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Abstract: Nighttime semantic segmentation due to issues such as low contrast, fuzzy imaging, and
low-quality annotation results in significant degradation of masks. In this paper, we introduce a
domain adaptive approach for nighttime semantic segmentation that overcomes the reliance on low-
light image annotations to transfer the source domain model to the target domain. On the front end, a
low-light image enhancement sub-network combining lightweight deep learning with mapping curve
iteration is adopted to enhance nighttime foreground contrast. In the segmentation network, the body
generation and edge preservation branches are implemented to generate consistent representations
within the same semantic region. Additionally, a pixel weighting strategy is embedded to increase
the prediction accuracy for small targets. During the training, a discriminator is implemented to
distinguish features between the source and target domains, thereby guiding the segmentation
network for adversarial transfer learning. The proposed approach’s effectiveness is verified through
testing on Dark Zurich, Nighttime Driving, and CityScapes, including evaluations of mIoU, PSNR,
and SSIM. They confirm that our approach surpasses existing baselines in segmentation scenarios.

Keywords: domain adaptation; nighttime semantic segmentation; adversarial learning; low-light
enhancement

1. Introduction

Semantic segmentation is a fundamental task in computer vision where each pixel of a
given image is labeled with an object category. It is widely used in various applications such
as autonomous driving [2], medical imaging [3], and human parsing [4]. In recent years, the
performance of semantic segmentation of daytime scene images has substantially improved
due to the rapid progress in deep learning and computing power. As researchers have
tackled more challenging image segmentation scenarios under various limited, adverse,
and degraded conditions, semantic segmentation of nighttime images [5] has emerged
as a prominent research focus. However, nighttime semantic segmentation poses unique
challenges; for example, low contrast of the input images makes it difficult to obtain clear
and complete segmentation boundaries, and the variation in lighting conditions might lead
to changes in the brightness and color of the objects within the same scene. Additionally, the
manual labeling of a high-quality training set of nighttime images is also a formidable task,
contributing to the degradation of segmentation model performance. The present study
seeks to address the above-mentioned bottlenecks via proposing a nighttime semantic
segmentation network that is suitable for real-scenario applications such as autonomous
driving and security monitoring.

Nighttime images, as a class of low-light images, have many regions of foreground
pixels that are not obvious or recognizable to the human eye, and it is difficult to perform
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high-quality pixel-level annotation on this part of the image. Consequently, a sufficient
quantity of accurate segmentation instances is the basis for realizing efficient learning of
segmentation models. To tackle this, current schemes such as domain adaptation [6,7],
synthetic datasets [8], and style transfer [9] are commonly employed. Due to the low bright-
ness and contrast of nighttime images, this paper transfers daytime images to nighttime
images by domain adaptation. However, large differences in scene feature distributions
and foreground types between the source and target domains, primarily concerning light
intensity, can often lead to the distortion of crucial spatial semantic details during domain
transfer. In view of this, some studies have proposed to establish domain transfer from
the daytime domain to the nighttime domain using an intermediate domain as a smooth
transition, such as the twilight domain. In [5,10,11], the twilight domain serves as a bridge,
allowing the model trained in the daytime domain to adapt progressively to the nighttime
domain by extracting features from twilight images and performing transfer alignment
learning. In [12], a model adaptation method based on course learning is proposed, which
adapts the model to light changes and noise in nighttime scenes by gradually increasing
the complexity of the nighttime images. Building [12], research conducted in [13] utilizes
feature maps to provide prior knowledge about nighttime scenes, aiding the model in
understanding objects and structures and guiding adaptive training. In [14], an encoder–
decoder structure for semantic segmentation of nighttime images is introduced which uses
a domain map approach for mapping synthetic to real data. In [15–17], a generator network
is trained using adversarial learning to translate daytime images to nighttime images.
Subsequently, the feature extractor of the generator network is adopted for the semantic
segmentation network to extract transform-based regularized features from nighttime
images. Furthermore, to enhance the generalization performance of the model, research
in [18] employs Adversarial Generative Networks (GANs) to translate daytime images to
nighttime images, and random transformations are then applied to those images, followed
by joint training using the adversarial and semantic segmentation loss functions.

Among the above-mentioned methods, refs. [5,10–13] leverage intermediate domains
to create a smooth transition, thereby improving model generalization and potentially
reducing dataset labeling costs. Nonetheless, introducing intermediate domains may entail
additional preprocessing and model training and fail to fully cover all variations from
daytime to nighttime. On the other hand, refs. [14–16,18] employ techniques such as style
transfer and build synthetic datasets to address the difficulty of labeling nighttime (low-
light) samples. While building synthetic datasets offers advantages, it also carries the risk
of introducing bias and noise. Furthermore, these schemes focus only on the statistical
representation of the overall image style in style transfer and thus are prone to the loss
of spatial details. In addition, generating a transferred image with the same semantics as
the original image, especially when dealing with a relatively large domain gap, remains a
challenging aspect of image translation.

To address these problems, this paper uses pairs of day and night images in similar
scenes as target domains and tries to transfer the source domain generalized model to the
scene-specific multi-target domain without introducing an intermediate domain, synthetic
datasets, or style migrations so as to improve the segmentation quality by joint adversarial
learning and multi-domain co-training. Based on this, this paper proposes an adaptive
semantic segmentation network for the adversarial learning domain based on low-light
enhancement and decoupled generation (DLA-Net). At the front end of the model, a
lightweight low-light image enhancement network (LIE-SubNet) is embedded to elevate
foreground contrast in nighttime images and accomplish spatial feature alignment across
different illuminance datasets. Existing segmentation models typically treat the foreground
target as a unified entity; however, foreground boundary regions usually contain richer
spatial details with higher-frequency feature information, whereas non-boundary regions
exhibit fewer spatial details featured by low-frequency distributions. Inspired by [6], this
paper leverages a generative network capable of decoupling the foreground body and edge
to predict segmentation masks and uses two discriminators for adversarial training between
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the source and target domains. Additionally, a small pixel reweighting strategy [19] is
implemented to process the input images and reduce prediction uncertainty, thus improving
the segmentation accuracy for small targets. In our experiments, the Dark Zurich dataset [5]
is employed, which contains pairs of daytime and nighttime images based on rough GPS
positional alignment. Through extensive testing on the Dark Zurich, CityScapes, and
Nighttime Driving [10] datasets, the proposed method is verified to demonstrate improved
performance in low-light nighttime semantic segmentation. The primary contributions of
our work are summarized as follows:

