);
diag(0.1,0.1,0.002);
diag(0.03,0.006,0.03);
diag(0.002,0.002,0.001);
diag(0.001,0.001,0.0002);
diag(0.03,0.006,0.03);
diag(0.002,0.002,0.001);
diag(0.001,0.001,0.0002)

Step size (s) ∆t 0.001
Steps i 25,000
Rolling period (s) Tr 0.1

Diagonal elements
of Λ

λ1; λ2; λ3;
λ4; λ5; λ6;
λ7; λ8; λ9

20; 10; 200;
45; 20; 10;
45; 20; 10

Dynamic parameter uncertainty M;
h

1.5 M̂;
1.5 ĥ

External disturbance
d1; d2; d3;
d4; d5; d6;
d7; d8; d9

10sin(0.01i); 40sin(0.01i); 20sin(0.01i);
2sin(0.01i); 2sin(0.01i); 2sin(0.01i);
2sin(0.01i); 2sin(0.01i); 2sin(0.01i)
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The space robot will inevitably be affected by uncertain dynamic parameters and
external disturbance when it performs the in-orbit service task. First, we use the traditional
NMPC method to simulate and contrast the trajectory tracking of the space robot under
the influence of dynamic parameter uncertainty and external disturbance. The relevant
parameter settings of the dynamic parameter uncertainty and external disturbance of the
space robot during simulation can be found in Table 1. Taking joint 5 as an example, the
traditional NMPC method is used to simulate and compare the actual situation of the free-
floating dual-arm space robot affected by parameter uncertainty and external disturbance
with the ideal situation that is not affected. The results are shown in Figure 6. It can be
seen from Figure 6 that the traditional NMPC method has a good control effect on the robot
under ideal conditions, but the control effect of the robot under actual conditions with
disturbances needs to be improved.
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Figure 6. Simulation comparison of traditional NMPC with and without disturbance. (a) Comparison
of desired trajectory tracking for joint 5. (b) Error comparison of desired trajectory tracking for joint 5.

To show the advantages of the proposed improved NMPC method, we next build two
controllers based on the traditional NMPC method and the proposed improved NMPC
method, respectively. The relevant parameter settings of these two controllers can be found
in Table 1. We use these two controllers to simulate the trajectory tracking of the two
arms of the free-floating dual-arm space robot under the influence of uncertain dynamic
parameters and external disturbances. Figure 7 shows the tracking comparison of each
joint of the left arm based on these two controllers to the desired trajectory. As shown in
Figure 7, compared with the traditional NMPC controller, the proposed improved NMPC
controller is more accurate in tracking the desired trajectory, and can keep the error within
the target range, showing an excellent control effect.

Unlike the ground fixed manipulator, the attitude of the base of the free-floating
dual-arm space robot needs to be controlled stably; otherwise, it will seriously affect the
operation accuracy of the two arms, resulting in the failure of the operation task. Therefore,
we finally use these two controllers to simulate the stable control of the base attitude of the
free-floating dual-arm space robot. In order to further demonstrate the advantages of the
designed improved NMPC controller, we increase the amplitude of the external disturbance
of the robot base attitude simulation experiment to five times the original to increase the
uncertainty of the system to verify the performance of the proposed controller. Figure 8
shows the error comparison of the base attitude stabilization control of the free-floating
dual-arm space robot based on these two controllers. It can be seen from Figure 8 that
compared with the traditional NMPC controller, the designed improved controller obtains
a more stable base attitude. The proposed controller shows excellent stability in conditions
of strong disturbance.
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Figure 7. Simulation comparison between traditional NMPC and proposed improved NMPC. (a) Com-
parison of desired trajectory tracking for joint 4. (b) Error comparison of desired trajectory tracking
for joint 4. (c) Comparison of desired trajectory tracking for joint 5. (d) Error comparison of desired
trajectory tracking for joint 5. (e) Comparison of desired trajectory tracking for joint 6. (f) Error
comparison of desired trajectory tracking for joint 6.
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culate the intermediate variables such as the Jacobian matrix, and the general-
ized momentum method cannot explicitly establish the bias force vector. The 
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Figure 8. Error comparison of base attitude stability control. (a) Comparison of the x-axis error of the
base. (b) Comparison of the y-axis error of the base. (c) Comparison of the z-axis error of the base.

5. Discussion

This section will discuss the proposed method from two perspectives: dynamic mod-
eling and control.

