
Citation: Sonbul, O.S. A Flexible

Hardware Accelerator for Booth

Polynomial Multiplier. Appl. Sci. 2024,

14, 3323. https://doi.org/10.3390/

app14083323

Academic Editor: Christos Bouras

Received: 21 March 2024

Revised: 11 April 2024

Accepted: 12 April 2024

Published: 15 April 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Flexible Hardware Accelerator for Booth
Polynomial Multiplier
Omar S. Sonbul

Computer and Network Engineering Department, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
ossonbul@uqu.edu.sa

Abstract: This article presents a parameterized/flexible hardware accelerator design tailored for the
Booth polynomial multiplication method. The flexibility is achieved by allowing users to compute
multiplication operations across various operand lengths, reaching up to 212 or 4096 bits. Our
optimization strategy involves resource reuse, effectively minimizing the overall area cost of the
Booth accelerator design. A comprehensive evaluation compares the proposed multiplier design with
several non-digitized bit-serial polynomial multiplication accelerators. Implementation is realized in
Verilog HDL using the Vivado IDE tool, featuring diverse operand sizes, and post-place and route
assessments are performed on the Xilinx Virtex-7 field-programmable gate array device. For the
largest considered operand size of 1024 × 1024, our Booth accelerator utilizes 1434 slices and can
operate on a maximum frequency of 523.56 MHz. A single polynomial multiplication operation
requires 0.977 µs and the total power consumption is 927 mW. Moreover, a comparison to state-of-
the-art accelerators reveals that the proposed flexible accelerator is 1.34× faster in computation time
and 1.05× more area-efficient than the recent dedicated polynomial multiplication design. Therefore,
the implementation results and comparison to the state of the art show that the proposed accelerator
is suitable for a wide range of cryptographic applications.

Keywords: Booth; polynomial multiplication; hardware; implementation; FPGA

1. Introduction

Cryptographic hardware circuits ensure efficient and secure communications for data
exchange and signature generation or verification. These circuits require various arithmetic
and logical operations to implement cryptographic protocols or algorithms. The arithmetic
operations include addition, subtraction, multiplication, inversion, etc. Among these,
polynomial multiplication stands out as a crucial task in the implementation of efficient
cryptographic circuits, given its status as the most computationally intensive operation in
cryptographic schemes, as highlighted in [1–6].

Polynomial multiplication entails the multiplication of two polynomials, denoted as
a and b, to yield a resultant polynomial, represented as c. The degree of the consequent
polynomial is the sum of the degrees of the two input polynomials. As discussed in [1,3],
polynomial multipliers can be broadly structured into non-digitized and digitized designs.
The non-digitized multipliers operate on bit levels, while the digitized multipliers consider
different lengths of digits and segments.

Non-digitized and digitized multipliers can further be classified into serial and parallel
designs, as described in [7]. These serial and parallel designs can further be categorized
into four branches: (i) bit-serial, (ii) digit-serial, (iii) bit-parallel, and (iv) digit-parallel.
The non-digitized bit-serial multipliers, exemplified by Schoolbook and Booth, undertake
polynomial multiplication on a bit-by-bit basis, generating a series of partial products.
These partial products are subsequently combined through addition to form the resultant
polynomial. Conversely, non-digitized bit-parallel multipliers divide the input polynomials
into multiple segments and perform multiplication on these segments [1]. The inner product

Appl. Sci. 2024, 14, 3323. https://doi.org/10.3390/app14083323 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083323
https://doi.org/10.3390/app14083323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1029-7568
https://doi.org/10.3390/app14083323
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083323?type=check_update&version=2

Appl. Sci. 2024, 14, 3323 2 of 15

of these divided portions is calculated, and the resultant polynomial is derived through
addition and subtraction operations. The Karatsuba multiplier is a renowned example of
a bit-parallel multiplier [8]. On the other hand, digit-serial and digit-parallel multipliers
split one polynomial into smaller segments [3] and consider each digit or segment for
multiplication with another input polynomial in either serial or parallel fashions.

Selecting appropriate serial and parallel designs of non-digitized and digitized multi-
pliers depends on the targeted application. For example, wireless sensor nodes (WSNs),
radio-frequency identification networks (RFID), autonomous systems, homomorphic en-
cryption, secure multi-party computation, error-correcting codes like Reed–Solomon (RS),
and signal-processing algorithms for filtering, convolution, and correlation demand area-
optimized hardware accelerators of polynomial multiplication methods [9,10]. Further-
more, applications like network servers demand high-speed polynomial multiplication
architectures [2]. In addition, the current cryptosystems based on RSA and elliptic-curve
cryptography (ECC) demand area-efficient and high-speed polynomial multiplication ar-
chitectures [2]. Moreover, for ECC-based cryptosystems, the National Institute of Standards
and Technology (NIST) recommends different prime and binary field lengths, further
necessitating flexible multiplier architectures.

Concerning the applications discussed above, it is clear that most applications demand
area-optimized implementation of polynomial multipliers to realize the cryptographic
algorithms (or protocols) on different implementation platforms [5,11]. Moreover, polyno-
mial multiplication is in critical demand in several cryptographic applications, and this
frequent demand for polynomial multiplication necessitates flexibility. Regarding these
demands, we have targeted a bit-serial Booth polynomial multiplier for our implementation.
The Booth multiplier is selected because of the low resource utilization compared to the
bit-parallel, digit-serial, and digit-parallel multiplication approaches. Compared to other
alternate approaches of bit-serial multiplication methods, such as Schoolbook, the Booth
multiplier results in lower computation time. Therefore, based on these benefits, we used
the Booth polynomial multiplier in this work.

1.1. Related Hardware Accelerators and Limitations

The studies most related to the work performed here, employing non-digitized bit-
serial polynomial multiplication methods, include [1,3,4,12–17]. These hardware accelera-
tors are implemented on field-programmable gate array (FPGA) and application-specific
integrated circuit (ASIC) platforms. Also, we identified an open-source polynomial mul-
tiplier generator tool, which is versatile and flexible and can be accessed using [12]. This
generator allows users to generate Verilog codes of multiple polynomial multiplication
architectures, including Schoolbook, Karatsuba, Booth, and Toom–Cook. In addition, it
is also possible to generate Verilog code for a digit-parallel kind of wrapper. The initial
results on 65 nm and an Arix-7 FPGA are described in [3]. More comprehensive results,
including 15 nm technology, are presented in [1].

