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Abstract: With the increasing demand for space missions, space robots have become the focus of 

research and attention. As a typical representative, the free-floating dual-arm space robot has the 

characteristics of multiple degrees of freedom, a floating base, and dynamic coupling between the 

manipulator and the base, so its modeling and control are very challenging. To address these 

challenges, a novel dynamic modeling and control method is proposed for a free-floating dual-arm 

space robot. First, an explicit dynamic model of a free-floating dual-arm space robot is established 

based on the explicit canonical multi-rigid-body dynamic modeling theory and combined with the 

concept of a dynamic equivalent manipulator. The establishment process of this model is not only 

simple and canonical to avoid the definition and calculation of many intermediate variables, but the 

symbolic result expression of the model also has the characteristics of iteration, which is convenient 

for computer automatic modeling. Next, aiming at addressing the problem of trajectory tracking 

and the base attitude stability of a free-floating dual-arm space robot with parameter perturbation 

and external disturbance, an improved nonlinear model predictive control method introducing the 

idea of sliding mode variable structure is proposed. Theoretical analysis shows that the proposed 

controller has better robustness than the traditional nonlinear model predictive controller. Then, an 

in-orbit service task is designed to verify the effectiveness of the proposed dynamic modeling and 

control strategy of the free-floating dual-arm space robot. Finally, the dynamic modeling and control 

methods proposed are discussed and summarized. The proposed methods can not only realize the 

tracking of the desired trajectory of the arms of the free-floating space robot, but can also realize the 

stable control of the base of the free-floating space robot. This paper provides new insights into the 

difficult problems regarding the dynamics and control of free-floating dual-arm space robots. 

Keywords: free-floating dual-arm space robot; dynamic modeling; sliding mode; nonlinear model 

predictive control 

 

1. Introduction 

Since the 1990s, space manipulators used to manipulate and capture payloads have 

received extensive attention [1–6]. Space manipulator can not only be installed on a space 

station to assist astronauts in the maintenance of the space station [7–9], but can also be 

installed on an unmanned satellite to carry out in-orbit maintenance of the satellite and 

capture space debris [10–13]. In 2007, the US Orbital Express project carried out capture 

and maintenance experiments of controlled target satellites using unmanned satellites 

equipped with a manipulator [14]. Unlike a manipulator with a fixed base on the ground, 

the base of a small space robot composed of a small unmanned satellite and manipulator 

is generally movable [15]. This kind of space robot with a movable base is a typical 

unrooted tree multibody dynamic system, which has the characteristics of many degrees 

of freedom (DOF), strong nonlinearity and strong coupling [16]. Its dynamic modeling 
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and control are challenging and have attracted increasing attention from researchers in 

recent years [1,15]. 

Compared with single-arm space robots, the establishment of the dynamic model of 

a dual-arm space robot is more complicated. So far, according to the different expressions 

of dynamic equations, the dynamic modeling methods of multibody systems such as 

robots are mainly divided into recursive methods based on the Newton–Euler equation 

and explicit methods based on the Lagrange equation. Recursive methods can obtain 

efficient recursive equations, but they are not suitable for the derivation of a high control 

law [17,18]. Compared with recursive methods, the expression of the dynamic equation 

of explicit methods is more intuitive. The pseudo inertia matrix method [19,20] and the 

generalized momentum method [21] are two common explicit dynamic modeling 

methods. However, these two explicit methods both have the problem that many 

intermediate variables need to be analyzed and calculated. Recently, an explicit multi-

rigid-body dynamic modeling method was proposed, which can directly obtain the final 

canonical expression of a multibody system [22,23]. 

Unlike ground robots with a fixed base, space robots have dynamic coupling between 

the arm and the movable base [24,25]. If this is not controlled, it will lead to accidental 

movement of the base and affect the performance of the space robot [7,26,27]. For example, 

to ensure reliable communication with the ground or receive solar energy, the base of the 

satellite needs to accurately point in a fixed position, but the dynamic coupling between 

the arm and the base will interfere with the attitude of base [7]. Dubowsky and 

Papadopoulos [28] divided space robots with movable bases into free-flying space robots 

and free-floating space robots according to the different control problems to be solved. 
Unlike free-flying space robots that need to control the position and attitude of the base 

at the same time, free-floating space robots only needs to consider the control of base 

attitude, which can save energy [29]. In order to simplify the kinematic analysis of free-

floating space robots, Vafa and Dubowsky [30] proposed the concept of the virtual 

manipulator (VM). VM is a fixed base robot with the same kinematic equivalence as a 

free-floating space robot, and its first joint is a passive spherical joint, which represents 

the free-floating characteristics of the space robot [31]. Liang [32] extended the concept of 

VM and proposed the dynamic equivalent manipulator (DEM), which can simultaneously 

simplify the kinematics and dynamics analysis of free-floating space robots. 

In the process of in-orbit service, a space robot will not only be subjected to unknown 

disturbances from the outside, but will also be constrained by the uncertainty of internal 

parameters of the system caused by the change in fuel quality and other factors [15]. 

Therefore, designing controllers for space robots is a challenge which has been studied by 

many researchers [33–35]. Papadopoulos and Dubowsky [29] noted the similarities in 

control between free-floating space robots and ground fixed-base robots. Since then, many 

control algorithms designed for ground fixed-base robots have been studied and applied 

in space robots. Among them, the PID control method, which has been widely studied in 

ground industrial robots, has also been used in space robots [36]. However, this method 

has the problem of parameter tuning difficulty when it is applied to control an in-orbit 

service space robot with complex disturbances. Sliding mode control (SMC) is widely 

applied in the field of nonlinear systems because of its high precision and fast response 

[37,38]. Slotine et al. [39] first used SMC to design the controller of a two-DOF 

manipulator, and then the researchers conducted much research on the SMC of robots, 

representing a typical nonlinear system [40,41]. In recent years, many novel SMC methods 

have been proposed for the in-orbit service of space robots [42,43]. Model predictive 

control (MPC) is an excellent control method based on a system model to obtain a control 

signal by minimizing the objective function [44]. Raimondo et al. [45,46] improved MPC 

for the control problem of nonlinear systems and obtained better control performance. In 

the field of space robots, compared with other control methods, there is relatively less 

research on MPC. When studying the control problem of dual-arm space robots, Shi [47] 

found that MPC can achieve higher-precision control performance than SMC when there 
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is no system disturbance, while SMC shows better robustness than MPC when there is 

system disturbance. Tomasz Rybus [44] discussed the possibility of applying a nonlinear 

model predictive controller (NMPC) to a free-floating space robot. Tomasz Rybus [11] 

proposed a new concept for a free-floating space robot control system, in which the NMPC 

controller introduced a trajectory planning module, but the paper only carried out a 

numerical simulation on the planar case of the two-DOF manipulator. 
In this paper, the dynamic model of a free-floating dual-arm space robot with 

stylization and high computational efficiency is established by using the concept of DEM 

and the explicit multi-rigid-body dynamic modeling theory [22,23], and a novel control 

method is proposed. This method can be effectively applied to the terminal trajectory 

tracking and base attitude stability control of free-floating space robots under the 

condition of parameter perturbation and external disturbance. The remainder of this 

paper is organized as follows: in Section 2, a free-floating dual-arm space robot is modeled 

and analyzed by using explicit multi-rigid-body dynamic modeling theory and DEM. In 