• Dynamic modeling:

(1) The free-floating dual-arm space robot studied in this paper is a complex multi-
body system with nine DOF. The modeling efficiency of the traditional explicit
multibody system dynamic modeling method needs to be improved. For ex-
ample, when the pseudo inertia matrix method [19,20] is used, the pseudo
inertia matrix, the homogeneous transformation matrix, and other intermediate
variables need to be calculated; when the generalized momentum method [21]
is used, although the computational efficiency of the inertia matrix is higher
than that of the pseudo inertia matrix method, it is also necessary to derive
and calculate the intermediate variables such as the Jacobian matrix, and the
generalized momentum method cannot explicitly establish the bias force vector.
The space robot modeling method in this paper avoids the definition and oper-
ation of intermediate variables, and its modeling efficiency is higher than the
traditional explicit modeling method. The highest computational complexity is
obtained when all joint types of the robot are considered as rotational joints.
Table 2 shows the comparison of the computational complexity of the inertia
matrix M and the bias force vector h in the calculation of an n-DOF robot
with full rotational joints when the three different explicit dynamics modeling
methods are adopted. Table 2 shows that the computational complexity of the
explicit canonical method in this paper is significantly lower than those of the
other two methods.
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Table 2. Comparison of computational complexity.

Numbers
Pseudo-Inertia

Matrix
Method

Generalized
Momentum

Method

Explicit
Canonical Method

Inertia
matrix

Multiplication 21n3 + 63n2 + 66n 7n3 + 12n2 + 3n 3.5n3 + 16n2 + 12.5n

Addition 18n3 + 49.5n2 + 43.5n 5n3 + 10n2 + 2n 3.5n3 + 10n2 + 6.5n

Bias force
vector

Multiplication 91n2 + 157n - 16.5n2 + 43.5n

Addition 67n2 + 105n - 7.5n2 + 27.5n

(2) Due to the floating characteristics of the base of the free-floating space robot, it
is difficult to combine the traditional explicit dynamic modeling method with
DEM, because it requires tedious and complex analysis processes, such as the
definition and operation of complex intermediate variables. When combined
with DEM, our explicit canonical dynamic modeling method can avoid the
tedious and complex analysis of intermediate variables.

(3) Due to the inconvenient modeling method, most of the literature in the study
of space robot dynamics and control only simulates the plane situation of the
two-DOF manipulator, which makes it difficult to reflect the real working state
of the complex multi-DOF space robot. When using the proposed explicit
dynamic modeling method, it is easy to establish a dynamic model for complex
multi-DOF space robot for control research.

• Control:

(1) Compared with other traditional control methods, research on the NMPC
method applied to space robots is not extensive enough. Recently, Tomasz
Rybus [11,44] explored the possibility of using the NMPC method to con-
trol manipulators mounted on free-floating space robots. However, Tomasz
Rybus [11,44] only considered the trajectory tracking control of the end manip-
ulator of the free-floating space robot, and did not consider the stable control
of the attitude of the base of the free-floating space robot. In addition, Tomasz
Rybus [11,44] only carried out dynamic modeling and simulation verification
of the NMPC method for a two-DOF planar manipulator. This paper not only
considers the trajectory tracking control of the end manipulator of the free-
floating space robot, but also considers the stable control of the base attitude of
the free-floating space robot. In addition, the dynamic modeling and control
simulation of the free-floating dual-arm space robot with nine DOF are carried
out in this paper.

(2) The free-floating space robot has high requirements on the accuracy of trajectory
tracking and the stability of the base attitude. The traditional NMPC method
has difficulty meeting these requirements. This paper innovatively introduces
the idea of sliding mode variable structure to improve the traditional NMPC
method. The proposed improved NMPC method has better robustness and can
better meet the requirements of trajectory tracking accuracy and base attitude
stability for free-floating space robots serving in orbit.

(3) Inspired by the literature [15], the control system in this paper consists of
a combined controller for the base and the arms, rather than two separate
controllers, which can reduce the risk of failure.

6. Conclusions

Based on a new dynamic modeling theory, a novel dynamic control method is pro-
posed for the free-floating dual-arm space robot. This method can not only realize the
tracking of the desired trajectory by the two arms of the space robot, but also realize the
stable control of the space robot base. The in-orbit service mission of space debris capture
was designed and simulated. The main contributions of this paper are as follows:
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(1) Based on a new explicit multi-rigid-body dynamic modeling method and employing
the concept of DEM, the dynamic model of a free-floating dual-arm space robot is
established. The modeling process of the model is simple and standardized, which is
convenient for computer programming.