An efficient multiplication design is described in [4], where a radix-2 Montgomery
polynomial multiplication approach is considered for hardware acceleration on a Virtex-6
FPGA over polynomial lengths of 1024 bits. Their design achieves a maximum frequency
of 53 MHz and performs one polynomial multiplication in 19.26 µs. Moreover, their
accelerator utilizes 2566 FPGA look-up tables (LUTs). For similar operand lengths of
1024 bits, as implemented in [4], a Montgomery modular multiplication accelerator is also
described in [13], where the implementation results are reported on a Xilinx Virtex-5 FPGA.
The maximum achieved frequency is 400 MHz, the computation time for one polynomial
multiplication is 0.88 µs, and the hardware resource utilization is 6105 slices.

An attractive polynomial multiplication design is presented in [14]. This architecture
targets operand sizes of 163 bits and uses a programmable-cellular-automata-based bit-
serial approach for multiplying polynomials. The implementation results are given on a
Xilinx Virtex-II FPGA. For this design, the achieved operating frequency is 177 MHz, and

Appl. Sci. 2024, 14, 3323 3 of 15

the time for one polynomial multiplication of 163 bits is 0.91 µs. Overall, the hardware
design utilizes 225 FPGA slices on older Virtex-II devices.

The architectures of Booth polynomial multipliers are considered in [15–17]. In [15,18],
a radix-4 Booth multiplier accelerator is presented where the authors use an approximation
technique to generate the partial products. The area and power results are realized on
a 65 nm ASIC, and the authors reported values of area and power are 478.8 µm2 and
0.113 mW, respectively. Another radix-4 Booth multiplier accelerator is implemented
in [16], where the targeted operand size is 8 × 8. The synthesis results in power, delay, and
area are reported for Synopsis 32 nm technology. We recommend that readers refer to [16] to
understand the complete Booth multiplications quickly. In [17], a hardware implementation
of the radix-4 Booth multiplier is implemented on a Spartan-6 FPGA for operand lengths of
32 × 32 bits. This design can operate on a maximum of 100 MHz and uses 278 LUTs as an
area. Exciting work is described in [18], where bit-serial multiply-accumulate units (MACs)
are implemented for various applications, including deep learning, image processing, and
signal processing. Moreover, this work investigates the potential of bit-serial solutions by
applying Booth encoding to bit-serial multipliers within MACs to enhance area and power
efficiencies. They present two hardware accelerators of bit-serial MACs, one regarding the
radix-2 and the other the radix-4 Booth encoding multiplier.

The related efforts on non-digitized bit-serial multiplication accelerators reveal that
the existing architectures are frequently designed and optimized for a specific operand
length [4,14–18]. The open-source tool of [12] for several polynomial multipliers considers
the Booth multiplication method. Their tool offers several valuable features, so the Booth
multiplier implementation they offer is without architectural optimizations and can be
considered as a baseline. In addition, the Booth accelerator of [12] takes the size of the
operand lengths as a parameters as inputs, and then, generates the equivalent Verilog code
from the C/C++-implemented design. This requires multiple compilations to generate
Verilog code from C/C++ for each targeted operand length. On the other hand, our
Verilog-implemented flexible Booth accelerator takes the operand sizes as parameters as
inputs, and then, it can be directly synthesized using the synthesis tool. Compilation is
unnecessary to generate the Verilog code; this reduces the compilation effort. Moreover,
the implementation of [12] lacks the architectural details of the Booth multiplier; however,
we have provided enough details to implement it on the targeted FPGA devices.

1.2. Novelty and Contributions

To address the limitations of the existing hardware accelerators, this work aims to
design and implement a novel hardware accelerator of the Booth polynomial multiplier
to perform multiplication over two polynomials without considering the timing and side-
channel attacks. We list our contributions below:

• We implement a parameterized/flexible hardware accelerator design for the Booth
polynomial multiplication method that allows users to perform multiplication over
various operand lengths instead of the specified operand sizes. Our flexible accelerator
is 1.34× faster in computation time and 1.05×more area-efficient than the most recent
dedicated polynomial multiplication accelerator (for operand sizes of 1024× 1024).

• To minimize the area cost of the proposed flexible hardware accelerator of the Booth
multiplier, we reuse the hardware resources.

• To provide efficient control functionalities, we implement a dedicated finite-state
machine (FSM)-based controller.

• Finally, a comprehensive evaluation of the results concerning the throughput/area
ratio is provided.

1.3. Limitation(s) and Significance of This Work

The limitation of our Booth architecture is that it supports polynomial multiplications
only up to operand lengths of 4096 bits (see Section 3.5). We utilized the Vivado IDE
tool to implement a parameterized Booth multiplier in Verilog HDL. Our implementation

Appl. Sci. 2024, 14, 3323 4 of 15

targeted various operand sizes, and we reported results after the post-place and route
on the Xilinx Virtex-7 FPGA. For the largest considered operand size of 1024× 1024, our
Booth accelerator utilizes 1434 slices, operates at a frequency of 523.56 MHz, completes
one polynomial multiplication in 0.977 µs, and the total power consumption is 927 mW.
The applicability of our proposed Booth multiplier accelerator across a broad spectrum
of applications, including but not restricted to elliptic curves, error-correcting codes, RS
codes, and signal-processing algorithms such as filtering, convolution, and correlation,
highlights its significance. More precisely, let us consider the RS codes as an example to see
how our proposed Booth multiplier accelerator can be utilized. Generally, the RS codes
are a type of error-correcting code commonly used in digital communications and storage
systems, which requires polynomial multiplications in associated encoding and decoding
operations [19]. During the RS encoding, a message polynomial must be multiplied by
a generator polynomial to obtain the codeword polynomial [20]. Our proposed Booth
polynomial multiplier can be employed to efficiently compute this polynomial multipli-
cation operation, thereby accelerating the encoding process. On the other hand, during
the decoding process, error locations and magnitudes are estimated based on the received
codeword polynomial, and this process often involves polynomial division and other asso-
ciated arithmetic operations [20,21]. Therefore, our proposed Booth polynomial multiplier
can also be utilized during these arithmetic operations to accelerate the decoding process,
particularly in cases where polynomial multiplication is required. In short, our proposed
Booth polynomial multiplier can be effectively integrated into RS code implementations to
accelerate polynomial multiplication operations involved in (both) encoding and decoding
processes. In addition to these applications, our proposed Booth multiplier accelerator
can be used for post-quantum cryptographic standards such as CRYSTALS-Dilithium [22],
CRYSTALS-Kyber [23], etc., with some considerable modifications to multiply the polyno-
mial coefficients by their sizes.