Section 3, an improved NMPC controller is designed and its stability is analyzed based on 

Lyapunov theory. In Section 4, an in-orbit service task is designed and a numerical 

simulation is performed to verify the proposed controller. In Section 5, the dynamic 

modeling and control methods for the free-floating space robot are discussed, while the 

conclusions are provided in Section 6. 

2. Dynamic Modeling of Free-Floating Dual-Arm Space Robot 

This section mainly introduces and analyzes the dynamic model of a free-floating 

dual-arm space robot based on the explicit multi-rigid-body dynamic modeling method 

and combined with the concept of DEM, which is used for subsequent control research. 
Because kinematics is the foundation of dynamics [17], the kinematic model is introduced 

first before the dynamic modeling. 

2.1. Kinematic Modeling 

The free-floating dual-arm space robot used in this study is a typical unrooted tree 

multibody system [16]. The schematic diagram of the free-floating dual-arm space robot 

studied in this paper is shown in Figure 1. The topological structure analysis and the 

establishment of the reference frames of the space robot are introduced below. 

The topology of a robot is usually composed of nodes representing the links (except 

the root node) and arcs representing the joints [48]. The schematic diagram of the free-

floating dual-arm space robot is shown in Figure 1, where l
lk  represents the kinematic 

pair composed of parent link l  and child link l. Each arm of the free-floating dual-arm 

space robot contains three single-DOF revolute pairs. The attitude of the base of the free-

floating space robot has three rotational DOF. According to the concept of DEM, after the 

free-floating base of the space robot is equivalent to three single-DOF revolute pairs, the 

unrooted free-floating tree-chain space robot can be equivalent to a fixed-base tree-chain 

ground robot [31]. According to the above analysis, the topology graph of the free-floating 

dual-arm space robot is shown in Figure 2, where i represents the inertial space, b 

represents the base, l represents the left arm, r represents the right arm and R represents 

the revolute pair. Except for the root node, the remaining nine nodes in the topology 

correspond to the nine DOF of the free-floating dual-arm space robot, and these nodes are 

numbered in turn. In addition, unless otherwise specified, the rest of the symbols used in 

this article are shown in Table A1 of Appendix A. 
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Figure 1. Schematic diagram of the free-floating dual-arm space robot. 
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Figure 2. Topology graph of the free-floating dual-arm space robot. 

To improve the calibration accuracy of the robot’s structural parameters, we propose 

a reference system establishment method based on the Axis-Invariant [49]. The reference 

frames and the Axis-Invariant of the left arm of the free-floating dual-arm space robot are 

described in Figure 3. The origin of the inertial reference frame i i i iO x y z  is located at the 

center of the Earth. The origin of the base reference frame b b b bO x y z  is located at the 

center of mass of the base. The origins of the joint reference frames l l l lO x y z  are located 

on the rotation axes of the joints. At the initial moment, the directions of these reference 

frames are consistent. The Axis-Invariant l
ln  is defined as the motion axis vector 

direction of joint l. For more background and applications of the Axis-Invariant, refer to 

[22,23,49–51]. 
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Figure 3. The reference system and the Axis-Invariant of the left arm. 
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With the Axis-Invariant l ln  as the reference axis, the rotational vector l l  of the 

rotating joint and the translational vector l lr  of the prismatic joint can be expressed as 

follows [22,23]: 

ll l
l l ln  (1) 

0 l
l l l l

l llr rn r  (2) 

The rotation transformation matrix l lQ  based on the Axis-Invariant l ln  can be 

expressed as follows [22,23]: 

^
 =  + sin( )+  1 cos( )l l

l
l l l
l ll ln n1Q   (3) 

According to the expression of the rotation transformation matrix l lQ  in Equation 

(3), the iterative kinematic equations of multi-joint series based on the Axis-Invariant l ln  

can be expressed as follows: 

i
l

i k
l k

k
Q Q

l

 (4) 

|

i i
l l

k k

i i k i k
l k k kQ

l l

 (5) 

|

i i
l l

i i k i k
k

k
l

k
k kQr r r

l l

 (6) 

where the left superscript “i|” of the vector represents the projection of the vector under 

the inertial reference frame i i i iO x y z . 

The velocity vector and acceleration vector are the derivative and second derivative 

of the displacement vector, respectively. By taking the derivative and second derivative 

of Equations (5) and (6), the iterative velocity and iterative acceleration of multi-joint 

kinematic chain 
i
ll  can be expressed as follows: 

|

i
l

i
l

i k
k

k

l

 

(7) 

i
l

i
l

i i|k i|k
k k

k
k

l

 

(8) 

| |
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i i i k i k
l k k k

k

r r r

l

 

(9) 

| ^2 | | | = + +2 +

i
l

i i i k i i k i i k i k
l k k k k k k k

k

r r r r r

l

 

(10) 

2.2. Dynamic Modeling 

As a classical method of multibody system dynamics modeling, the Lagrange 

equation is widely used in the field of robot dynamics [52]. When the free-floating dual-

arm space robot serving in orbit is running in space, the influence of gravity can be 

ignored, and the joint type of the robot only contains rotating joints. The Lagrange 
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equation expression of the space robot tree-chain multibody system based on the Axis-

Invariant, which only contains rotating joints and ignores gravity, is as follows [22,23]: 

T|
i i

u u
u u

iL
u u

i ud

dt
τn

E E
L L

  (11) 

where iE
L

 is an energy term, 

T | T1 1
m

2 2

i
i i i kI i i i

k kI k k kI kI
k

J r rE

L

L   (12) 

The iterative partial derivative equation based on the Axis-Invariant is [22,23] 

| |
k

i i i
i k i knS nS nS

nSk k k
k k k

r r r
n r   (13) 

|n n
k

i i
i k

k k
k k

n  (14) 

Substituting Equations (1)–(10) and (13) and (14) into Equations (11) and (12), after 

simplifying the results, the explicit canonical dynamic expression of the space robot tree-

chain multibody system that ignores gravity and only contains rotating joints can be 

obtained: 

[ T]T T[ ] ] [| ||u
uu

u iL
u u

i u i u i uM q h τn n n
R R

  (15) 

where [ ][ ]u
R

M  is a 3 × 3 inertia matrix for revolute pairs and [ ]uh
R

 is a 3D bias force vector 

for revolute pairs, 

|[ ][ ] | |

| | |

|

|

m

                m  
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(17) 

According to Equation (15) and the above topological analysis, the explicit canonical 

dynamic model of the base, left arm and right arm of the free-floating dual-arm space 

robot can be obtained as follows: 
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The above Equation (18) can be rewritten as follows: 
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  (19) 

According to Equations (16) and (17), the inertia matrix M[·][·] and the bias force vector 

h[·] in Equation (19) can be defined by Equations (A1)–(A9) and Equations (A10)–(A15) in 

Appendix B, respectively. 