• In this paper, a multi-domain model joint training network for semantic segmentation,
DLA-Net, is introduced which transfers the source domain to the multi-target domain
of a specific scene without requiring an intermediate domain. It accomplishes joint
adversarial training of the multi-domain model, supported by the low-light image
enhancement sub-network, on the multi-target domain;

• The low-light image enhancement sub-network, LIE-SubNet, which combines deep
learning and mapping curve iteration, is proposed to enhance pixel contrast and spatial
feature alignment of nighttime images. In the segmentation network, a generative
network capable of decoupling subjects and edges is utilized to guide segmentation
prediction via exploiting the adversarial loss in the daytime and nighttime domains;

• To effectively utilize both low-frequency and high-frequency information of fore-
ground targets, the segmentation mask is decoupled into the body generation branch
and the edge preservation branch. These branches can focus on different attributes of
the regional features during training. The resulting masks are then composited and
reconstructed to achieve a complete semantic segmentation mask capable of retaining
the details while removing the void noise.

2. Related Work

Domain adaptation for semantic segmentation: Domain adaptation seeks to transfer
knowledge learned in the source domain to the target domain, where the object classes
are similar but the distribution of data statistics differs. Currently, a portion of domain
adaptive schemes adopt adversarial learning frameworks, introducing an adversarial
loss function between the source and target domains to guide the model in aligning
feature representations across different data domains. For example, in [20], Hoffman et al.
proposed a new approach to semantic segmentation using category-constrained [21] full
convolutional domain adversarial learning. AdaptSegNet [6] utilizes adversarial training
to achieve feature alignment in the source and target domains. Additionally, several
approaches employ joint training and multiple task learning strategies to improve model
generalization by sharing parameters among source and target domains. In BDL [22],
images from both source and target domains are input into a shared convolutional neural
network, with the last layer divided into two branches for semantic segmentation tasks
in the respective source and target domains. Through sharing the feature extraction
layer of the network, the source and target domains can leverage the underlying image
feature representation, thereby improving adaptation to redundant representations of the
target domain.

Unlike adversarial learning, style transfer [18] and image translation from source im-
age to target image are also widely used for domain adaptation. They typically incorporate
a domain invariance loss function into the generator network to enforce domain-invariant
image generation in the target domain [23,24]. This type of loss function commonly com-
prises both an adversarial loss and a domain invariance loss. Specifically, the generator
network is trained using the adversarial loss, while the domain invariance loss is used
to teach the generator network to learn the shared features between source and target
domains, resulting in domain-invariant representations. Some other studies have explored
the combination of self-training strategy and fine-tuning strategy through multiple rounds
of network training. However, the self-training strategy may introduce noise when using
pseudo-labeling, thus impacting model performance [25]. To mitigate the influence of
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noise, researchers have proposed several improved self-training techniques [26,27], such as
using model ensembles to reduce noise or refining pseudo-labeling to reduce mislabeling.
Alternatively, some studies have employed course-based learning [28,29] to acquire simple
attributes in the target domain before using them to normalize semantic segmentation
models. However, the significant visual disparities between daytime and nighttime im-
ages pose a formidable challenge for these methods, making them ill suited to effectively
handling domain adaptation in scenarios with markedly different illumination intensities.
Consequently, they often fall short of delivering satisfactory performance in nighttime
semantic segmentation. This paper explores more efficient techniques to minimize the
domain gap so that transfer models can achieve accurate segmentation predictions.

Nighttime (low-light) semantic segmentation: Some studies have demonstrated the
effectiveness of employing intermediate domains for the progressive adaptation of semantic
models trained on daytime scenes to nighttime scenes. For example, Dai et al. [10] proposed
a step-by-step adaptive approach based on intermediate domains. This approach leverages
an intermediate twilight domain as a bridge between daytime and nighttime scenes and
trains an intermediate model on the twilight domain, which is then applied to the semantic
segmentation of nighttime scenes. Later, Sakaridis et al. [5,6] extended the approach to a
class of guided curriculum adaptation frameworks, incorporating synthetic and unlabeled
real images to establish correspondences in scene images at various times. However, it is
worth noting that this progressive adaptation approach often necessitates training several
semantic segmentation models. For instance, in [5], three models were trained separately
for three different domains, potentially making the training process less efficient. Building
upon this methodology of using intermediate domains for progressive domain adaptation,
some studies have trained some additional image translation models. CycleGAN [18]
is a good case in point and enables the inter-transfer of daytime and nighttime images
before training semantic segmentation models, thus introducing different visual features
through diverse augmented data and aiding in the adaptation of the transferred models to
various scenes and environments. Furthermore, ref. [30] introduced a nighttime semantic
segmentation method based on image translation by translating nighttime images into
daytime ones and utilizing semantics with the model trained on the daytime domain.

More recently, to improve the semantic segmentation of night scenes, researchers
have explored the use of different sensors to capture the same image as an auxiliary input.
Vertens et al. [31] proposed to utilize the insensitivity of thermal infrared to changes in illu-
mination as a supplemental input to segmented images to provide additional information
for nighttime semantic segmentation. Additionally, other studies have devised specialized
scene semantic segmentation methods. For example, Ref. [32] proposed a two-stage adver-
sarial training approach that employs domain adaptation techniques to transform between
pairs of daytime and nighttime scenes, particularly for rainy and nighttime scenarios.
Likewise, Ref. [33] introduced an adaptive network capable of automatically adapting its
internal architecture based on the attributes of input images to different environmental
conditions, including nighttime and rainy ones. Differing from the above methods, this
paper introduces a network structure designed to train semantic segmentation for low-light
images via end-to-end adversarial learning without resorting to intermediate domains or
auxiliary images.