The remainder of this article is formulated as follows: Section 2 describes the related
mathematical knowledge for the Schoolbook and Booth multiplication approaches. The
design trade-offs for these two multiplication methods are also provided in this section.
Our proposed parameterized Booth multiplier architecture is described in Section 3. We
present the implementation results and comparisons to existing non-digitized bit-serial
multiplication accelerators in Section 4. Finally, the article is concluded in Section 5.

2. Background

We describe the Schoolbook and Booth multiplication approaches with their algorith-
mic details in Section 2.1 and Section 2.2, respectively. Also, we highlight the strengths
and weaknesses of the Schoolbook and Booth polynomial multiplication algorithms in
Section 2.3.

2.1. Schoolbook Strategy

The Schoolbook multiplication method offers a more straightforward way to multiply
input polynomials of the form a(x)× b(x), as demonstrated in Equation (1). The resulting
polynomial c(x) is computed through bit-by-bit operations. Algorithm 1 illustrates the
steps of the Schoolbook multiplication, where polynomial a is multiplied by the shifted
polynomial b to yield the desired polynomial c. The Schoolbook multiplication method
requires m clock cycles when multiplying m-bit polynomials a(x) and b(x). Instead of the
clock cycle requirement or the computation cost, the associated hardware cost involves
(m− 1) additions and m shifts for multiplications. It is worth noting that the Schoolbook
multiplication method is particularly suited for area-optimized accelerators, taking into
account clock cycle overhead.

c(x) =
m−1

∑
i=0

m−1

∑
j=0

aibjxi+j (1)

Appl. Sci. 2024, 14, 3323 5 of 15

Algorithm 1 Schoolbook Multiplier [1]

Require: a and b (m− bit polynomial integers)
Ensure: c⇐ a× b

for (j f rom 0 to m− 1) do
if (bj = 1) then

c⇐ c + (a× 2j)
end if

end for

2.2. Booth Multiplication Approach

Like the Schoolbook multiplication method, the Booth multiplier uses addition, sub-
traction, and shift operations for computation. However, it differs from the Schoolbook
approach because it examines two bits simultaneously instead of one at a time. This
strategy reduces the number of required addition and subtraction operations, ultimately
minimizing the clock cycle requirement of the multiplier. We show the instructions or
steps of the traditional Booth multiplication method in Algorithm 2, where A maintains
the generated partial product (initialized to 0). The notation b represents the extended
polynomial obtained by appending a dummy 0-bit next to the least significant bit of the
multiplier (b).

Algorithm 2 Booth Polynomial Multiplication Algorithm [1]

Require: a and b (m− bit polynomial integers)
Ensure: c⇐ a× b

1: A⇐ 0 (m− bit temporary integer)
2: b⇐ {b, 0}
3: for (j f rom 0 to m− 1) do
4: if (bj+1 × bj = 01) then
5: A⇐ A + a
6: c⇐ shi f t_right_add(A, bj+1, bj)
7: end if
8: if (bj+1 × bj = 10) then
9: A⇐ A− a

10: c← shi f t_right_add(A, bj+1, bj)
11: end if
12: end for

Algorithm 2 performs multiplication by analyzing the least significant two bits of the
multiplier, addressing four possible cases: 00, 01, 10, and 11. In cases where the inspected
bits are either 00 or 11, no action is needed, and the partial product remains unchanged.
For the remaining two cases, the multiplicand may be added (line 5) or subtracted (line 8)
from the partial product (A). The shift_right_add function in lines 6 and 9 of Algorithm 2
facilitates the multiplication of the multiplicand by 2 through the shift and add operations.
In short, for operands of length m, Algorithm 2 requires m/2 clock cycles.

2.3. Schoolbook and Booth Algorithms: Trade-Offs

Sections 2.1 and 2.2 describe the Schoolbook and Booth multiplication approaches for
multiplying polynomials. Concerning [1], these two methods operate in a constant time
as these utilize partial product generation, and then, accumulation to produce resultant
polynomials in fixed clock cycles. The constant time means that these Schoolbook and
Booth methods need m and m

2 clock cycles for multiplying two polynomials of size m-bit.
Moreover, constant-time computation is one approach to resist simple power analysis
attacks, which are side-channel attacks that measure the power traces of the device to
reveal a secret. This is a significant benefit. Some other benefits include area efficiency
and low power utilization for applications specific to RFID and WSNs. Despite these
benefits, one issue of the Schoolbook and Booth approaches is that they are not useful

Appl. Sci. 2024, 14, 3323 6 of 15

for high-speed cryptographic applications such as network servers because these require
higher clock cycles for computation, resulting in a decrease in the (overall) performance or
throughput. Higher clock cycle utilization can imply low throughput, while more down
clock cycles can help optimize throughput. Therefore, the m

2 clock cycle requirement for
m-bit polynomial inputs motivates us to evaluate the performance of Algorithm 2 on
FPGA devices, as it helps to obtain highly area-optimized cryptographic accelerators with
reasonable throughput utilization.

3. Proposed Booth Accelerator Architecture

The architecture of the proposed Booth multiplier design is given in Figure 1. It
contains six input/output pins. The input pins are clk, rst, start, a, and b. The corresponding
output pin is c. Moreover, the clk, rst, and start inputs are one bit, while the remaining
input pins (i.e., a and b) are m bits for m-bit operand lengths. The output pin c’s size is
2m bits. The m-bit operand size ensures that our accelerator is parameterized and flexible.
Depending on the user’s choice, it can take different operand sizes as inputs and generate
the multiplication result accordingly. We let the reader know that the Booth accelerator only
multiplies polynomials without considering polynomial reduction. Therefore, the internal
architecture of our proposed Booth accelerator depends on several elements such as three
m-bit registers, i.e., Reg-A, Reg-a, Reg-b, and one 2m-bit register, named Reg-c. Moreover, it
contains one m-bit adder and subtractor, one 4 × 1 multiplexer, one shift-right-add block,
and a control unit. We describe these components one after another in the following text.

Figure 1. Proposed Booth accelerator architecture. The red and blue dotted lines are the control
signals.

3.1. Registers (or Buffers)

As shown in Algorithm 2, the required storage elements are A, b, and c. It can be seen
that lines five and eight of Algorithm 2 require input of polynomial a for completion of
the addition and subtraction operations. This is why the proposed accelerator contains
four registers: three m bits and one 2m bit. These registers are reused throughout the
multiplication process, which allows us to obtain minimum hardware resource utilization.
In addition, these four registers are temporary storage elements in our design. We discuss
more specific details below.