3. Design of the Improved NMPC Controller 

In this section, an improved NMPC controller is designed for the trajectory tracking 

control of a free-floating dual-arm space robot serving in orbit. The principle of the 

improved NMPC controller designed in this paper is shown in Figure 4. As shown in 

Figure 4, the controller proposed in this paper is mainly composed of a predictive control 

unit for the rolling optimization of a nominal dynamic model and a sliding mode variable 

structure control unit for the purposes of weakening the influence of disturbance. The 

improved NMPC controller introduced the idea of SMC control and added the sliding 

mode variable structure control technology to suppress the disturbance, which improved 

the performance of the traditional NMPC controller. 
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Figure 4. The principle block diagram of the proposed controller. 

According to Figure 4, the control law of the proposed controller can be expressed as 

follows: 

m cu u u   (20) 

where mu  is the torque generated by the predictive control unit and uc  is the torque 

generated by the sliding mode variable structure control unit. 

3.1. Design of the NMPC Controller 

The designed predictive controller refers to the classical NMPC control algorithm 

developed in [53]. NMPC is essentially a kind of optimal control that aims to minimize 

the trajectory tracking error during control. Therefore, the cost function of the NMPC is 

often expressed as [53,54]: 

2

1

T1
= ( ) ( )

2

T

T
J de e

cost
t τ t τ τ

  
(21) 

where ( ) ( ) ( )
d

e q qt τ t τ t τ  is the prediction error at time t τ  and τ  is the 

prediction time. ( )q t τ  and ( )
d

q t τ  represent the actual and desired joint angles of the 

system at time t τ , respectively. 

The truncated Taylor series is applied to expand ( )q t τ  as follows: 

2

( ) ( ) ( ) ( )
2

q q q q
τ

t τ t τ t t   (22) 

If 
2

9 9 9 9 9 9
( )=[     ]

2

τ
t τT I I I , 

T( )=[ ( )  ( )  ( )]ρ q q qt t t t , and 
T( )=[ ( )  ( )  ( )]

d d d d
ρ q q qt t t t

are taken, then ( )q t τ  and ( )
d

q t τ  can be expressed as: 

( ) ( ) ( )

( ) ( ) ( )
d d

tq T ρ

q T ρ

t τ t

t τ t t
  (23) 

According to Equation (23), the prediction error ( )t τe  can be re-expressed as: 

( ) ( )( ( ) ( ))
d

e T ρ ρt τ t t t   (24) 

The nominal dynamic model of the free-floating dual-arm space robot under ideal 

conditions can be expressed as follows: 

ˆˆ ( )tM q h u   (25) 
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where M̂  and ĥ  are the nominal inertia matrix and nominal bias force vector of the 

free-floating dual-arm space robot constructed in the second section of this paper under 

ideal conditions. 

According to Equation (25), the vector ( )ρ t  can be expressed as 

9 1

9 1

1 1

0( ) ( )

( ) ( ) ( ) 0

ˆˆ ˆ( )

t t

t t t

t

q q

ρ q q

q M h M u

  (26) 

According to Equation (26), the cost function cost
J  in Equation (21) can be re-

expressed as 

T1
( ( ) ( )) ( ( ) ( ))

2 d d
ρ ρ Π ρ ρ

cost
J t t t t= − −   (27) 

The matrix Π  in the above formula is expressed as 
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(28) 

where the rolling period 2 1rT T T= − . 

The system control law mu  of the predictive control unit can be solved according to 

0cost

m

J

u


=


: 

9 9 9 9 9 92
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3 2
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  −  −     

(29) 

According to ( ) ( ) ( )
d

e q qt t t  and ( ) ( ) ( )
d

e q qt t t , Equation (29) can be re-

expressed as 

1 2
ˆˆ ˆ[ ( ) ( )] ( )m dt t tM A e A e h M qu   (30) 

where 1 9 9

10

3 2

rT
A Ι , 2 9 9

5

2 rT
A Ι . 

3.2. Design of an Improved NMPC Controller Based on Sliding Mode Variable Structure 

During the in-orbit service of an actual space robot, the dynamic parameters will 

change due to factors such as fuel consumption, and the space robot will inevitably be 

affected by external disturbances. Therefore, considering the influence of parameter 

uncertainty and external disturbances, the practical dynamic model of the in-orbit service 

free-floating dual-arm space robot is 

( )tM q h u d   (31) 
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where M  and h  are the actual inertia matrix and the actual bias force vector of the free-

floating dual-arm space robot, respectively, and d is the external disturbance. 

The sliding mode function is taken as 

0
( ) ( ) ( )

t
dtt t ts e P e V e   (32) 

where ( ) ( ) ( )dt t te q q , ( ) ( ) ( )dt t te q q , 2P Λ , 2V Λ , Λ  is a positive 

definite diagonal matrix of size 9 9 , i  is a diagonal element of Λ , and 0i . 

The sliding mode hyperplane is 

( ) ( ) ( )t t ts e P e V e
  (33) 

According to ( ) ( ) ( )dt t tqe q , Equation (33) can be re-expressed as 

]( ) ( ) ( ) ([ )dt t t ts q Pq e eV
  

(34) 

The reference acceleration ( )r tq  is taken as 

( ) ( ) ( ) ( )r dt t t tq q e eP V   (35) 

Then, Equation (34) can be re-expressed as 

( ) ( )rt ts q q   (36) 

According to Equation (31), we can obtain 

1( )tq M u d h
  

(37) 

According to Equation (37), Equation (36) can be re-expressed as 

1 [ ( )]
r

ts M u d h M q   (38) 

By substituting Equations (20), (30) and (35) into Equation (38), we can obtain 

1 ( )
c

s M u u   (39) 

where u  is the uncertainty of the system. 