3. Method
3.1. Framework Overview

The domain adaptive method proposed in this paper involves two key domains: a
source domain S for pre-training, which can be any normal lighting scene, and a target
domain T = {Td, Tn} containing two roughly aligned subdomains, Td and Tn, representing
daytime and nighttime scenes, respectively. In the pre-training phase, a labeled image set
S ≜ {XS, YS} from the source domain was used to optimize the semantic segmentation
network parameters. Subsequently, two discriminators, DS→Td and DS→Tn , were employed
to bootstrap the domain adaptive model transfer from S to Td and from S to Tn to efficiently
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model semantic segmentation of the nighttime scene Tn in the target domain. The domain
adaptive semantic segmentation network in this paper comprises three modules: (1) a low-
light image enhancement network Nen, (2) a pre-trained semantic segmentation network
Gpre and a transfered semantic segmentation network Gseg, which decouples the body and
edge during segmentation and provides predicted image dimensions of RH×W×C, with
C denoting the total number of image categories, and (3) a segmented mask activation
network NY, which consists of a convolutional layer and a sigmoid normalization function,
as shown in Figure 1. The network input contains the source domain image XS and the
target domain images XTd and XTn , consisting of three types of domain samples. Among
them, XTn was additionally passed through a nighttime (low-light) enhancement network
Nen, which generated an enhancement loss Len to optimize the enhancement result and
brought the output closer to the daytime domain. The network uses image annotations
XS, YS in the source domain S dataset to compute the segmentation loss Lseg and then
obtains the segmentation prediction masks F̃ = {F̃S, F̃Td , F̃Tn} and segmentation loss Lde
by Gseg. After that, two discriminators, DS→Td and DS→Tn , perform adversarial transfer
learning, and the final segmentation masks Ŷ = {ŶS, ŶTd , ŶTn} are obtained via activating
the network NY, i.e., Ŷ = {NY(F̃S), NY(F̃Td), NY(F̃Tn)}. The whole network guides the
domain adaptive alignment of the model based on the composite total loss Ltotal .

Figure 1. Overall structure of the network proposed in this paper (DLA-Net). The network takes
three types of domain-related samples as input: source domain image XS and target domain images
XTd and XTn . Within the framework, LS→Td and LS→Tn are the adversarial losses of S and Td, while S
and Tn are obtained from DS→Td and DS→Tn , respectively.

3.2. Low-Light Image Enhancement Sub-Network

In the realm of image illumination enhancement, the majority of research commonly
employs methods like mapping curves or neural networks. However, this paper has the
initiative to fit mapping curves with neural networks to design a low-light image enhance-
ment sub-network. The objective was to homogenize the intensity distribution of the input
image XTn from the nighttime target domain Tn and generate the enhanced image X̂Tn ,
ensuring that the predictions of different domain samples align after passing through the
segmentation network. Inspired by [14], we utilized an iterative pixel enhancement map-
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ping curve to adjust the brightness and contrast of the image through the pixel grayscale
mapping relationship, as shown in Equation (1).

Ie(XTn(x); α) = log(1 + XTn(x) + αXTn(x)(1 − XTn(x))), (1)

where x is the pixel coordinate, and the α parameter ensures that each pixel value in
the enhanced image falls within the normalized range of [0, 1], preventing any loss of
information due to overflow. By setting α to a value between −1 and 1, the Ie curve can
be controlled within the range of [0, 1]. For example, when α = −1, Ie(XTn(x);−1) =

log(1 + XTn(x)2), i.e., each value is within [0, 1].
To adapt to more challenging low-light conditions, iterating the quadratic curve Ie

could result in a higher-order curve. Although the higher-order curve is able to adjust the
image over a wider area, it still applies a global adjustment as the α value is applied to
all pixels, resulting in over-enhancement or diminution of localized regions. To solve this
problem, we used a separate curve for each RGB channel of the input image to perform
an iterative transformation so that each channel has a corresponding optimal α value for
image enhancement, as shown in Equation (2).

Iem(XTn(x);A) = log(1 + Iem−1(XTn(x)) +Am Iem−1(XTn(x))(1 − Iem−1(XTn(x)))), (2)

where m, set to 8 in this paper, signifies the number of iterations and controls the curvature,
and A is a parametric mapping with the same size as the given image used to represent
the optimal α value for each channel. To obtain the mapping relationship among the input
image and its optimal curve parameter mapping, this paper proposes a depth curve fitting
network, as illustrated in Figure 2.

Figure 2. Architecture of the LIE-SubNet architecture. The network was designed to evaluate a set
of optimal light enhancement curves (Ie curves) that iteratively enhance the input image. The deep
curve fitting network uses an ordinary CNN with six alternately connected convolutional layers, each
consisting of 32 3 × 3 convolutional kernels with a step size of 1. A ReLu function is added at the end
of the network.

To evaluate the quality of the enhancement image, we used the following three losses
to train the image enhancement network.

To suppress overexposure or underexposure of certain areas, we designed an exposure
control loss Lec to regulate the level of exposure. Lec quantifies the disparity between
the mean luminance value of a specific area and the intended exposure level e. e was
set to a grayscale value in the RGB color space following existing methods [34,35] in this
paper. This loss brought the enhancement closer to the desired exposure level, mitigated
overexposure or underexposure, and hence obtained a more visualized and higher-quality
image, as shown in Equation (3).

Lec =
1
V

V

∑
i=1

∣∣ Îi − e
∣∣, (3)
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where V denotes the number of non-overlapping regions with a size of 16 × 16, and Î
represents the average luminance value of localized region V in the augmented image X̂Tn .
e was set to 0.5 in the experiment.

The color constancy loss employed in this paper was based on the Gray-World [36]
color constancy assumption, which posits that each color channel is averaged as gray
over the whole image. This loss rectifies potential color deviations in the enhanced image,
recovers color information affected by changes in illumination, improves the quality and
visual perception of the image, and determines the relationship among the three color
channels, as shown in Equation (4).

Lcc = ∑
∀(a,b)∈τ

(Ē(a) − Ē(b))2, (4)

where Ē(a) and Ē(b) denote the average intensity values of the a-channel and the b-
channel, respectively, in the enhanced image X̂Tn , and (a, b) denotes a pair of channels,
τ = {(R, G), (R, B), (G, B)}. The smaller value of Lcc indicates that the color of the bright-
ened image is more balanced, and the larger Lcc indicates that the brightened image may
have the problem of color bias.