Reg-A is an accumulator buffer that initializes with 0 at reset, and then, in each clock
cycle during the multiplication process, it updates values with the new ones. We preserve

Appl. Sci. 2024, 14, 3323 7 of 15

the input polynomial a in Reg-a for the corresponding addition and subtraction executions
of Algorithm 2. It can be observed that the input polynomial a is only needed for the
addition and subtraction operations, and it never updates the corresponding Reg-a during
the entire multiplication execution. Therefore, Reg-a can be avoided, but on the other hand,
the design faces synchronization issues. Thus, we must hold the input polynomial a in
Reg-a to eliminate such problems. The b storage element of Algorithm 2 is shown with
simple Reg-b in Figure 1. Thus, from now on in the manuscript, Reg-b means that it has a
value of b. Reg-b contains a polynomial b with an additional 0-bit next to the least significant
bit (LSB) of the multiplier for Booth encoding. Moreover, this Reg-b is a part of the control
block that shifts two bits (i.e., bj+1 and bj) towards the right in each clock cycle to conduct
the multiplication operation. Finally, Reg-c keeps the resultant polynomial of 2m-bit size.

3.2. Adder and Subtractor

The adder and subtractor circuits require two inputs. The first input is from the
accumulator, and the other is the polynomial a, which is a multiplicand. We remind the
reader that the accumulator is Reg-A and the multiplicand is preserved in Reg-a. Figure 1
confirms the input connections to the adder and subtractor, which are from registers
Reg-A and Reg-a. Depending on the values of bj+1 and bj in each clock cycle, the adder
accumulates the multiplicand into Reg-A. If we delve more into it, the adder operates
when the inspected bits for bj+1 and bj are 01. Similarly, the subtractor is responsible for
subtracting the multiplicand from the accumulated value preserved in Reg-A. In other
words, the subtractor operates when the inspected bits for bj+1 and bj are 10.

There are several choices or possibilities for implementing the logic for the adder
and subtractor. For example, in existing Booth multiplication designs [4,17,18], the most
frequently used adder circuit is a carry-save, which efficiently computes the sum of three
or more binary numbers. Such adder architectures benefit when implementing optimized
variants of a Booth multiplier like radix-2, radix-4, radix-8, and so on. Instead of the
carry-save adder, other possible circuits are the carry-lookahead adder, ripple-carry adder,
etc. Note that these different adder circuits have their advantages and limitations. We want
to let the reader know that subtractor designs can be implemented using adder logic in
the digital circuit domain. An adder–subtractor can add and subtract binary numbers in
one circuit. However, our accelerator is parameterized and flexible, so we prefer the most
straightforward solutions for implementing these circuits. We used the Verilog HDL adder
and subtractor operators (+ and −) to enforce these blocks.

3.3. Multiplexer (4 × 1)

The multiplexer is a routing network between the adder, subtractor, and Reg-A. The
corresponding inputs to this multiplexer are from the adder, subtractor, and Reg-A. Similarly,
its output is also connected to the accumulator register to hold the accumulated result,
as shown in Figure 1. The control block will generate the two-bit control signal, shown
with red dotted lines in Figure 1, to select the correct input signal for multiplexer output.
Whenever a similar control signal to this multiplexer is input, meaning 00 or 11, the
multiplexer selects the value from Reg-A—which signals not to do anything and holds
the previous value of the Reg-A. For the other two cases, when the two-bit control signal
is 01 or 10, the multiplexer selects the output from the adder or subtractor to update the
accumulator, respectively.

3.4. Shift-Right-Add Block

The shi f t_right_add unit in Figure 1 takes three inputs and produces one output. The
inputs are bj+1, bj, and Reg-A, while the output is the resultant polynomial c. We already
mentioned in Section 2.2 that the shi f t_right_add function in lines 6 and 9 of Algorithm 2
facilitates the multiplication of the multiplicand by 2 through the shift and add operations.
This means that whenever the values for bj+1 and bj are 01 or 10, perform a 2-bit shift in
Reg-A towards the right, and then, update the corresponding Reg-c. Similarly, whenever

Appl. Sci. 2024, 14, 3323 8 of 15

the values for bj+1 and bj are 00 or 11, this means do not do anything and keep Reg-c as its
previous value.

3.5. FSM Controller

This work employs an FSM controller to execute control functionalities, as illustrated
in Figure 2. The controller’s primary responsibilities include (i) generating control signals
for the 4× 1 routing multiplexer and (ii) inspecting two bits of bj+1 and bj in one clock
cycle from Reg-b. The controller logic is characterized by two states, outlined in Figure 2.
We provide some more specific details about these two states below.

Figure 2. FSM controller of the parameterized Booth multiplier.

The FSM’s initial state is state-0. This is an idle state, which means the multiplier will
stay in this state until the start signal is 1. Moreover, upon reset, it means that when the
rst signal is 1, the FSM of the multiplier design initializes all registers with their default
values—whenever the FSM receives a start signal with 1, it turns to state-1.

State-1 of the FSM ensures the complete polynomial multiplication computation.
It starts execution when it receives the start signal as 1. Moreover, our parameterized
multiplier accelerator design uses an additional 12-bit count register, not previously shown
in Figure 1. The reason to use a 12-bit register is to provide flexibility for multiplying
polynomials up to 212. This means users can multiply polynomials up to operand lengths
of 4096 bits. This is the limitation of our accelerator design. It is possible to increase the size
of this count register, but the implementation results reported in this paper are with a 12-bit
count register. Upon reset, the count register is initialized with the ratio of the size of the
input operands as 2. For example, for an m-bit operand length, the size of the count register
would be m/2. Whenever users target input operands with odd values, the count register
is initialized with m + 1/2 to make them even. Then, in each clock cycle, when FSM is in
state-1, the controller inspects bj+1 and bj from Reg-b and passes them as a select line to the
routing multiplexer. Moreover, the controller also passes bj+1 and bj to the Shift-right-add
block. Additionally, in each clock cycle, when FSM is in state-1, the controller updates the
count register with a decrement of 1. When the value of the count register becomes 0, FSM
shifts its state from state-1 to state-0, which means polynomial multiplication has finished.

Consequently, if we consider the computational cost of our proposed Booth accel-
erator, it needs m

2 clock cycles for multiplying one m-bit polynomial. The reason is that
the traditional Booth multiplier deals with two bits in one clock cycle for multiplying
polynomials.

In summary, this section outlines the hardware architecture of the Booth polynomial
multiplier, which offers advantages in reducing hardware resource usage (as will be de-
tailed in the upcoming section) with a polynomial multiplication overhead, requiring
m
2 clock cycles to implement. It is important to note several polynomial multiplication
algorithms from the literature that demand fewer clock cycles, such as Karatsuba [24],
Toom–Cook [25,26], and multipliers based on number theoretic transform (NTT) [27,28].
However, it is worth mentioning that the corresponding algorithms for these multiplication

Appl. Sci. 2024, 14, 3323 9 of 15

methods typically require higher hardware resources. Thus, there is always a trade-off
between parameters like clock cycles and hardware resources.