According to Equation (39), we can obtain 

T T 1 ( )
c

s s s M u u   (40) 

Theorem 1. Suppose there is a positive definite matrix a aB  of a a  and there is a 

positive real number b > 0 such that b I B  holds, where I is the identity matrix of size a a

. Suppose any vector ay  and y ; then, for any vector ax , the following 

inequality holds: 

T bB y xx
  

(41) 

According to Theorem 1, we can obtain 

1T 1

m
M u ss

  
(42) 

where m  is the infimum of M. 
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Because 
9

1
i

i

ss , then according to Equations (40) and (42), we can obtain 

1T T
9

1

1
i

i

s c
m

s s M us

  

(43) 

3.3. Analysis of Stability 

The sliding mode boundary thickness is denoted as i . If the control process of the 

closed-loop control system from the initial state to the sliding mode surface is expected to 

satisfy Lyapunov stability, then 

t
s s

9

1

T1
0

2 i i i
i

d
s

d
  

(44) 

Because T T1

2

d

dt
s ss s , according to Equations (43) and (44), to ensure the 

stability of the system, it is necessary to select cu  to meet the following conditions: 

c
m

s M u

9 9
1

1

T

1

1
0i i i i i

i i

s s

 

(45) 

Equation (45) can be re-expressed as 

cs M u

9
1T

1
i i i i

i

s
m

  

(46) 

According to Equation (46), the control law of the sliding mode variable structure 

control unit can be constructed as 

( )
i
s

c
u G Ω s   (47) 

where G  is a positive definite diagonal matrix of size 9 9 , i ig s  is a diagonal 

element of G  and i ig s  is a positive definite function; Ω  is also a positive definite 

diagonal matrix of size 9 9 , and 1/ | |is  is a diagonal element of Ω . 

By substituting Equation (47) into Equation (46), we can obtain 

i i

i

m mM G Ω ss

9
1

1

T
i i i is s s

m
  

(48) 

where m  is the supremum of M. 

Theorem 2. Consider a aM  to be a positive definite matrix of size a a  and a aK  

to be a diagonal positive definite matrix of size a a . If there exists a positive real number 0m  

and m I M , then for any vector ax , the following equation holds: 

T1Tm M K xx Kx x   (49) 

The proof of Theorem 2 is given in Equations (A16)–(A18) in Appendix C. 

According to Theorem 2, we can obtain 
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i i

i

i

i

i

im s M G Ω s s G Ω sT 1 T

9

1

\ dsgn 0i i

s s s s

s s sg
  

(50) 

According to Equations (48) and (50), to ensure the stability of the system, the 

following equation needs to be satisfied: 

i

i

i

i m
m

9 9

11

dsgn i i i i ii sss sg

  

(51) 

The above Equation (51) can be re-expressed as 

i i

m
m

m

i i
i

i

g s
s

  

(52) 

The control law of the sliding mode variable structure control unit in Equation (47) 

is equivalent to 

dsgnu[ ] 1
i

i
c i i i i i

i

g s ss g s
s

  (53) 

Since the slope of the sign function dsgn() in Equation (53) is infinite, the control 

signal of the system has a serious jitter problem in the switching process. In this paper, 

the hyperbolic tangent function tanh() with a gentler slope is introduced to replace the 

sign function dsgn() to improve it. According to Equations (52) and (53), the improved 

u[ ]i
c  can be expressed as 

u m
m

[ ] tanh tanhi
c i i i i ig s s s   (54) 

According to Equation (54), we can obtain the control law cu  of the sliding mode 

variable structure control unit of the system as 

c
u G stanh( )   (55) 

4. Simulation 

In this section, an in-orbit service task as shown in Figure 5 is designed for a free-

floating dual-arm space robot, in which one manipulator performs the capture operation 

on the target object and the other manipulator performs the maintenance operation on the 

captured object. The parameters of the free-floating dual-arm space robot are shown in 

Table 1. 

Table 1. Initial parameters of the free-floating dual-arm space robot. 

Parameter Symbol Value 

Axis-Invariant 

1
i
n  

1
2n , 

3
4n , 

3
7n  

2
3n , 

4
5n , 

5
6n , 

7
8n , 

8
9n  

[1 0 0]T 

[0 1 0]T 

[0 0 1]T 

Initial linear position 

(m) 
1
0 2r ; 

2
0 3r ; 

3
0 4r ; 

[0 0 0]T; [0 0 0]T; [−0.5 0.5 0]T; 

[0 0.2 0]T; [0 0.3 0]T; [0.5 0.5 0]T; 

[0 0.2 0]T; [0 0.3 0]T 
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4
0 5r ; 

5
0 6r ; 

3
0 7r ; 

7
0 8r ; 

8
0 9r  

Center position of the 

link mass (m) 

1
1Ir ; 

2
2Ir ; 

3
3Ir ; 

4
4Ir ; 

5
5Ir ; 

6
6Ir ; 

7
7Ir ; 

8
8Ir ; 

9
9Ir  

[0 0 0]T; [0 0 0]T; [0 0 0.1]T; 

[0 0.1 0]T; [0 0.15 0]T; [0 0.1 0]T; 

[0 0.1 0]T; [0 0.15 0]T; [0 0.1 0]T 

Link mass (kg) 
m1 ; m2 ; m 3 ; m 4 ; m 5 ; 

m 6 ; m 7 ; m 8 ; m 9  

0; 0; 300; 30; 10;  

5; 30; 10; 5  

Link MOI (kg·m2) 

1
1

I
IJ ; 

2
2

I
IJ ; 

3
3

I
IJ  

4
4

I
IJ ; 

5
5

I
IJ ; 

6
6

I
IJ ; 

7
7

I
IJ ; 

8
8

I
IJ ; 

9
9

I
IJ  

diag(0,0,0); diag(0,0,0); diag(0.1,0.1,0.002); 

diag(0.03,0.006,0.03); diag(0.002,0.002,0.001); 

diag(0.001,0.001,0.0002); diag(0.03,0.006,0.03); 

diag(0.002,0.002,0.001); 

diag(0.001,0.001,0.0002) 

Step size (s) t  0.001 

Steps i 25000 

Rolling period (s) rT  0.1 

Diagonal elements 

of Λ  

1 ; 2 ; 3 ; 

4 ; 5 ; 6 ; 

7 ; 8 ; 9  

20; 10; 200; 

45; 20; 10; 

45; 20; 10 

Dynamic parameter 

uncertainty 

M ; 

h  

1.5 M̂ ; 

1.5 ĥ  

External disturbance 

d1; d2; d3; 

d4; d5; d6; 

d7; d8; d9 

10sin(0.01i); 40sin(0.01i); 20sin(0.01i); 