In this paper, an illumination smoothness loss [37] was built into each curve parameter
mapping A to maintain a monotonic relationship between adjacent pixels. The loss assists
the model in learning that the illumination changes in the neighboring regions exhibit
both consistency and smooth transition and improving image processing performance and
image quality. It is shown in Equation (5).

Lis =
1
M

M

∑
m=1

H×W×C

∑
s=1

(∣∣∣∇xA(s)
m

∣∣∣+ ∣∣∣∇yA(s)
m

∣∣∣)2
, (5)

where M stands for the number of iterations. Specifically, C denotes the RGB color channels,
and C = 3. ∇x and ∇y denote the horizontal and vertical gradient operations, respectively.
The smaller the value of Lis, the smoother the light of the brightened image, and vice versa,
which indicates that there are mutations or artifacts in the light of the brightened image.

The total enhancement loss is shown in Equation (6).

Len = Lec + λ1Lcc + λ2Lis, (6)

where λ1 and λ2 are hyperparameters used to balance the size of the loss and were set to
0.5 and 20 in the experiments, respectively.

Contributing to the realm of LIE-SubNet, this paper explores the combination of a
set of higher-order curves that can be iterated with a deep learning network for different
numbers of iterations to verify the optimal performance and enhance nighttime pixel
contrast. The method reduces the domain gap among the daytime and nighttime domains
without resorting to an intermediate domain or the training of multiple distinct models
and feeds the segmentation network with smaller differences in illumination images.

3.3. Semantic Segmentation Network for Decoupling Body and Edge

Currently, mainstream semantic segmentation methods primarily focus on enhancing
the internal consistency of the object through global modeling or refining the object details
along the boundaries through multi-scale feature fusion. However, it is worth noting that
foreground boundary regions typically harbor more spatial detail and higher-frequency
feature information. In view of this, we introduced the semantic segmentation network
Gseg for decoupling body and edge, which contains a body generation branch ρ and an
edge preservation branch δ. Unlike previous studies, we do not require the input image’s
ground truth map and trained two branches with distinct losses to predict the body feature
map and edge feature map, respectively. The implementation details are described below.
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Decoupling segmentation framework: In this paper, we assume that the spatial
features of the image conform to the addition rule, i.e., F̃ = Fbody + Fedge. Accordingly, the
body feature Fbody can be generated first, and the edge feature Fedge can be obtained by a
specific subtraction operation. If we make Fbody = ρ(F), then Fedge = F − Fbody, as shown in
Equation (7).

F̃ = ρ(F) + δ(Fedge)

= Fbody + δ(F − Fbody),
(7)

where ρ represents the body generation branch mapping which is used to aggregate
contextual information within objects to form a distinct body for each object. On the
other hand, δ denotes the edge preservation branch mapping, which is designed to extract
spatially detailed features from the boundary region.

Body generation branch: This branch is responsible for the generation of more con-
sistent feature representations for pixels that are part of the same object in an image.
Low-resolution feature maps typically contain low-frequency terms, with the low-spatial-
frequency portion representing the image as a whole. Therefore, the low-resolution feature
maps represent the most salient parts. In order to achieve this goal, as illustrated in Figure 3,
X is the input image, and we utilized an encoder–decoder architecture after the backbone
to extract F. Specifically, the encoder downsamples F using dilated convolution, which
downsamples F into a low-resolution representation of the low-spatial-frequency portion,
denoted as Flow. In some cases, low-resolution features might still contain high-frequency in-
formation. We assumed that this compressed representation encapsulates the most obvious
object portions and leads to rough representation which ignores details or high-frequency
portions. Therefore, we used bilinear interpolation to upsample Flow to the same size as
F to obtain Fup. Then, we cascaded F and Fup and used a 1 × 1Conv to adjust the channel
dimensions to RH×W×C to obtain Fconv, i.e., Fconv = hconv(F||Fup), where hconv denotes the
1 × 1 convolutional layer, and || denotes the channel dimensionality join operation. This
branch also contains an average pooling layer by average pooling Fconv to generate a feature
map Fap with a more distinct body, i.e., Fap = hap(Fconv) and Fap ∈ RH×W×C, where hap
denotes the average pooling operation.

To increase the spatial accuracy of body features in segmentation results, we first
mapped each pixel p in the default spatial grid Ωl on Fap to a new pixel point p via feature
relocation. Then, we used a variable bilinear sampling mechanism [38,39] to approximate
the value of each pixel point p in Fbody, i.e., Fbody( p̂) = ∑p∈l(o) Fap(p), where l denotes the
pixels in the four fields around p, o is the center point, and Fbody ∈ RH×W×C. In addition,
to ensure smoother performance of the body feature and reduce noise and discontinuities
in the prediction results, we applied the L2 loss [40] to bootstrapping the body generation
branch learning, as shown in Equation (8).

Lbody =

√
H×W×C

∑
s=1

(F(s)
body)

2, (8)

where s denotes the positional index of the element in ∀F ∈ RH×W×C, and s = 1, 2, ...,
H × W × C.

Edge preservation branch: This branch is dedicated to handling high-frequency terms
Fhigh in the image, where high-frequency features usually encompass more detailed edge
information. To obtain the high-frequency edge feature, we subtracted the body feature
Fbody from the original feature F, i.e., (F − Fbody). Drawing inspiration from recent work on
decoder design [41], we outputted a low-level feature Fdetail through the backbone’s low
layer, which served as a complement to the missing fine-detail information and augmented
the high-frequency terms in Fedge. Finally, (F − Fbody) and Fdetail were cascaded, and then
a 1 × 1Conv was used for channel adjustment to obtain Fedge. The implementation is
expressed in Equation (9).
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Fedge = hconv((F − Fbody)||Fdetail), (9)

where Fedge ∈ RH×W×C.
The edge preservation branch focuses more on edge detail features and does not

require body features. Unlike the L2 loss, the L1 loss can obtain a sparse solution so
that certain features have zero weight. This makes the boundary sparser and reduces
unnecessary body features, contributing to an accurate boundary prediction feature map.
Therefore, the L1 loss [40] was utilized to guide the learning of the edge preservation
branch, as shown in Equation (10).