(2) After introducing the control idea of the sliding mode variable structure into the
traditional NMPC method, a novel NMPC controller is designed, which effectively
solves the problem of tracking the desired trajectory and stabilizing the base attitude
of the free-floating dual-arm space robot under unknown model uncertainty and
external disturbance.

This article focuses on the challenging problem of dynamic modeling and control of
free-floating space robots. The proposed new dynamic modeling and control method can
be effectively applied to the on-orbit service tasks of free-floating dual-arm space robots,
providing new insights into the challenging problems regarding the dynamics and control
of complex multi-DOF space robots. In order to fully verify the method proposed in this
paper, a prototype platform of a free-floating dual-arm space robot will be built in the
future, and the development and test of hardware system will be carried out. At the same
time, in the future, factors such as link flexibility, joint friction and contact collision will be
considered to study the dynamic modeling, control and planning of multi-arm space robots.

Author Contributions: Methodology, Z.G. and C.L.; software, Z.G.; writing—original draft prepara-
tion, Z.G.; writing—review and editing, Z.G., H.J. and K.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (61673010).

Data Availability Statement: The authors will supply the relevant data in response to reasonable
requests.

Conflicts of Interest: The authors have no relevant financial or non-financial interests to disclose.

Appendix A

Table A1. Symbol descriptions.

Symbols Description Symbols Description

ϕl
l

Angular position along
lnl

lϕl Vector form of ϕl
l

rl
l Linear position along lnl

l
0rl Vector from Ol to Ol

lrl Vector form of rl
l

lQl Rotation matrix from l to l

uL Closed subtree of link u i1l
Kinematic chain from i

to l
mk Mass of link k kIJkI Inertia tensor of link k

M[u][∗]
R

Inertial force matrix of
revolute joint u h[u]

R
Bias force vector of

revolute joint u
iLτu

resultant torque on axis
unu except gravity M[u][k] uth row and kth column

element of inertia matrix

Appendix B

• Because the inertia matrix M[·][·] is a symmetric matrix, and because we are limited
by the length of the article, the following are only the explicit expressions of the
corresponding elements in the upper left corner of the M[·][·] matrix in Equation (19).
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M[1][1] = inT
1 ·