4. Results and Comparison

We provide implementation results and a comparison with state-of-the-art hardware
accelerators in Section 4.1 and Section 4.2, respectively.

4.1. Results

Using the Vivado IDE design tool, we implement the proposed Booth accelerator
in a Verilog HDL. For different operand lengths, the register-transfer-level (RTL) imple-
mentations are verified against the equivalent C/C++-implemented reference design. The
hardware-implemented results after the post-place and route are given in Table 1. We used
the Xilinx Virtex-7 (xc7vx690tffg1930-3) device for performance evaluations. The targeted
operand sizes are presented in j× k format in column one, where j and k show the size of
the first and second operands to the multiplier as inputs. Moreover, we targeted different
operand sizes: first, in powers of 2, which means we start from 16 × 16 and go up to the
maximum operand size of 1024 × 1024; second, in NIST-recommended binary field lengths
of 163, 233, 283, 409, and 571; and finally, in the NIST recommended prime field lengths
of 192, 224, 256, 384, and 521. The area results in slices, LUTs, and flip-flops (FFs) are
provided in column two. The design’s clock cycle utilization and operating frequency are
in columns three and four. Column five shows the computation time for one polynomial
multiplication in µs. The computation time is the latency (in µs), which can be calculated
using Equation (2). Finally, the last column shows the power results in milliwatts (mW).
Moreover, we point out to the reader that the Vivado tool gives the slices, LUTs, FFs,
frequency, and power results reported in Table 1. For clock cycles, it is understood that
the traditional Booth multiplier needs m

2 cycles for m-bit polynomial multiplications as it
operates two bits in one clock cycle for multiplying m-bit polynomials.

Latency (µs) =
Clock Cycles (CCs)

Frequency (in MHz)
(2)

Table 1. Results on Xilinx Virtex-7 device. CCs: clock cycles; Freq: operating frequency; Lat: latency
or computation time; D and S: dynamic and static powers; TP: total power consumption of the Booth
accelerator.

Operand Sizes (j × k)
Area Utilization Timing Details Power Results

Slices/LUTs/FFs CCs
Freq Lat D/S/TP
(MHz) (µs) (mW)

Operand sizes in powers of 2
16 × 16 28/70/82 8 666 0.011 17/323/340
32 × 32 63/134/163 16 645 0.024 30/323/353
64 × 64 104/260/323 32 617 0.051 59/323/382
128 × 128 195/522/649 64 591 0.108 114/324/437
256 × 256 358/910/1295 128 578 0.221 177/324/502
512 × 512 624/1819/2584 256 552 0.463 340/325/666
1024 × 1024 1434/2602/5167 512 523 0.977 600/327/927

Appl. Sci. 2024, 14, 3323 10 of 15

Table 1. Cont.

Operand Sizes (j × k)
Area Utilization Timing Details Power Results

Slices/LUTs/FFs CCs
Freq Lat D/S/TP
(MHz) (µs) (mW)

Key lengths by NIST for use in a binary field ECC (taken from [29])
163 × 163 245/584/827 82 584 0.140 153/324/477
233 × 233 337/830/1180 117 568 0.205 161/324/485
283 × 283 413/1010/1432 142 564 0.251 192/324/516
409 × 409 582/1457/2070 205 558 0.366 275/325/600
571 × 571 775/2027/2880 286 546 0.523 372/326/698
Key lengths by NIST for use in a prime field ECC (taken from [29])
192 × 192 291/686/973 96 581 0.165 184/324/508
224 × 224 319/800/1135 112 574 0.194 154/324/478
256 × 256 358/910/1295 128 578 0.221 177/324/502
384 × 384 520/1369/1946 192 560 0.342 254/325/579
521 × 521 700/1853/2633 261 549 0.475 344/325/669

4.1.1. Booth Designs for Operand Sizes in Powers of Two

The trend in powers of 2 shows that with the increase in the operand size from 16 × 16
to 1024 × 1024, there is an increase in the slices, LUTs, and utilized FFs. This is evident
in columns two to four of Table 1. The reason behind this is that the implemented Booth
multiplier uses the four registers of Reg-A, Reg-a, Reg-b, and Reg-c. Our Booth accelerator
is parameterized so that designers can target different operand lengths. Therefore, the
increase in the operand sizes also increases the lengths of the four registers in our Booth
accelerator and consequently leads to an increase in overall hardware resources. In addition
to the hardware resources, column five reveals that when the operand lengths increase, the
clock cycles for polynomial multiplication also increase. On the other hand, the operating
frequency decreases with the increase in the operand size, as shown in column six of Table 1.
As mentioned in this article, latency is a ratio of clock cycles with the circuit frequency;
therefore, the increase in the operand size also increases the latency. For example, the
required computation time or latency for a 16 × 16 Booth implementation is 0.0119 µs,
while for the maximum considered operand size of 1024 × 1024, this value goes up to
0.9779 µs. This increase in computation time is 82.17 (ratio of 0.9779 with 0.119) times the
16 × 16-implemented Booth design, and is expected as the operand size also increases. The
power consumption of the implemented Booth multiplier also increases with the increase
in the operand size, as presented in the last three columns of Table 1.

We provided throughput and throughput/area results of the parameterized Booth
multiplier (only for operand sizes of powers of two) in Figure 3a and Figure 3b, respectively.
We calculated throughput using Equation (3). Similarly, we computed throughput/area
using Equation (4), using slices as area metrics. Note that it is also possible to use LUTs or
FFs as an area for evaluation instead of slices. Therefore, Figure 3a,b show an exponential
decrease in throughput and throughput/slices with increased operand length. These figures
reveal that for shorter operand sizes of 16 × 16 and 32 × 32, the values for throughput
and throughput/slices ratio are better with larger operand sizes such as 512 × 512 and
1024 × 1024.

Throughput =
1

Latency (µs)
=

106

Latency
(3)

Throughput
Area

=
Throughput

Slices
(4)

Appl. Sci. 2024, 14, 3323 11 of 15

16
×

16
32
×

32
64
×

64
12

8×
12

8
25

6×
25

6
51

2×
51

2
10

24
×

10
24

0

2

4

6

8

·104

Operand sizes

T
hr

ou
gh

pu
t

(a)

16
×

16
32
×

32
64
×

64
12

8×
12

8
25

6×
25

6
51

2×
51

2
10

24
×

10
24

0

1,000

2,000

3,000

Operand sizes

T
hr

ou
gh

pu
t/

Sl
ic

es

(b)

Figure 3. Throughput and throughput/area results of the Booth multiplier when the operand sizes
are in powers of two. (a) Throughput of the Booth design when operand sizes in powers of two.
(b) Throughput/slices of the Booth design for operand sizes in powers of two.