Ledge =
H×W×C

∑
s=1

|F(s)
edge|. (10)

The final decoupling loss is:

Lde = Lbody + λ3Ledge, (11)

Both the Lbody and Ledge losses complement each other by sampling pixels from dif-
ferent regions of the image, which was beneficial for showing the performance of the
experimental results. Since the edge portion is not a large part of the overall image, λ3 is
used to balance the weight of Ledge in Lde, which was set to 0.4 in the experiments.

Figure 3. Decoupling module for body generation and edge preservation. In this module, X
represents the input image, F is derived from the backbone network and a dilated convolution, and
Fdetail represents the high-frequency detailed feature which is output through the low layer of the
backbone network. In the body generation branch, F and Fup are cascaded and input to 1 × 1Conv.
Notably, Flow was not added to the cascade. Subsequently, average pooling and feature relocation
were performed to obtain the body feature Fbody, which had an obvious body but fuzzy edges. In the
edge preservation branch, (F − Fbody) was cascaded with Fdetail and input to 1 × 1Conv to obtain the
edge feature Fedge with a clear boundary. The final segmentation predicted F̃ = Fbody + Fedge.
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In this paper, Gseg acquired the body feature map Fbody and edge feature map Fedge of
the input image X through the body generation branch ρ and the edge preservation branch
δ, respectively. Moreover, the edge features were supplemented by the high-frequency
detailed features Fdetail output from the lower layer of the backbone network. By employing
distinct body and edge losses, the segmentation performance was enhanced, and the final
segmentation map F was obtained through Fbody + Fedge.

3.4. Multi-Target Domain Adversarial Learning Strategy

During the multi-target domain adversarial learning strategy, in order to ensure
relatively close feature distributions after spanning different domains and to better achieve
transfer alignment between source and target domains, this paper added the adversarial
loss terms LS→Td and LS→Td to the outputs of the daytime domain Td and the nighttime
domain Tn, respectively. Both discriminators had identical structures, weights, and training
protocols, where the identification source domain image was 1, and the target domain
image was 0. The binary cross-loss function [42] was utilized to make both F̃Td and F̃Tn

close to F̃S. The antagonistic loss is defined as:

Ladv = LS→Td(XS, XTd) + LS→Tn(XS, XTn), (12)

In the experiments, we trained the generator and the discriminators alternately. The
generator used in the source domain Gpre was pre-trained, and the target domain Gseg was
transfered. The objective functions of DS→Td and DS→Tn are defined as:

LS→Td(XS, XTd) = min
Gseg

max
DS→Td

(EXS∼pdata(XS)
(log DS→Td(Gpre(XS)))+

EXTd
∼pdata(XTd

)(1 − log DS→Td(Gseg(XTd)))),
(13)

LS→Tn(XS, XTn) = min
Gseg

max
DS→Tn

(EXS∼pdata(XS)
(log DS→Tn(Gpre(XS)))+

EXTn∼pdata(XTn )
(1 − log DS→Tn(Gseg(XTn)))),

(14)

We used cross-entropy loss to train the semantic segmentation loss of the source
domain. Moreover, we introduced the small pixel reweighting wk to address the small
target category imbalance, as shown in Equation (15).

Lseg = − 1
NC

H×W

∑
t=1

C

∑
k=1

||wkGT(t,k) · log(Ŷ(t,k)
S )||1, (15)

where N is the total number of image pixels, k denotes category, || · ||1 is the L1 norm
that sums up all the pixels, wk is the pixel weight, Ŷ(k)

S is the prediction map ŶS from the
kth channel of the source domain image obtained from the activation network NY, i.e.,
Ŷ = NY(F̃), and GT(k) is the ground truth of the kth category of the one-hot encoding.
Specifically, for each category k, we first defined a weight w′

k = − log(pk), where pk denotes
the percentage of all valid pixels that are labeled as category k in the source domain. Then,
wk was further normalized by wk = ((w′

k − w)/θk) · std + avg, where w and θk are the
mean and standard deviation of w′

k, respectively, and std and avg are preset constants to
limit the value of wk to positive. Finally, wk was multiplied by the corresponding category
channel in F̃ to generate the weighted probability map, and then the segmentation result
was yielded via NY, as shown in Equation (16).

Ŷ(k) = NY(wk · F̃(k)), (16)

where Ŷ(k) ∈ RH×W×C.
Therefore, the total loss of the whole network is:

Ltotal = Len + Lseg + Lde + Ladv. (17)
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In summary, we designed a segmentation network for decoupling body and edge.
It predicted the body and edge features of the input image, applied L1 and L2 losses to
constrain them, respectively, and was then synthesized into a segmentation feature map.
After that, two discriminators were used to distinguish different domain outputs between
source and daytime image and source and nighttime image in a multi-objective domain
adversarial learning strategy. Additionally, probabilistic reweighting was used to optimize
the segmentation prediction for small targets.

4. Experiments
4.1. Experimental Settings

To assess the performance of the proposed DLA-Net and its components, the Mean
Intersection-to-Noise Ratio (mIoU), Peak Signal-to-Noise Ratio (PSNR), and Structural
Similarity Index (SSIM) were employed as the evaluation metrics in the experiments and
compared with the advanced methods. The mIoU is a widely used metric for evaluating
the accuracy of pixel-level semantic segmentation models which calculates the ratio of
intersection and union between predicted segmentation results and true labels. PSNR
and the SSIM are commonly used metrics for evaluating image enhancement work. Both
metrics compare the differences between the original and compressed/distorted images.
PSNR measures image quality by comparing the Peak Signal-to-Noise Ratio, while the
SSIM evaluates it in terms of structure, brightness, and contrast similarity. In addition, the
following datasets were used for the training of all segmentation models and performance
evaluation during the daytime–nighttime domain adaptive transfer process.