2sin(0.01i); 2sin(0.01i); 2sin(0.01i); 

2sin(0.01i); 2sin(0.01i); 2sin(0.01i) 

(a) Capture of satellite solar panel debris

(b) Maintenance of satellite solar panel debris
 

Figure 5. Schematic diagram of the designed in-orbit service task. 
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The space robot will inevitably be affected by uncertain dynamic parameters and 

external disturbance when it performs the in-orbit service task. First, we use the 

traditional NMPC method to simulate and contrast the trajectory tracking of the space 

robot under the influence of dynamic parameter uncertainty and external disturbance. 
The relevant parameter settings of the dynamic parameter uncertainty and external 

disturbance of the space robot during simulation can be found in Table 1. Taking joint 5 

as an example, the traditional NMPC method is used to simulate and compare the actual 

situation of the free-floating dual-arm space robot affected by parameter uncertainty and 

external disturbance with the ideal situation that is not affected. The results are shown in 

Figure 6. It can be seen from Figure 6 that the traditional NMPC method has a good control 

effect on the robot under ideal conditions, but the control effect of the robot under actual 

conditions with disturbances needs to be improved. 

  
(a) (b) 

Figure 6. Simulation comparison of traditional NMPC with and without disturbance. (a) 

Comparison of desired trajectory tracking for joint 5. (b) Error comparison of desired trajectory 

tracking for joint 5. 

To show the advantages of the proposed improved NMPC method, we next build 

two controllers based on the traditional NMPC method and the proposed improved 

NMPC method, respectively. The relevant parameter settings of these two controllers can 

be found in Table 1. We use these two controllers to simulate the trajectory tracking of the 

two arms of the free-floating dual-arm space robot under the influence of uncertain 

dynamic parameters and external disturbances. Figure 7 shows the tracking comparison 

of each joint of the left arm based on these two controllers to the desired trajectory. As 

shown in Figure 7, compared with the traditional NMPC controller, the proposed 

improved NMPC controller is more accurate in tracking the desired trajectory, and can 

keep the error within the target range, showing an excellent control effect. 
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(c) (d) 

  
(e) (f) 

Figure 7. Simulation comparison between traditional NMPC and proposed improved NMPC. (a) 

Comparison of desired trajectory tracking for joint 4. (b) Error comparison of desired trajectory 

tracking for joint 4. (c) Comparison of desired trajectory tracking for joint 5. (d) Error comparison of 

desired trajectory tracking for joint 5. (e) Comparison of desired trajectory tracking for joint 6. (f) 

Error comparison of desired trajectory tracking for joint 6. 

Unlike the ground fixed manipulator, the attitude of the base of the free-floating 

dual-arm space robot needs to be controlled stably; otherwise, it will seriously affect the 

operation accuracy of the two arms, resulting in the failure of the operation task. 
Therefore, we finally use these two controllers to simulate the stable control of the base 

attitude of the free-floating dual-arm space robot. In order to further demonstrate the 

advantages of the designed improved NMPC controller, we increase the amplitude of the 

external disturbance of the robot base attitude simulation experiment to five times the 

original to increase the uncertainty of the system to verify the performance of the 

proposed controller. Figure 8 shows the error comparison of the base attitude stabilization 

control of the free-floating dual-arm space robot based on these two controllers. It can be 

seen from Figure 8 that compared with the traditional NMPC controller, the designed 

improved controller obtains a more stable base attitude. The proposed controller shows 

excellent stability in conditions of strong disturbance. 
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(a) (b) 

 
(c) 

Figure 8. Error comparison of base attitude stability control. (a) Comparison of the x-axis error of 

the base. (b) Comparison of the y-axis error of the base. (c) Comparison of the z-axis error of the 

base. 

5. Discussion 

This section will discuss the proposed method from two perspectives: dynamic 

modeling and control. 

• Dynamic modeling: 

(1) The free-floating dual-arm space robot studied in this paper is a complex 

multibody system with nine DOF. The modeling efficiency of the traditional 

explicit multibody system dynamic modeling method needs to be improved. For 

example, when the pseudo inertia matrix method [19,20] is used, the pseudo 

inertia matrix, the homogeneous transformation matrix, and other intermediate 

variables need to be calculated; when the generalized momentum method [21] 

is used, although the computational efficiency of the inertia matrix is higher than 

that of the pseudo inertia matrix method, it is also necessary to derive and 

calculate the intermediate variables such as the Jacobian matrix, and the 

generalized momentum method cannot explicitly establish the bias force vector. 

The space robot modeling method in this paper avoids the definition and 

operation of intermediate variables, and its modeling efficiency is higher than 

the traditional explicit modeling method. The highest computational complexity 

is obtained when all joint types of the robot are considered as rotational joints. 

Table 2 shows the comparison of the computational complexity of the inertia 

matrix M and the bias force vector h in the calculation of an n-DOF robot with 

full rotational joints when the three different explicit dynamics modeling 

methods are adopted. Table 2 shows that the computational complexity of the 

explicit canonical method in this paper is significantly lower than those of the 
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other two methods. 

Table 2. Comparison of computational complexity. 

Numbers 

Pseudo-Inertia 

Matrix 

Method  

Generalized 

Momentum 

Method  

Explicit 

Canonical 

Method 

Inertia 

matrix 

Multiplication 21n3 + 63n2 + 66n 7n3 + 12n2 + 3n 
3.5n3 + 16n2 + 

12.5n 

Addition 
18n3 + 49.5n2 + 

43.5n 
5n3 + 10n2 + 2n 3.5n3 + 10n2 + 6.5n 

Bias force 

vector 

Multiplication 91n2 + 157n - 16.5n2 + 43.5n 

Addition 67n2 + 105n - 7.5n2 + 27.5n 

(2) Due to the floating characteristics of the base of the free-floating space robot, it 

is difficult to combine the traditional explicit dynamic modeling method with 

DEM, because it requires tedious and complex analysis processes, such as the 

definition and operation of complex intermediate variables. When combined 

with DEM, our explicit canonical dynamic modeling method can avoid the 

tedious and complex analysis of intermediate variables. 

(3) Due to the inconvenient modeling method, most of the literature in the study of 

space robot dynamics and control only simulates the plane situation of the two-

DOF manipulator, which makes it difficult to reflect the real working state of the 

complex multi-DOF space robot. When using the proposed explicit dynamic 

modeling method, it is easy to establish a dynamic model for complex multi-

DOF space robot for control research. 