4.1.2. Booth Designs for Operand Sizes Recommended by NIST

If we consider the binary and prime ECC fields recommended by NIST for evaluation,
there is an increase in the hardware area in slices, LUTs, and FFs with the rise in the operand
size. The area increase can be seen in columns two to four of Table 1. The reported area
values benefit the related community in deciding whether to choose our implemented
Booth multiplier or not for their choice of application. As expected, the clock cycles, power
consumption, and computation time or latency increase with the increase in operand sizes.
The operating frequency shows a decrease with the rise in operand length.

Similar to the throughput and throughput/area results from Figure 3a,b, we provide
throughput and throughput/slices results for prime and binary ECC fields in Figure 4a,b. The
throughput and throughput/area values are calculated using Equation (3) and Equation (4), re-
spectively. Summarizing the findings, it is evident that the increase in operand sizes decreases
throughput and the throughput/area ratio. Moreover, these figures show that for shorter
operand sizes of 163 × 163 and 192 × 192, the values for throughput and throughput/slices
ratio are higher than the larger operand sizes such as 571 × 571 and 521 × 521.

16
3×

16
3

23
3×

23
3

28
3×

28
3

40
9×

40
9

57
1×

57
1

19
2×

19
2

22
4×

22
4

25
6×

25
6

38
4×

38
4

52
1×

52
1

2,000

4,000

6,000

Operand sizes

Th
ro

ug
hp

ut

(a)

16
3×

16
3

23
3×

23
3

28
3×

28
3

40
9×

40
9

57
1×

57
1

19
2×

19
2

22
4×

22
4

25
6×

25
6

38
4×

38
4

52
1×

52
1

0

10

20

30

Operand sizes

Th
ro

ug
hp

ut
/S

lic
es

(b)
Figure 4. Throughput and throughput/area results of the Booth multiplier for operand sizes of NIST
prime and binary ECC fields. (a) Throughput of the Booth design with recommended key lengths by

Appl. Sci. 2024, 14, 3323 12 of 15

NIST for prime and binary fields in ECC. We selected these key lengths as operand sizes to our Booth
multiplier based on [30]. (b) Throughput/slices of the Booth design with recommended key lengths
by NIST for prime and binary fields of ECC. We selected these key lengths as operand sizes to our
Booth multiplier based on [30].

4.1.3. Summary of the Results

Table 1 and Figures 3a,b and 4a,b demonstrate that the increase in operand length
increases the hardware area and computation time, while as expected, it decreases the
operating frequency. Moreover, our Booth multiplier accelerator with shorter operand
lengths is convenient for a wide range of applications, including but not limited to WSNs,
RFID, elliptic curves, error-correcting codes, signal-processing algorithms for filtering,
convolution, correlation, etc.

4.2. Comparisons

We compare our results with existing hardware implementations of various non-
digitized bit-serial polynomial multiplication approaches in Table 2. Column one provides
the reference implemented design. The name of the multiplication algorithm or method
is shown in column two. We provide the implementation device in column three. The
operand length is shown with j× k in column four. Columns five and six give the circuit
frequency (in MHz) and latency (in µs), respectively. The computation time is the latency,
which can be calculated using Equation (2). The last column shows the area cost in slices
and LUTs. We use “-” in Table 2 where the corresponding information in the reference
designs is unavailable.

Table 2. Comparison to existing bit-serial multiplier accelerators. Freq: circuit frequency; Lat: latency
or computation time; PCA: programmable cellular automata.

Ref. Implemented Algorithm Platform Operand Sizes (j × k) Freq (MHz) Lat (µs) Slices/LUTs

[4] Radix-2 Montgomery Virtex-6 1024 × 1024 53.23 19.26 -/2566
[13] Montgomery Virtex-5 1024 × 1024 400 0.88 6105/-
[14] PCA Virtex-II 163 × 163 177.8 0.91 225/-
[17] radix-4 Booth Spartan-6 32 × 32 100 - -/278
[18] radix-4 Booth Kintex-7 16 × 16 - - -/110

This Work Booth

Virtex-6 1024 × 1024 71.5 14.32 -/2429
Virtex-5 1024 × 1024 39.35 13.01 4113/-
Virtex-4 163 × 163 131 1.24 565/-
Virtex-7 32 × 32 645.161 0.0248 30/323
Kintex-7 16 × 16 678.358 0.0117 30/69

In comparison to the radix-2 Montgomery-based hardware accelerator of polynomial
multiplication of [4], our accelerator on Virtex-6 for an operand size of 1024× 1024 achieves
71.5 MHz, while this value in the reference design is 53.23 MHz, which is comparatively
1.34 (ratio of 71.5 with 53.23) times lower. Similarly, our accelerator is 1.34 (ratio of 71.5
with 53.23) times faster in computation time (or latency). Instead of the circuit frequency
and latency comparison, our accelerator achieves 2429 LUTs while the design of [4] utilizes
2566 LUTs, which is comparatively 1.05 times higher than this work. Probably this is due
to the use of a Schoolbook technique for partial product generation in this work.

On the Virtex-5 FPGA, the Montgomery-based polynomial multiplier design of [13]
for an operand size of 1024 × 1024 achieves a maximum frequency of 400 MHz, which is
comparatively 10.16 (ratio of 400 with 39.35) times higher than the operating frequency
achieved in this work (i.e., 39.35 MHz). This higher operating frequency in the reference
design of [13] results in a lower computation time than our Booth hardware accelerator,
as shown in column six of Table 2. Indeed, our Booth hardware accelerator needs more

Appl. Sci. 2024, 14, 3323 13 of 15

computation time than the reference design; conversely, our accelerator is more efficient
in hardware area cost. Specifically, our design utilizes 4113 slices, while the reference
accelerator used 6105 slices on a similar Virtex-5 FPGA.