CityScapes [25]: The CityScapes dataset comprises 5000 street view images with a res-
olution of 2048 × 1024 divided into 2975 training images, 500 validation images, and
1525 testing images. Each image is annotated at the pixel level with 19 categories. We
used the CityScapes training images as the training data in the training phase and the
comparative experimental dataset for the decoupled body and edge segmentation modules;
Dark Zurich [5]: The Dark Zurich dataset comprises 2416 nighttime images, 2920 twilight
images, and 3041 daytime images for training, all with a resolution of 1920 × 1080. The
images in these three domains are roughly aligned using GPS localization of neighboring
locations and panning/zooming operations in all directions. In this paper, 2416 nighttime
images were utilized to train the network model (without utilizing twilight images). In
addition to the above images used for training, Dark Zurich contains 201 annotated night-
time images, of which 50 were used for validation (Dark Zurich-val) and 151 for testing
(Dark Zurich-test) and evaluation;
Nighttime Driving [10]: In the experiments, we exclusively utilized the Nighttime Driving
test set, which comprises 50 nighttime images with a resolution of 1920 × 1080. All images
are pixel-level annotated using 19 cityscape categories;
SICE dataset [43]: The Part 2 subset of the SICE dataset was utilized in this paper, which
comprises of 229 multi-exposure sequences and the reference image corresponding to each
sequence. In the experiments, only low-light images from the Part 2 subset were used.

In this study, we implemented the proposed adversarial learning domain adaptive
semantic segmentation network using PyTorch on a single NVIDIA 3060 GPU, and all
networks were trained using the same settings. Following [44], we trained the networks
using an SGD optimizer and set the SGD optimizer momentum to 0.9 and a decay of
5 × 10−4. The base learning rate of the network was 2.5 × 10−4, and then the learning rate
was reduced using a polynomial learning rate strategy with a decay power of 0.9. The batch
size was 2. We used an Adam optimizer [45] to train the discriminators with the β set to (0.9,
0.99). The learning rate of discriminators followed the same decay strategy as the generator.
The total enhancement loss Len incorporates weights λ1 and λ2, which are selected from the
intervals [0.1− 1.0] and [20− 25], respectively. These values were chosen based on previous
similar work and different loss characteristics. After experimentation on the validation set,
λ1 and λ2 were set to 0.4 and 20, respectively. In Lde, the weight of Ledge is determined by λ3.
This hyperparameter is set because Lbody and Ledge are complementary, with fewer pixels in
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the edge part relative to the body part. The default value of λ3 is 1, but, in our experiments,
we found that a value of 0.4 resulted in the best segmentation. To ensure the positivity
of the values of wk, we set std = 0.05, avg = 1.0 in the experiments. ResNet-101 [46] was
used as the backbone. To facilitate smoother convergence during training, we used a total
of 180,000 pre-training epochs on the CityScapes dataset with three different semantic
segmentation models. Table 1 presents the performance of the three distinct semantic
segmentation models on the validation sets of CityScapes and Dark Zurich.

Table 1. The performance of three distinct semantic segmentation models on the validation sets of
CityScapes and Dark Zurich.

Method Dark Zurich-Val CityScapes-Val

RefineNet [47] 14.46 64.50
PSPNet [48] 11.44 64.97

DeepLab-v3+ [49] 11.58 63.77

4.2. Comparison with Other Methods

Comparison on Dark Zurich-test: In this paper, we first compare the proposed DLA-
Net with several state-of-the-art methods on Dark Zurich-test [5], including CPSL [50],
ProCA [51], and DiGA [52], as well as some other domain adaptation methods [6,22,53].
The performance results are summarized in Table 2.

Table 2. Results of the current state-of-the-art method and the DLA-Net proposed in this pa-
per for each category in the Dark Zurich test set. CityScapes→ DZ-night denotes the adaptation
from CityScapes to Dark Zurich-night. Bold font indicates the best, and underlining indicates the
second-best.
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RefineNet-CityScapes [47] 68.8 23.2 46.8 20.8 12.6 30.4 26.9 43.1 14.3 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 29.8 28.5
PSPNet-CityScapes [48] 79.0 21.8 53.0 13.8 11.2 20.2 21.9 43.5 10.4 20.2 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 22.5 28.8
DeepLab-v3+-CityScapes [49] 78.2 19.0 51.2 15.5 10.6 28.9 22.0 56.7 13.3 20.8 38.2 21.8 52.1 1.6 0.0 53.2 23.2 10.7 30.3 28.8

AdaptSegNet-CityScapes→ DZ-night [6] 86.1 44.2 55.1 22.2 4.8 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 22.1 30.4
ADVENT-CityScapes→DZ-night [53] 85.8 37.9 55.5 27.7 14.5 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 23.1 29.7
BDL-CityScapes→ DZ-night [22] 85.3 41.1 61.9 32.7 17.4 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 20.6 30.8
CPSL [50] 75.0 28.6 48.1 20.8 13.8 36.3 29.4 48.9 13.3 0.4 42.8 49.7 68.9 17.9 0.0 27.1 34.4 11.4 33.8 31.6
ProCA [51] 81.2 46.4 58.3 21.5 19.5 40.0 41.1 64.3 30.5 31.6 53.0 47.0 75.0 38.7 0.0 49.1 30.2 20.5 40.7 41.5
DiGA [52] 79.8 48.8 65.7 7.3 10.5 38.4 38.4 63.6 17.5 55.3 51.6 53.0 74.2 62.0 0.0 37.0 28.6 22.0 40.6 42.1

DLA-Net (RefineNet) 88.5 53.3 69.7 33.9 19.9 31.4 35.8 69.4 32.1 82.2 44.1 43.6 54.0 21.9 0.0 40.8 35.9 24.0 24.9 42.4
DLA-Net (PSPNet) 89.2 53.0 74.0 40.2 20.3 26.0 29.4 71.2 25.4 83.2 46.2 33.1 67.4 18.2 0.3 65.6 37.5 22.8 24.2 43.5
DLA-Net (DeepLab-v3+) 89.5 59.2 70.1 32.7 22.0 33.4 32.8 69.6 30.9 79.3 44.8 40.7 66.5 15.9 0.1 72.1 30.7 22.0 29.7 44.3