 i|1IJ1I − m1·i|1 r̃̂2
1I +

i|2IJ2I − m2·i|1 r̃̂2
2I +

i|3IJ3I − m3·i|1 r̃̂2
3I

\+ i|4IJ4I − m4·i|1 r̃̂2
4I +

i|5IJ5I − m5·i|1 r̃̂2
5I +

i|6IJ6I − m6·i|1 r̃̂2
6I

\+ i|7IJ7I − m7·i|1 r̃̂2
7I +

i|8IJ8I − m8·i|1 r̃̂2
8I +

i|9IJ9I − m9·i|1 r̃̂2
9I

·in1

M[1][2] = inT
1 ·


i|2IJ2I − m2·i|1r̃2I ·i|2r̃2I +

i|3IJ3I − m3·i|1r̃3I ·i|2r̃3I
\+i|4IJ4I − m4·i|1r̃4I ·i|2r̃4I +

i|5IJ5I − m5·i|1r5I ·i|2r5I
\+i|6IJ6I − m6·i|1r̃6I ·i|2r̃6I +

i|7IJ7I − m7·i|1r̃7I ·i|2r̃7I
\+i|8IJ8I − m8·i|1r̃8I ·i|2r̃8I +

i|9IJ9I − m9·i|1r̃9I ·i|2r̃9I

·i|1n2

M[1][3] = inT
1 ·


i|3IJ3I − m3·i|1r̃3I ·i|3r̃3I +

i|4IJ4I − m4·i|1r̃4I ·i|3r̃4I
\+i|5IJ5I − m5·i|1r̃5I ·i|3r̃5I +

i|6IJ6I − m6·i|1r̃6I ·i|3r̃6I
\+i|7IJ7I − m7·i|1r̃7I ·i|3r̃7I +

i|8IJ8I − m8·i|1r̃8I ·i|3r̃8I
\+i|5IJ9I − m9·i|1r̃9I ·i|3r̃9I

·i|2n3

M[1][4] = inT
1 ·
(

i|4IJ4I − m4·i|1r̃4I ·i|4r̃4I +
i|5IJ5I − m5·i|1r̃5I ·i|4r̃5I +

i|6IJ6I
\ − m6·i|1r̃6I ·i|4r̃6I

)
·i|3n4

M[1][5] = inT
1 ·
(

i|5IJ5I − m5·i|1r̃5I ·i|5r̃5I +
i|6IJ6I − m6·i|1r̃6I ·i|5r̃6I

)
·i|4n5

M[1][6] = inT
1 ·
(

i|6IJ6I − m6·i|1r̃6I ·i|6r̃6I

)
·i|5n6

M[1][7] = inT
1 ·
(

i|7IJ7I − m7·i|1r̃7I ·i|7r̃7I +
i|8IJ8I − m8·i|1r̃8I ·i|7r̃8I +

i|9IJ9I
\ − m9·i|1r̃9I ·i|7r̃9I

)
·i|3n7

M[1][8] = inT
1 ·
(

i|8IJ8I − m8·i|1r̃8I ·i|8r̃8I +
i|9IJ9I − m9·i|1r̃9I ·i|8r̃9I

)
·i|7n8

M[1][9] = inT
1 ·
(

i|9IJ9I − m9·i|1r̃9I ·i|9r̃9I

)
·i|8n9

(A1)