A programmable-cellular-automata-based bit-serial polynomial multiplier accelerator
is implemented on a Virtex-II FPGA in [14]. Virtex-II is a Xilinx family introduced in
January 2001 on 150 nm process technology [31]. Xilinx introduced the Virtex-II Pro family
in March 2002 on 90 nm process technology [32]. Both these families are considered
legacy devices and are not recommended for use in new designs, although Xilinx still
produces them for existing designs. The equivalent 90 nm process technology is Virtex-
4 [33], which we used to compare our hardware accelerator of the Booth multiplier with the
reference implementation of [14]. For an operand size of 163 × 163, the reference design
achieves a maximum frequency of 177.8 MHz, while our accelerator runs at 131 MHz.
Comparatively, the reference multiplier accelerator is faster in operating frequency than
our hardware accelerator. This higher circuit frequency in the reference design results in a
lower computation time than our accelerator, evident in column six of Table 2. Similarly,
our accelerator uses more slices than the accelerator of [14]. This might happen due to
using different devices, i.e., Virtex-II in the reference design and Virtex-4 in our work.

Compared to the Spartan-6 implementation of a 32 × 32 radix-4 Booth multiplier
of [17], our Kintex-7 Booth multiplier accelerator is 6.45 (ratio of 645.161 with 100) times
faster in operating frequency. One reason could be the different implementation platforms.
Another reason is the use of registers/buffers in our accelerator, which benefits in optimiz-
ing the frequency, while in the reference accelerator, a combinational logic is implemented.
A comparison to the latency is impossible as the reference design lacks this information.
Although our accelerator operates at a higher circuit frequency, on the other hand, it utilizes
more area in LUTs than the reference design. Thus, there is always a trade-off between
frequency and area utilization. The Kintex-7-implemented design in [18] considers 16 × 16
operand lengths. On similar Kintex-7 devices using the same operand sizes, our design
uses fewer LUTs than the reference design. The other parameters cannot be compared
because the reference design lacks the corresponding details.

5. Conclusions

This article has presented a parameterized hardware accelerator design for the Booth
polynomial multiplier. The parameterization enhances flexibility, enabling users to con-
duct multiplication across diverse operand lengths rather than being restricted to specific
operand sizes. We have reused hardware resources to optimize the Booth accelerator
efficiently, which helps minimize the design’s overall area cost. Moreover, an FSM-based
controller is implemented for control purposes. A detailed comparison of the results (in
terms of throughput over area) of the proposed Booth multiplier design with several non-
digitized bit-serial polynomial multiplication accelerators is provided. The Booth multiplier
design is implemented in Verilog HDL using the Vivado IDE, and the implementation
results are considered up to the post-place and route stage on the Xilinx Virtex-7 FPGA.
The architecture allows various operand sizes up to 4096 bits for evaluation. Thus, our
accelerator with shorter operand lengths is more convenient for various applications.

Funding: This research received no external funding.

Data Availability Statement: The work performed in this study is not available due to security reasons.

Conflicts of Interest: The author declares no conflicts of interest.

Appl. Sci. 2024, 14, 3323 14 of 15

References
1. Imran, M.; Abideen, Z.U.; Pagliarini, S. A Versatile and Flexible Multiplier Generator for Large Integer Polynomials. J. Hardw.

Syst. Secur. 2023, 7, 55–71. [CrossRef]
2. Rashid, M.; Imran, M.; Jafri, A.R.; Al-Somani, T.F. Flexible architectures for cryptographic algorithms—A systematic literature

review. J. Circuits Syst. Comput. 2019, 28, 1930003. [CrossRef]
3. Imran, M.; Abideen, Z.U.; Pagliarini, S. An Open-source Library of Large Integer Polynomial Multipliers. In Proceedings of the

24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Vienna, Austria, 7–9 April
2021; pp. 145–150. [CrossRef]

4. Abd-Elkader, A.A.; Rashdan, M.; Hasaneen, E.S.A.; Hamed, H.F. Advanced implementation of Montgomery Modular Multiplier.
Microelectron. J. 2020, 106, 104927. [CrossRef]

5. Sajid, A.; Sonbul, O.S.; Rashid, M.; Jafri, A.R.; Arif, M.; Zia, M.Y.I. A Crypto Accelerator of Binary Edward Curves for Securing
Low-Resource Embedded Devices. Appl. Sci. 2023, 13, 8633. [CrossRef]

6. Rashid, M.; Sonbul, O.S.; Arif, M.; Qureshi, F.A.; Alotaibi, S.S.; Sinky, M.H. A Flexible Architecture for Cryptographic Applications:
ECC and PRESENT. Comput. Mater. Contin 2023, 76, 1009–1025. [CrossRef]

7. Imran, M.; Rashid, M. Architectural review of polynomial bases finite field multipliers over GF(2m). In Proceedings of the
International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017;
pp. 331–336. [CrossRef]

8. Imran, M.; Abideen, Z.U.; Pagliarini, S. An Experimental Study of Building Blocks of Lattice-Based NIST Post-Quantum
Cryptographic Algorithms. Electronics 2020, 9, 1953. [CrossRef]

9. Sajid, A.; Sonbul, O.S.; Rashid, M.; Arif, M.; Jaffar, A.Y. An Optimized Hardware Implementation of a Non-Adjacent Form
Algorithm Using Radix-4 Multiplier for Binary Edwards Curves. Appl. Sci. 2023, 14, 54. [CrossRef]

10. Rashid, M.; Sonbul, O.S.; Zia, M.Y.I.; Arif, M.; Sajid, A.; Alotaibi, S.S. Throughput/Area-Efficient Accelerator of Elliptic Curve
Point Multiplication over GF (2233) on FPGA. Electronics 2023, 12, 3611. [CrossRef]

11. Rashid, M.; Jamal, S.S.; Khan, S.Z.; Alharbi, A.R.; Aljaedi, A.; Imran, M. Elliptic-curve crypto processor for rfid applications. Appl.
Sci. 2021, 11, 7079. [CrossRef]

12. Imran, M.; Abideen, Z.U.; Pagliarini, S. TTech-LIB: Center for Hardware Security. 2020. Available online: https://github.com/
Centre-for-Hardware-Security/TTech-LIB (accessed on 11 March 2024).

13. Rezai, A.; Keshavarzi, P. High-Throughput Modular Multiplication and Exponentiation Algorithms Using Multibit-Scan–Multibit-
Shift Technique. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 1710–1719. [CrossRef]

14. Machhout, M.; Guitouni, Z.; Torki, K.; Khriji, L.; Tourki, R. Coupled FPGA/ASIC Implementation of Elliptic Curve Crypto-
Processor. Int. J. Netw. Secur. Its Appl. 2010, 2, 100–112. [CrossRef]

15. Venkatachalam, S.; Lee, H.J.; Ko, S.B. Power Efficient Approximate Booth Multiplier. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [CrossRef]

16. Boppana, N.V.V.K.; Kommareddy, J.; Ren, S. Low-Cost and High-Performance 8 × 8 Booth Multiplier. Circuits Syst. Signal Process.
2019, 38, 4357–4368. [CrossRef]

17. Shinde, K.; Kureshi, A. Hardware Implementation of Configurable Booth Multiplier on FPGA. In Proceedings of the International
Conference on Communication, Computing and Digital Systems (C-CODE), Pune, India, 21 February 2016; pp. 60–63.