• Control: 

(1) Compared with other traditional control methods, research on the NMPC 

method applied to space robots is not extensive enough. Recently, Tomasz 

Rybus [11,44] explored the possibility of using the NMPC method to control 

manipulators mounted on free-floating space robots. However, Tomasz Rybus 

[11,44] only considered the trajectory tracking control of the end manipulator of 

the free-floating space robot, and did not consider the stable control of the 

attitude of the base of the free-floating space robot. In addition, Tomasz Rybus 

[11,44] only carried out dynamic modeling and simulation verification of the 

NMPC method for a two-DOF planar manipulator. This paper not only 

considers the trajectory tracking control of the end manipulator of the free-

floating space robot, but also considers the stable control of the base attitude of 

the free-floating space robot. In addition, the dynamic modeling and control 

simulation of the free-floating dual-arm space robot with nine DOF are carried 

out in this paper. 

(2) The free-floating space robot has high requirements on the accuracy of trajectory 

tracking and the stability of the base attitude. The traditional NMPC method has 

difficulty meeting these requirements. This paper innovatively introduces the 

idea of sliding mode variable structure to improve the traditional NMPC 

method. The proposed improved NMPC method has better robustness and can 

better meet the requirements of trajectory tracking accuracy and base attitude 

stability for free-floating space robots serving in orbit. 

(3) Inspired by the literature [15], the control system in this paper consists of a 

combined controller for the base and the arms, rather than two separate 

controllers, which can reduce the risk of failure. 
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6. Conclusions 

Based on a new dynamic modeling theory, a novel dynamic control method is 

proposed for the free-floating dual-arm space robot. This method can not only realize the 

tracking of the desired trajectory by the two arms of the space robot, but also realize the 

stable control of the space robot base. The in-orbit service mission of space debris capture 

was designed and simulated. The main contributions of this paper are as follows: 

(1) Based on a new explicit multi-rigid-body dynamic modeling method and employing 

the concept of DEM, the dynamic model of a free-floating dual-arm space robot is 

established. The modeling process of the model is simple and standardized, which is 

convenient for computer programming. 

(2) After introducing the control idea of the sliding mode variable structure into the 

traditional NMPC method, a novel NMPC controller is designed, which effectively 

solves the problem of tracking the desired trajectory and stabilizing the base attitude 

of the free-floating dual-arm space robot under unknown model uncertainty and 

external disturbance. 

This article focuses on the challenging problem of dynamic modeling and control of 

free-floating space robots. The proposed new dynamic modeling and control method can 

be effectively applied to the on-orbit service tasks of free-floating dual-arm space robots, 

providing new insights into the challenging problems regarding the dynamics and control 

of complex multi-DOF space robots. In order to fully verify the method proposed in this 

paper, a prototype platform of a free-floating dual-arm space robot will be built in the future, 

and the development and test of hardware system will be carried out. At the same time, in 

the future, factors such as link flexibility, joint friction and contact collision will be 

considered to study the dynamic modeling, control and planning of multi-arm space robots. 
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Appendix A 

Table A1. Symbol descriptions. 

Symbols Description Symbols Description 
l
l  Angular position along l ln  l

l  Vector form of l
l  

l
lr  Linear position along l ln  0

l
lr  Vector from lO  to lO  

l
lr  Vector form of l

lr  l
lQ  Rotation matrix from l  to l  

Lu  Closed subtree of link u i
ll  Kinematic chain from i to l 

mk  Mass of link k kI
kIJ  Inertia tensor of link k 

[ ][ ]uM
R

 
Inertial force matrix of revolute 

joint u 
[ ]uh
R

 
Bias force vector of revolute 

joint u 

iL
uτ  

resultant torque on axis u un  

except gravity 
[ ][ ]M u k  

uth row and kth column 

element of inertia matrix 
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Appendix B 

• Because the inertia matrix M[·][·] is a symmetric matrix, and because we are limited by 

the length of the article, the following are only the explicit expressions of the 

corresponding elements in the upper left corner of the M[·][·] matrix in Equation (19). 

|1 |1 ^2 |2 |1 ^2 |3 |1 ^2
1 1 1 2 2 2 3 3 3

[1][1] T |4 |1 ^2 |5 |1 ^2 |6 |1 ^2
1 4 4 4 5 5 5 6 6 6

|7 |1 ^2 |8 |1 ^2 |9 |1
7 7 7 8 8 8 9 9 9

m + + m

\+ m + m + m

\+ m + m + m

i I i i I i i I i
I I I I I I

i i I i i I i i I i
I I I I I I

i I i i I i i I i
I I I I I

mJ r J r J r

M n J r J r J r

J r J r J r

1

^2

|2 |1 |2 |3 |1 |2
2 2 2 2 3 3 3 3

|4 |1 |2 |5 |1 |2
4 4 4 4 5 5 5 5[1][2] T

1 |6 |1 |2 |7 |1
6 6 6 6 7 7

m + m

\+ m + m

\+ m + m

i

I

i I i i i I i i
I I I I I I

i I i i i I i i
I I I I I Ii

i I i i i I i
I I I I

n

J r r J r r

J r r J r r
M n

J r r J

|1
2|2

7 7

|8 |1 |2 |9 |1 |2
8 8 8 8 9

4
|3 |1 |3 |4 |1 |3

3 3 3 3 4 4 4

|5 |1
5 5 5[1]

9

[ ]

9 9

3 T
1

+

\+ m +

m m

\+ m

m

i I i i i I i i
I I I I I I

i I i i

I

I

i

i
I I

i I i i i I i i
I I I I

Ii

I

n
r

J r r J r r

J r
M

r

J r r J r r

n

|3 |6 |1 |3
5 6 6 6 6 |2

3|7 |1 |3 |8 |1 |3
7 7 7 7 8 8 8 8

|9 |1 |3
9 9 9 9

|4 |1 |4
4 4 4 4[1][4] T

1

+ m

\+ m + m

\+ m

m

i I i i
I I I I i

i I i i i I i i
I I I I I I

i I i i
I I I

i I i i
I Ii

r J r r
n

J r r J r r

J r r

J r r
M n

|5 |1 |4 |6
5 5 5 5 6 |3

4|1 |4
6 6 6

[1][5] T |5 |1 |5 |6 |1 |5 |4
1 5 5 5 5 6 6 6 6 5

[1][6] T |6 |1 |6 |5
1 6 6 6 6 6

[1]