M[2][2] = i|1nT
2 ·

 i|2IJ2I − m2· i|2r̃ˆ2
2I +

i|3IJ3I − m3· i|2r̃ˆ2
3I

\+ i|4IJ4I − m4· i|2r̃ˆ2
4I +

i|5IJ5I − m5· i|2r̃ˆ2
5I +

i|6IJ6I − m6· i|2r̃ˆ2
6I

\+ i|7IJ7I − m7· i|2r̃ˆ2
7I +

i|8IJ8I − m8· i|2r̃ˆ2
8I +

i|9IJ9I − m9· i|2r̃ˆ2
9I

· i|1n2

M[2][3] = i|1nT
2 ·

 i|3IJ3I − m3· i|2r̃3I · i|3r̃3I +
i|4IJ4I − m4· i|2r̃4I · i|3r̃4I +

i|5IJ5I − m5
\· i|2r̃5I · i|3r̃5I +

i|6IJ6I − m6· i|2r̃6I · i|3r̃6I +
i|7IJ7I − m7· i|2r̃7I

\· i|3r̃7I +
i|8IJ8I − m8· i|2r̃8I · i|3r̃8I +

i|9IJ9I − m9· i|2r̃9I · i|3r̃9I

· i|2n3

M[2][4] = i|1nT
2 ·
(

i|4IJ4I − m4· i|2r̃4I · i|4r̃4I +
i|5IJ5I − m5· i|2r̃5I · i|4r̃5I

\+ i|6IJ6I − m6· i|2r̃6I · i|4r̃6I

)
· i|3n4

M[2][5] = i|1nT
2 ·
(

i|5IJ5I − m5· i|2r̃5I · i|5r̃5I +
i|6IJ6I − m6· i|2r̃6I · i|5r̃6I

)
· i|4n5

M[2][6] = i|1nT
2 ·
(

i|6IJ6I − m6· i|2r̃6I · i|6r̃6I

)
· i|5n6

M[2][7] = i|1nT
2 ·
(

i|7IJ7I − m7· i|2r̃7I · i|7r̃7I +
i|8IJ8I − m8· i|2r̃8I · i|7r̃8I

\+ i|9IJ9I − m9· i|2r̃9I · i|7r̃9I

)
· i|3n7

M[2][8] = i|1nT
2 ·
(

i|8IJ8I − m8· i|2r̃8I · i|8r̃8I +
i|9IJ9I − m9· i|2r̃9I · i|8r̃9I

)
· i|7n8

M[2][9] = i|1nT
2 ·
(

i|9IJ9I − m9· i|2r̃9I · i|9r̃9I

)
· i|8n9

(A2)
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M[3][3] = i|2nT
3 ·

 i|3IJ3I − m3· i|3r̃ˆ2
3I +

i|4IJ4I − m4· i|3r̃ˆ2
4I +

i|5IJ5I − m5· i|3r̃ˆ2
5I

\+ i|6IJ6I − m6· i|3r̃ˆ2
6I +

i|7IJ7I − m7· i|3r̃ˆ2
7I +

i|8IJ8I − m8· i|3r̃ˆ2
8I

\+ i|9IJ9I − m9· i|3r̃ˆ2
9I

· i|2n3

M[3][4] = i|2nT
3 ·
(

i|4IJ4I − m4· i|3r̃4I · i|4r̃4I +
i|5IJ5I − m5· i|3r̃5I · i|4r̃5I

\+ i|6IJ6I − m6· i|3r̃6I · i|4r̃6I

)
· i|3n4

M[3][5] = i|2nT
3 ·
(

i|5IJ5I − m5· i|3r̃5I · i|5r̃5I +
i|6IJ6I − m6· i|3r̃6I · i|5r̃6I

)
· i|4n5

M[3][6] = i|2nT
3 ·
(

i|6IJ6I − m6· i|3r̃6I · i|6r̃6I

)
· i|5n6

M[3][7] = i|2nT
3 ·
(

i|7IJ7I − m7· i|3r̃7I · i|7r̃7I +
i|8IJ8I − m8· i|3r̃8I · i|7r̃8I

\+ i|9IJ9I − m9· i|3r̃9I · i|7r̃9I

)
· i|3n7

M[3][8] = i|2nT
3 ·
(

i|8IJ8I − m8· i|3r̃8I · i|8r̃8I +
i|9IJ9I − m9· i|3r̃9I · i|8r̃9I

)
· i|7n8

M[3][9] = i|2nT
3 ·
(

i|9IJ9I − m9· i|3r̃9I · i|9r̃9I

)
· i|8n9

(A3)

M[4][4] = i|3nT
4 ·
(

i|4IJ4I − m4· i|4r̃ˆ2
4I +

i|5IJ5I − m5· i|4r̃ˆ2
5I +

i|6IJ6I − m6· i|4r̃ˆ2
6I

)
· i|3n4

M[4][5] = i|3nT
4 ·
(

i|5IJ5I − m5· i|4r̃5I · i|5r̃5I +
i|6IJ6I − m6· i|4r̃6I · i|5r̃6I

)
· i|4n5

M[4][6] = i|3nT
4 ·
(

i|6IJ6I − m6· i|4r̃6I · i|6r̃6I

)
· i|5n6

M[4][7] = 0
M[4][8] = 0
M[4][9] = 0

(A4)

M[5][5] = i|4nT
5 ·
(

i|5IJ5I − m5· i|5r̃ˆ2
5I +

i|6IJ6I − m6· i|5r̃ˆ2
6I

)
· i|4n5

M[5][6] = i|4nT
5 ·
(

i|6IJ6I − m6· i|5r̃6I · i|6r̃6I

)
· i|5n6

M[5][7] = 0
M[5][8] = 0
M[5][9] = 0

(A5)

M[6][6] = i|5nT
6 ·
(

i|6IJ6I − m6· i|6r̃ˆ2
6I

)
· i|5n6

M[6][7] = 0
M[6][8] = 0
M[6][9] = 0

(A6)

M[7][7] = i|3nT
7 ·
(

i|7IJ7I − m7· i|7r̃ˆ2
7I +

i|8IJ8I − m8· i|7r̃ˆ2
8I +

i|9IJ9I − m9· i|7r̃ˆ2
9I

)
· i|3n7

M[7][8] = i|3nT
7 ·
(

i|8IJ8I − m8· i|7r̃8I · i|8r̃8I +
i|9IJ9I − m9· i|7r̃9I · i|8r̃9I

)
· i|7n8

M[7][9] = i|3nT
7 ·
(

i|9IJ9I − m9· i|7r̃9I · i|9r̃9I

)
· i|8n9

(A7)

M[8][8] = i|7nT
8 ·
(

i|8IJ8I − m8· i|8r̃ˆ2
8I +

i|9IJ9I − m9· i|8r̃ˆ2
9I

)
· i|7n8

M[8][9] = i|7nT
8 ·
(

i|9IJ9I − m9· i|8r̃9I · i|9r̃9I

)
· i|8n9

(A8)

M[9][9] = i|8nT
9 ·
(

i|9IJ9I − m9· i|9r̃ˆ2
9I

)
· i|8n9 (A9)

• The explicit expressions of the bias force vector h[·] of the left arm and the right arm of
the free-floating dual-arm space robot with symmetrical tree-chain topology are very
similar. Since we are limited by the length of the article, the following are only the
explicit expressions of the corresponding elements of the base and the left arm in the
h[·] vector in Equation (19).
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h[1] = inT
1 ·m1· i|1r̃1I · i