In Table 2, CPSL, ProCA, and DiGA are shown to have utilized the same baseline
RefineNet, while the other methods employed DeepLab v3+. Additionally, all methods
utilized ResNet-101 as the backbone [46], and the experimental dataset was Dark Zurich-
test. DLA-Net with DeepLab-v3+, RefineNet, or PSPNet achieved superior or equivalent
performance compared to existing methods on this dataset. It attained an overall improve-
ment in mIoU of 2.2% compared to the highest score obtained by existing methods (DiGA).
Furthermore, the DLA-Net proposed in this paper excelled in various categories, such
as roads, sidewalks, and sky. For example, in the sky category, DLA-Net outperformed
ProCA and DiGA by 51.6 mIoU and 27.9 mIoU, respectively, demonstrating its ability
to accurately segment these categories despite a large daytime–nighttime domain gap.
Figure 4 provides the visualization results of the comparison experiments with ProCA [51]
and DiGA [52], highlighting the superior performance of DLA-Net in the categories of sky,
road, and sidewalk.

Comparison on Nighttime Driving: We compared the proposed DLA-Net with some
other baseline methods on Nighttime Driving test [10], and results are reported in Table 3.
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Table 3. Comparison results of the proposed DLA-Net and some baseline methods on Nighttime
Driving test. Bold font indicates the best, and underlining indicates the second-best.

Method mIoU

RefineNet-CityScapes [47] 32.75
PSPNet-CityScapes [48] 25.44

DeepLab-v3+-CityScapes [49] 27.65

AdaptSegNet-CityScapes→ DZ-night [6] 34.5
ADVENT-CityScapes→DZ-night [53] 34.7

BDL-CityScapes→DZ-night [22] 34.7
CPSL [50] 38.2

ProCA [51] 46.7
DiGA [52] 49.9

DLA-Net (RefineNet) 43.82
DLA-Net (PSPNet) 44.59

DLA-Net (DeepLab-v3+) 47.08

(a) Input image. (b) ProCA. (c) DiGA. (d) DLA-Net. (e) Semantic GT.

Figure 4. Visualization results of DLA-Net and some other baseline methods on Dark Zurich-val.

It is important to note that the Nighttime Driving test dataset is not as finely labeled as
the Dark Zurich test dataset as some elements like buildings and vegetation are not labeled.
Of the 50 images in the Nighttime Driving test dataset, only two are labeled with the sky
category. Despite the limited number of labeled categories and the small dataset size, the
DLA-Net with DeepLab-v3+ still achieved the second-best performance (DiGA was the top
performer) on this dataset. Figure 5 reports the visualization results of the ProCA [51] and
DiGA [52] comparison experiments. This underscores that the DLA-Net proposed in this
paper can produce superior results even when working with a small number of samples
and labeled categories for segmentation tasks.

Comparison of decoupling body and edge segmentation module with other ad-
vanced segmentation methods: This paper uses ResNet-101 as a backbone [46] on the
CityScapes dataset [25] to compare the decoupling body and edge segmentation module
with some state-of-the-art techniques. The experimental results are listed in Table 4.

As shown in Table 4, the decoupling body and edge segmentation method proposed
in this paper achieved the highest mIoU among all methods, reaching 83.1 mIoU. This
demonstrates the effectiveness of the body generation branch and the edge preservation
branch in segmentation. The body branch with L2 loss constraints obtained prominent
body features, while the edge branch with L1 loss constraints captured clear edge features.
The combination of these features resulted in an overall segmentation map that has been
experimentally proven to yield better segmentation performance. Ablation experiments
between different components are discussed in the next section.
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Table 4. Comparison of decoupled body and edge segmentation module with other advanced
segmentation methods. Bold font indicates the best, and underlining indicates the second-best.

Method Backbone mIoU

DFN [54] ResNet-101 79.3
PSANet [55] ResNet-101 80.1

DenseASPP [56] DenseNet-161 80.6
DANet [57] ResNet-101 81.5
CCNet [58] ResNet-101 81.4

BAFNet [59] ResNet-101 81.4
ACFNet [60] ResNet-101 81.9
GFFnet [61] ResNet-101 82.3

X. Li et al. [62] ResNet-101 82.8

Ours ResNet-101 83.1

(a) Input image. (b) ProCA. (c) DiGA. (d) DLA-Net. (e) Semantic GT.

Figure 5. Visualization results of ablation experiments with different loss functions.

Comparison of low-light image enhancement sub-network with other methods:
In this paper, reference image quality assessment metrics PSNR and SSIM were used to
quantitatively compare the performance of different methods on the SICE Part 2 test set [43].
Higher values of SSIM and PSNR indicate that the enhanced image is closer to the ground
truth in terms of structural properties and pixel-level image content, respectively. The
experimental results are presented in Table 5.

Table 5. Comparison of low-light image enhancement sub-networks with other methods. Bold font
indicates the best, and underlining indicates the second-best.

Method PSNR↑ SSIM↑
MBLLEN [34] 14.78 0.534
RetiexNet [63] 15.56 0.525

RUAS [64] 16.40 0.500
ZeroDCE [37] 14.86 0.559

SCI [65] 14.78 0.522
EnlightenGAN [42] 17.48 0.651

Ours 18.10 0.638

Table 5 reveals that, despite not using any paired or unpaired training data, the LIE-
SubNet proposed in this paper still achieved the best PSNR and second-best SSIM results
(EnlightenGAN was the top performer). Combining the mapping curve and the depth
network resulted in a 1.1% improvement compared to the second-best performance, and
the mapping curve with multiple iterations made the overall pixels of the low-light images
more uniform (see Figure 5).
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In this subsection, we present comparative experiments of the overall method using the
Dark Zurich dataset and the Nighttime Driving dataset. The experimental results validate
the excellent performance of the proposed method. However, it should be noted that the
Dark Zurich dataset mostly contains unobstructed image foregrounds, and there exists a
one-to-one correspondence between the daytime and nighttime images. As a result, DLA-
Net is able to perform optimally and obtain excellent results. When there is occlusion in the
foreground of an image, LIE-SubNet and decoupled subject and segmentation networks
may not be effective in enhancing the image and performing decoupled segmentation.