+ m +

\ m

m + m

m

i I i i i I
I I I I I i

i i
I I

i i I i i i I i i i
I I I I I I

i i I i i i
I I I

J r r J
n

r r

M n J r r J r r n

M n J r r n

M

|7 |1 |7 |8 |1 |7 |9
7 7 7 7 8 8 8 8 9[7] T |3

1 7|1 |7
9 9 9

[1][8] T |8 |1 |8 |9 |1 |8 |7
1 8 8 8 8 9 9 9 9 8

[1][9] T |
1

m + m +

\ m

m + m

i I i i i I i i i I
I I I I I I Ii i

i i
I I

i i I i i i I i i i
I I I I I I

i i

J r r J r r J
n n

r r

M n J r r J r r n

M n 9 |1 |9 |8
9 9 9 9 9mI i i i
I I IJ r r n

  

(A1) 
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|2 |2 ^2 |3 |2 ^2
2 2 2 3 3 3

[2][2] |1 T |4 |2 ^2 |5 |2 ^2 |6 |2 ^2
2 4 4 4 5 5 5 6 6 6

|7 |2 ^2 |8 |2 ^2 |9 |2 ^2
7 7 7 8 8 8 9 9 9

m m

\ m m m

\ m m m

i I i i I i
I I I I

i i I i i I i i I i
I I I I I I

i I i i I i i I i
I I I I I I
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• The explicit expressions of the bias force vector h[·] of the left arm and the right arm 

of the free-floating dual-arm space robot with symmetrical tree-chain topology are 

very similar. Since we are limited by the length of the article, the following are only 

the explicit expressions of the corresponding elements of the base and the left arm in 

the h[·] vector in Equation (19). 
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Appendix C 

Proof of Theorem 2. Since m I M , where 0m and a aM  is a positive 

definite matrix, and a aK  is a diagonal positive definite matrix, then the following 

equation holds: 

 I K M Km  (A16) 

Since M is a positive definite matrix, then 1M  is also a positive definite matrix. 

According to Equation (A16), the following equation holds: 

 1M  K Km  (A17) 

Since a aK  is a diagonal positive definite matrix, then 1M  and K are 

interchangeable, so 1M K  is also positive definite. According to Equation (A17), for 

any vector ax , the following equation holds: 

1 TTm M K x x Kx x  (A18) 

Proof done. □ 

References 

1. Zong, L.; Emami, M.R.; Luo, J. Reactionless Control of Free-Floating Space Manipulators. ITAES 2019, 56, 1490–1503. 

2. Chu, X.; Hu, Q.; Zhang, J. Path Planning and Collision Avoidance for a Multi-Arm Space Maneuverable Robot. ITAES 2017, 54, 

217–232. 

3. Wang, D.; Huang, P.; Meng, Z. Coordinated stabilization of tumbling targets using tethered space manipulators. ITAES 2015, 

51, 2420–2432. 

4. Dou, B.; Yue, X. Disturbance observer-based fractional-order sliding mode control for free-floating space manipulator with 

disturbance. Aerosp. Sci. Technol. 2023, 132, 108061. 

5. Meng, D.; Xu, H.; Xu, H.; Sun, H.; Liang, B. Trajectory tracking control for a cable-driven space manipulator using time-delay 

estimation and nonsingular terminal sliding mode. Control Eng. Pract. 2023, 139, 105649. 

6. Wu, H.; Hu, Q.; Shi, Y.; Zheng, J.; Sun, K.; Wang, J. Space manipulator optimal impedance control using integral reinforcement 

learning. Aerosp. Sci. Technol. 2023, 139, 108388. 

7. Jayakody, H.S.; Shi, L.; Katupitiya, J.; Kinkaid, N. Robust Adaptive Coordination Controller for a Spacecraft Equipped with a 

Robotic Manipulator. J. Guid. Control Dyn. 2016, 39, 2699–2711. 

8. Sallaberger, C.; Force, S.P.T.; Agency, C.S. Canadian space robotic activities. Acta Astronaut. 1997, 41, 239–246. 

9. Liu, Y.; Chen, Z.; Gao, J.; Gan, S.; Kang, E. High performance assembly of complex structural parts in special environments–

research on space manipulator assisted module docking method. Robot. Intell. Autom. 2023, 43, 122–131. 

10. Zhu, Y.; Qiao, J.; Guo, L. Adaptive Sliding Mode Disturbance Observer-Based Composite Control With Prescribed Performance 

of Space Manipulators for Target Capturing. ITIE 2018, 66, 1973–1983. 



Appl. Sci. 2024, 14, 3333 27 of 28 
 

11. Rybus, T.; Seweryn, K.; Sasiadek, J.Z. Control System for Free-Floating Space Manipulator Based on Nonlinear Model Predictive 

Control (NMPC). JIRS 2017, 85, 491–509. 

12. Wei, Y.; Yang, X.; Xu, Z.; Bai, X. Novel ground microgravity experiment system for a spacecraft-manipulator system based on 

suspension and air-bearing. Aerosp. Sci. Technol. 2023, 141, 108587. 

13. Kernot, J.E.; Ulrich, S. Adaptive control of a tendon-driven manipulator for capturing non-cooperative space targets. JSpRo 2022, 

59, 111–128. 

14. Ogilvie, A.; Allport, J.; Hannah, M.; Lymer, J. Autonomous Satellite Servicing Using the Orbital Express Demonstration 

Manipulator System. In Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics Automation in 

Space, Los Angeles, CA, USA, 2008; pp. 25–29. 

15. Seddaoui, A.; Saaj, C.M. Combined Nonlinear H∞ Controller for a Controlled-Floating Space Robot. J. Guid. Control Dyn. 2019, 

42, 1878–1885. 

16. Liu, X.; Li, H.; Chen, Y.; Cai, G.; Wang, X. Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm. 

Multibody Syst. Dyn. 2015, 33, 315–332. 

17. Ding, W.H.; Deng, H.; Li, Q.M.; Xia, Y.M. Control-orientated dynamic modeling of forging manipulators with multi-closed 

kinematic chains. Robot. Comput. Integr. Manuf. 2014, 30, 421–431. 

18. Xu, X.R.; Chung, W.J.; Choi, Y.H.; Ma, X.F. A new approach for modeling and computation of dynamics of robots containing 

closed chains. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, Victoria, BC, Canada, 

17 October 1998. 

19. Uicker, J.J. History of Multibody Dynamics in the U.S. J. Comput. Nonlinear Dyn. 2016, 11, 060302. 

20. Li, C. A New Lagrangian Formulation of Dynamics for Robot Manipulators. J. Dyn. Syst. Meas. Control 1989, 111, 545. 

21. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer: Berlin/Heidelberg, Germany, 

2011. 

22. Yang, Y.; Ju, H.; Wang, K. An innovative joint-space dynamic theory for rigid multi-axis system-Part I: Fundamental principles. 