18. Cheng, X.; Wang, Y.; Liu, J.; Ding, W.; Lou, H.; Li, P. Booth Encoded Bit-Serial Multiply-Accumulate Units with Improved Area
and Energy Efficiencies. Electronics 2023, 12, 2177. [CrossRef]

19. Krishnan T., S.; Chalil, A.; Sreehari, K. VLSI Implementation of Reed Solomon Codes. In Proceedings of the 4th International
Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 280–284. [CrossRef]

20. Tang, N.; Lin, Y. Fast Encoding and Decoding Algorithms for Arbitrary (n, k) Reed-Solomon Codes Over F2m . IEEE Commun.
Lett. 2020, 24, 716–719. [CrossRef]

21. Mandelbaum, D. On decoding of Reed-Solomon codes. IEEE Trans. Inf. Theory 1971, 17, 707–712. [CrossRef]
22. Bai, S.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium.

Selected for NIST PQC Standardization. 2023. Available online: https://pq-crystals.org/dilithium/ (accessed on 4 March 2024).
23. Schwabe, P.; Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Seiler, G.; Stehle, D. CRYSTALS-

KYBER. Proposal to NIST PQC Standardization. 2021. Available online: https://csrc.nist.gov/Projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-3-submissions (accessed on 9 January 2024).

24. Karatsuba, A.; Ofman, Y. Multiplication of Multidigit Numbers on Automata. Sov. Phys. Dokl. 1963, 7, 595.
25. Carlet, C.; Sunar, B. (Eds.) Arithmetic of Finite Fields. In Proceedings of the WAIFI 2007—International Workshop on the

Arithmetic of Finite Fields, Madrid, Spain, 21–22 June 2007; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 4547.

26. Dutta, S.; Bhattacharjee, D.; Chattopadhyay, A. Quantum circuits for Toom-Cook multiplication. Phys. Rev. A 2018, 98. [CrossRef]
27. Chung, C.M.M.; Hwang, V.; Kannwischer, M.J.; Seiler, G.; Shih, C.J.; Yang, B.Y. NTT Multiplication for NTT-unfriendly Rings.

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 159–188. [CrossRef]
28. Liang, Z.; Zhao, Y. Number Theoretic Transform and Its Applications in Lattice-based Cryptosystems: A Survey. 2022. Available

online: http://xxx.lanl.gov/abs/2211.13546 (accessed on 27 December 2023).

[
http://doi.org/10.1007/s41635-023-00134-2
http://dx.doi.org/10.1142/S0218126619300034
[
http://dx.doi.org/10.1109/DDECS52668.2021.9417065
http://dx.doi.org/10.1016/j.mejo.2020.104927
http://dx.doi.org/10.3390/app13158633
http://dx.doi.org/10.32604/cmc.2023.039901
[
http://dx.doi.org/10.1109/C-CODE.2017.7918952
[
http://dx.doi.org/10.3390/electronics9111953
http://dx.doi.org/10.3390/app14010054
http://dx.doi.org/10.3390/electronics12173611
http://dx.doi.org/10.3390/app11157079
https://github.com/Centre-for-Hardware-Security/TTech-LIB
https://github.com/Centre-for-Hardware-Security/TTech-LIB
[
http://dx.doi.org/10.1109/TVLSI.2014.2355854
[
http://dx.doi.org/10.5121/ijnsa.2010.2208
[
http://dx.doi.org/10.1109/ISCAS.2018.8351708
[
http://dx.doi.org/10.1007/s00034-019-01044-x
[
http://dx.doi.org/10.3390/electronics12102177
[
http://dx.doi.org/10.1109/ICCMC48092.2020.ICCMC-00052
[
http://dx.doi.org/10.1109/LCOMM.2020.2965453
[
http://dx.doi.org/10.1109/TIT.1971.1054724
https://pq-crystals.org/dilithium/
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
[
http://dx.doi.org/10.1103/PhysRevA.98.012311
http://dx.doi.org/10.46586/tches.v2021.i2.159-188
http://xxx.lanl.gov/abs/2211.13546

Appl. Sci. 2024, 14, 3323 15 of 15

29. NIST. Recommended Elliptic Curves for Federal Government Use. 1999. Available online: https://csrc.nist.gov/csrc/media/
publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf (accessed on 9 March 2024).

30. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography 2004; pp. 1–311. Available online:
https://link.springer.com/book/10.1007/b97644 (accessed on 27 July 2023).

31. Xilinx Inc. Form 10-K, Annual Report, Filing Date 12 June 2001. Available online: http://edgar.secdatabase.com/1862/101287001
501165/filing-main.htm (accessed on 3 March 2024).

32. Xilinx Inc. Form 10-K, Annual Report, Filing Date 17 June 2002. Available online: http://edgar.secdatabase.com/2603/1012870
02002739/filing-main.htm (accessed on 2 March 2024).

33. Xilinx Inc. Form 10-K, Annual Report, Filing Date 1 June 2005. Available online: http://edgar.secdatabase.com/669/1047469050
16238/filing-main.htm (accessed on 2 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://link.springer.com/book/10.1007/b97644
http://edgar.secdatabase.com/1862/101287001501165/filing-main.htm
http://edgar.secdatabase.com/1862/101287001501165/filing-main.htm
http://edgar.secdatabase.com/2603/101287002002739/filing-main.htm
http://edgar.secdatabase.com/2603/101287002002739/filing-main.htm
http://edgar.secdatabase.com/669/104746905016238/filing-main.htm
http://edgar.secdatabase.com/669/104746905016238/filing-main.htm

	Introduction
	Related Hardware Accelerators and Limitations
	Novelty and Contributions
	Limitation(s) and Significance of This Work

	Background
	Schoolbook Strategy
	Booth Multiplication Approach
	Schoolbook and Booth Algorithms: Trade-Offs

	Proposed Booth Accelerator Architecture
	Registers (or Buffers)
	Adder and Subtractor
	Multiplexer (4 1)
	Shift-Right-Add Block
	FSM Controller

	Results and Comparison
	Results
	Booth Designs for Operand Sizes in Powers of Two
	Booth Designs for Operand Sizes Recommended by NIST
	Summary of the Results

	Comparisons

	Conclusions
	References