4.3. Ablation Study

To demonstrate the effectiveness of the different components of the proposed DLA-Net
in this paper, several ablation experiments were conducted on several model variants. The
results of the ablation experiments on different components are detailed below.

Ablation study on decoupling body and edge modules: The effectiveness of the two
branches in the decoupling body and edge segmentation network is illustrated in Table 6,
where ρ and δ denote the body generation branch and the edge preservation branch,
respectively. The direct addition of the body generation and edge preservation branches in
DeepLab-V3+ [49] improved the segmentation effect by 1.7%, implying that both branches
are effective. After adding Lbody and Ledge, respectively, there were further improvements
of 0.5% and 0.4% in performance, demonstrating that using L2 and L1 loss constraints can
facilitate the model’s learning of different features. Finally, when all losses were combined,
the performance was further improved by 1.7%. This paper also investigated the necessity
of the Fdetail module, and its removal resulted in a decrease in segmentation performance
of about 0.7%.

Table 6. Comparison of decoupled body and edge segmentation module with other advanced
segmentation methods. ✓ indicates that Lbody or Ledge was used.

Method Lbody Ledge mIoU ∆(%)

DeepLab-v3+ [49] 74.6 -
+ρ & δ - - 75.9 1.7↑

✓ - 76.3 0.5↑
- ✓ 76.6 0.4↑
✓ ✓ 77.6 1.7↑

w/o Fdetail ✓ ✓ 77.1 0.7↓

The results of the ablation studies for each component of the decoupling body and
edge segmentation module are shown in Table 7. After removing the average pooling layer
and the encoder–decoder in the body generation branch, the model performance decreases
by 1.5% and 1.0% accordingly. After removing the edge preservation branch, the model
performance decreased by 0.4%. Therefore, removing the three modules individually leads
to varying magnitudes of degradation in segmentation network performance. This indicates
that average pooling and codecs help predict the body feature in the body generation branch
and that average pooling improves the performance to a greater extent, while the entire
edge preservation branch can also elevate the performance of the segmentation network.

Table 7. Ablation study on effect of each component.

Method mIoU ∆(%)

DeepLab-v3+ [49] +ρ & δ 77.6 -

w/o ρ average pooling 76.4 1.5 ↓
w/o ρ encoder–decoder 76.8 1.0 ↓

w/o δ 77.2 0.4 ↓
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Ablation study for each loss in the low-light image enhancement sub-network: The
visualization results of the ablation experiments with different loss functions in the LIE-
SubNet are presented in Figure 6. After removing the exposure control loss Lec, the image
exhibited overexposure in areas with strong lighting, underscoring the effectiveness of
exposure constraints in the network. The removal of the color consistency loss Lcc resulted
in the overall image’s severe color deviation. With the removal of the light smoothing loss
Lis, artifacts appeared between adjacent regions in the image. These experiments highlight
the critical contributions of each loss function used in this paper in the LIE-SubNet.

(a) Input image. (b) LIE-SubNet. (c) w/oLec. (d) w/oLcc. (e) w/oLis.

Figure 6. Visualization results of ablation experiments with different loss functions.

Ablation study on different components of DLA-Net: As shown in Table 8, Adapt-
SegNet [6] was used as the baseline and DLA-Net as the full model. It was observed that,
although XTd was unlabeled, using roughly aligned XTd to predict XTn was quite important
and also played a key role in DLA-Net. It reduced the segmentation results by 36.8%
without using XTd , indicating that the training in the daytime domain is quite critical in
the network. The LIE-SubNet and the corresponding loss function Len also contribute to
the whole network. Meanwhile, the utilization of the decoupling body and edge loss Lde
in this paper yielded superior results when compared to applying the cross-entropy loss
directly to computing the segmentation loss. The performance disparity between the two
methods is notable, and not using the Lde loss outperformed using the cross-entropy loss
by 38%. In addition, the adoption of probabilistic reweighting in experiments enhanced the
segmentation performance, affirming its effectiveness as an auxiliary tool.

Table 8. Ablation study of several DLA-Net (DeepLab-v3+) modules proposed in this paper on Dark
Zurich-val.

Method mIoU

ProCA [51] 25.47
DiGA [52] 25.21

AdaptSegNet-CityScapes→ DZ-night [6] 19.13

w/o XTd 22.58
w/o LIE-SubNet & Len 32.45

w/o Len 33.86

w/o Lde 20.19
w cross-entropy loss in Lde 32.96

w/o probability reweighting 31.68

w/o pre-trained segmentation model 29.78

DLA-Net 35.74

This chapter presents comparison and ablation experiments on DLA-Net and its
components across multiple datasets. The results demonstrate that DLA-Net efficiently
segments images in nighttime scenes without using labeled images or synthetic datasets.
LIE-SubNet effectively brightens low-light images, and the decoupling body and edge seg-
mentation effectively predict feature maps with a uniform body and clear edge. However,
DLA-Net struggles with domain adaptation when faced with large domain gaps caused
by differences in styles and inherent variations between datasets, such as in urban street
scenes. Future work will focus on conducting in-depth research to better understand these
differences and adapt to a wider range of scenes and datasets.
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5. Conclusions

In this paper, we proposed the DLA-Net, an adversarial learning domain adaptive
semantic segmentation network capable of performing semantic segmentation of nighttime
low-light images. DLA-Net leverages a combination of mapping curve iteration and a
deep network to enhance low-light images, ensuring their distributions align with those
from different domains. The segmentation network employs the decoupling body and
edge modules that can efficiently obtain body and edge features, respectively. After the
segmentation network, two discriminators are used to differentiate outputs from different
domains. Therefore, a multi-target domain adversarial learning strategy is constituted
between the generator and the discriminators to realize the adversarial learning domain
adaption for multi-target domains. The experimental results underscore the efficacy of
each designed component, showcasing outstanding performance on datasets such as Dark
Zurich and Nighttime Driving. State-of-the-art performance is also obtained on unlabeled
or thin labeled datasets, and segmentation performance is better on recognizable classes
with large domain gaps. However, DLA-Net does not perform well in adapting to the
different styles and inherent differences between datasets. Future work will investigate
how to adapt to more scenarios and datasets.
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