Appl. Math. Model. 2022, 110, 28–44. 

23. Wang, K.; Ju, H.; Yang, Y. An innovative joint-space dynamic theory for rigid multi-axis system—Part II: Canonical dynamic 

equations. Appl. Math. Model. 2022, 110, 475–492. 

24. Shao, X.; Sun, G.; Xue, C.; Li, X. Nonsingular terminal sliding mode control for free-floating space manipulator with disturbance. 

Acta Astronaut. 2021, 181, 396–404. 

25. Zhang, X.; Liu, J.; Gao, Q.; Ju, Z. Adaptive robust decoupling control of multi-arm space robots using time-delay estimation 

technique. Nonlinear Dyn. 2020, 100, 2449–2467. 

26. Nguyen-Huynh, T.C.; Sharf, I. Adaptive Reactionless Motion and Parameter Identification in Postcapture of Space Debris. J. 

Guid. Control Dyn. 2013, 36, 404–414. 

27. James, F.; Shah, S.V.; Singh, A.K.; Krishna, K.M.; Misra, A.K. Reactionless Maneuvering of a Space Robot in Precapture Phase. 

JGCD 2016, 39, 2419–2425. 

28. Dubowsky, S.; Papadopoulos, E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. 

IEEE Trans. Robot. Autom. 1993, 9, 531–543. 

29. Papadopoulos, E.; Dubowsky, S. On the nature of control algorithms for free-floating space manipulators. ITRA 1991, 7, 750–

758. 

30. Vafa, Z.; Dubowsky, S. The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach. IJRR 1990, 9, 

3–21. 

31. Pazelli, T.F.P.A.T.; Terra, M.H.; Siqueira, A.A.G. Experimental investigation on adaptive robust controller designs applied to a 

free-floating space manipulator. Control Eng. Pract. 2011, 19, 395–408. 

32. Liang, B.; Xu, Y.; Bergerman, M. Dynamically equivalent manipulator for space manipulator system. 1. In Proceedings of the 

Proceedings of International Conference on Robotics and Automation, Albuquerque, NM, USA, 25 April 1997. 

33. Guo, Y.; Chen, L. Robust Control of Dual-Arm Space Robot Systems with Two Objects in Joint Space. In Proceedings of the 

IEEE/RSJ International Conference on Intelligent Robots & Systems, Beijing, China, 9–15 October 2006; pp. 5091–5095. 

34. Flores-Abad, A.; Ou, M.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. PrAeS 2014, 68, 1–

26. 

35. Cocuzza, S.; Pretto, I.; Debei, S. Least-Squares-Based Reaction Control of Space Manipulators. J. Guid. Control Dyn. 2012, 35, 976–

986. 

36. Shi, Z.; Huang, X.X.; Tan, Q.; Tian-Jian, H.U. Fractional-order PID control for teleoperation of a free-flying space robot. Control 

Theory Appl. 2016, 33, 800–808. 

37. Liu, J.; Vazquez, S.; Wu, L.; Marquez, A.; Gao, H.; Franquelo, L.G. Extended State Observer-Based Sliding-Mode Control for 

Three-Phase Power Converters. ITIE 2016, 64, 22–31. 

38. Guanghui; Sun; Ligang; Wu; Zhian; Kuang; Zhiqiang; Ma; Jianxing, Practical tracking control of linear motor via fractional-

order sliding mode. Autom 2018, 94, 221–235. 

39. Slotine, J.; Li, W.P. Applied Nonlinear Control; China Machine Press: Beijing, China, 1991. 

40. Korayem, M.H.; Taherifar, M.; Tourajizadeh, H. Compensating the flexibility uncertainties of a cable suspended robot using 

SMC approach. Robot 2015, 33, 578–598. 



Appl. Sci. 2024, 14, 3333 28 of 28 
 

41. Tsuda, S.; Kobayashi, T. Space Robot Control for Unknown Target Handling. In International Conference on Advances in Intelligent 

Control and Innovative Computing; Springer: New York, NY, USA, 2012; pp. 11–24. 

42. Song, Z.; Chao, D.; Wang, J.; Wu, Q. Chattering-free full-order recursive sliding mode control for finite-time attitude 

synchronization of rigid spacecraft. J. Frankl. Inst. 2019, 356, 998–1020. 

43. Gui, H.; Vukovich, G. Adaptive integral sliding mode control for spacecraft attitude tracking with actuator uncertainty. J. Frankl. 

Inst. 2015, 352, 5832–5852. 

44. Rybus, T.; Seweryn, K.; Sąsiadek, J.Z. Nonlinear Model Predictive Control (NMPC) for Free-Floating Space Manipulator. In 

Aerospace Robotics III; Sasiadek, J. Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 17–29. 

45. Raimondo, D.M.; Limon, D.; Lazar, M.; Magni, L.; Camacho, E.F. Min-max Model Predictive Control of Nonlinear Systems: A 

Unifying Overview on Stability. Eur. J. Control 2009, 15, 5–21. 

46. Rahideh, A.; Shaheed, M.H. Stable model predictive control for a nonlinear system. J. Frankl. Inst. 2011, 348, 1983–2004. 

47. Shi, L.; Kayastha, S.; Katupitiya, J. Robust coordinated control of a dual-arm space robot. Acta Astronaut. 2017, 138, 475–489. 

48. Featherstone, R. Rigid Body Dynamics Algorithms; Springer US: New York, NY, USA, 2008. 

49. Xiao, P.; Ju, H.; Li, Q.; Meng, J.; Chen, F. A New Fixed Axis-Invariant Based Calibration Approach to Improve Absolute 

Positioning Accuracy of Manipulators. IEEE Access 2020, 8, 134224–134232. 

50. Ju, H. Axis-Invariant Based Multi-Axis Robot System Forward Kinematics Modeling and Solving Method. US16541147, 20 

February 2020. 

51. Ju, H. Axis-Invariant Based Multi-Axis Robot Inverse Kinematics Modeling and Solving Method. US16541149, 20 February 2020. 

52. Hollerbach, J.M. A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics 

Formulation Complexity. IEEE Trans. Syst. Man Cybern. 1980, 10, 730–736. 

53. Merabet, A.; Gu, J. Robust nonlinear predictive control based on state estimation for robot manipulator. Int. J. Appl. Math Mech. 

2008, 5, 48–49. 

54. Rojas-Moreno, A.; Valdivia-Mallqui, R. Embedded position control system of a manipulator using a robust nonlinear predictive 

control. In Proceedings of the International Conference on Advanced Robotics, Montevideo, Uruguay, 25–29 November 2013; 

pp. 1–6. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 

to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