.
ϕ̃

ˆ2

1 · i|1r1I +
inT

1 ·m2· i|1r̃2I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r2I

)
\+ inT

1 ·m3· i|1r̃3I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r3 +
i

.
ϕ̃

ˆ2

3 · i|3r3I

)
\+ inT

1 ·m4· i|1r̃4I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r3 +
i

.
ϕ̃

ˆ2

3 · i|3r4 +
i

.
ϕ̃

ˆ2

4 · i|4r4I

)
\+ inT

1 ·m5· i|1r̃5I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r3 +
i

.
ϕ̃

ˆ2

3 · i|3r4 +
i

.
ϕ̃

ˆ2

4 · i|4r5 +
i

.
ϕ̃

ˆ2

5 · i|5r5I

)
\+ inT

1 ·m6· i|1r̃6I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r3 +
i

.
ϕ̃

ˆ2

3 · i|3r4 +
i

.
ϕ̃

ˆ2

4 · i|4r5 +
i

.
ϕ̃

ˆ2

5 · i|5r6 +
i

.
ϕ̃

ˆ2

6 · i|6r6I

)
\+ inT

1 ·m7· i|1r̃7I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r3 +
i

.
ϕ̃

ˆ2

3 · i|3r7 +
i

.
ϕ̃

ˆ2

7 · i|7r7I

)
\+ inT

1 ·m8· i|1r̃8I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r3 +
i

.
ϕ̃

ˆ2

3 · i|3r7 +
i

.
ϕ̃

ˆ2

7 · i|7r8 +
i

.
ϕ̃

ˆ2

8 · i|8r8I

)
\+ inT

1 ·m9· i|1r̃9I ·
(

i
.
ϕ̃

ˆ2

1 · i|1r2 +
i

.
ϕ̃

ˆ2

2 · i|2r3 +
i

.
ϕ̃

ˆ2

3 · i|3r7 +
i

.
ϕ̃

ˆ2

7 · i|7r8 +
i

.
ϕ̃

ˆ2

8 · i|8r9 +
i

.
ϕ̃

ˆ2

9 · i|9r9I

)

\+ inT
1 ·


i

.
ϕ̃1· i|1IJ1I · i

.
ϕ1 +

i
.
ϕ̃2· i|2IJ2I · i

.
ϕ2 +

i
.
ϕ̃3· i|3IJ3I · i

.
ϕ3

\+ i
.
ϕ̃4· i|4IJ4I · i

.
ϕ4 +

i
.
ϕ̃5· i|5IJ5I · i

.
ϕ5 +

i
.
ϕ̃6· i|6IJ6I · i

.
ϕ6

\+ i
.
ϕ̃7· i|7IJ7I · i

.
ϕ7 +

i
.
ϕ̃8· i|8IJ8I · i

.
ϕ8 +

i
.
ϕ̃9· i|9IJ9I · i

.
ϕ9


\+ inT

1 ·

 i|2IJ2I − m2· i|1r̃2I · i|2r̃2I +
i|3IJ3I − m3· i|1r̃3I · i|2r̃3I +

i|4IJ4I − m4·
\ i|1r̃4I · i|2r̃4I +

i|5IJ5I − m5· i|1r̃5I · i|2r̃5I +
i|6IJ6I − m6· i|1r̃6I · i|2r̃6I +

i|7IJ7I
\−m7· i|1r̃7I · i|2r̃7I +

i|8IJ8I − m8· i|1r̃8I · i|2r̃8I +
i|9IJ9I − m9· i|1r̃9I · i|2r̃9I

· i
.
ϕ̃1· i|1 .

ϕ2

\+ inT
1 ·

 i|3IJ3I − m3· i|1r̃3I · i|3r̃3I +
i|4IJ4I − m4·
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Appendix C

Proof of Theorem 2. Since m·I ≥ M, where m > 0 and M ∈ Ra×a is a positive definite
matrix, and K ∈ Ra×a is a diagonal positive definite matrix, then the following equation
holds:

m·I·K ≥ M·K (A16)

Since M is a positive definite matrix, then M−1 is also a positive definite matrix.
According to Equation (A16), the following equation holds:

m·M−1·K ≥ K (A17)

Since K ∈ Ra×a is a diagonal positive definite matrix, then M−1 and K are interchange-
able, so M−1·K is also positive definite. According to Equation (A17), for any vector x ∈ Ra,
the following equation holds:

m·xT·M−1·K·x ≥ xT·K·x (A18)

Proof done. □
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