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Abstract: In satellite remote sensing images, the existence of clouds has an occlusion effect on
ground information. Different degrees of clouds make it difficult for existing models to accurately
detect clouds in images due to complex scenes. The detection and extraction of clouds is one of the
most important problems to be solved in the further analysis and utilization of image information.
In this article, we refined a multi-head soft attention convolutional neural network incorporating
spatial information modeling (MSACN). During the encoder process, MSACN extracts cloud features
through a concurrent dilated residual convolution module. In the part of the decoder, there is
an aggregating feature module that uses a soft attention mechanism. It integrates the semantic
information with spatial information to obtain the pixel-level semantic segmentation outputs. To
assess the applicability of MSACN, we compare our network with Transform-based and other
traditional CNN-based methods on the ZY-3 dataset. Experimental outputs including the other two
datasets show that MSACN has a better overall performance for cloud extraction tasks, with an
overall accuracy of 98.57%, a precision of 97.61%, a recall of 97.37%, and F1-score of 97.48% and an
IOU of 95.10%.

Keywords: cloud extraction; concurrent dilated convolution; multiscale convolutional neural
network; soft attention mechanism; ZY-3 satellite images

1. Introduction

Cloud occlusion due to environmental factors has limited the performance of optical
sensors, including domestic optical sensors. Therefore, it is of great significance to accu-
rately extract cloud regions. Accurate extraction of cloud areas brings the following two
benefits: First, low-quality images can be pre-checked under high traffic conditions, thereby
reducing the amount of downlink data and improving image transmission efficiency; sec-
ond, accurate extraction of cloud areas helps for land identification, and it provides the
basis for subsequent cloud removal and reconstruction. Therefore, the cloud extraction task
holds significant importance in image interpretation and quality inspection.

Nonetheless, there are still some difficulties in the aspect of cloud detection. They are
summarized as follows: (1) Cloud diversity and ambiguous boundaries: the significant
variations in cloud types and shapes, ranging from thin clouds to thick clouds, pose inherent
challenges in cloud extraction tasks. These differences within the cloud class directly lead
to substantial intra-class variability. Moreover, the imaging mechanisms associated with
the portrayal of thinly cloud-covered regions result in unclear boundaries in the image,
further complicating the interpretation process. The lack of distinct edges in thinly cloud-
covered regions makes it difficult to discern and interpret these areas accurately, as shown
in Figure 1a. (2) Confounding of terrain and clouds in complex scenes: depending on
the influence of season and climate, local terrain is covered with snow, which reflects the
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same information from the image as clouds. Therefore, cloud snow against a complex
background is difficult to distinguish, as shown in Figure 1b.
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Figure 1. Confused cloud detection instance (red rectangles). (a) Boundaries of thin clouds are not
clear; (b) Clouds and snow are confused.

At present, cloud detection and segmentation approaches are mainly bifurcated into
two parts: threshold-based approaches and learning-based approaches [1–4]. The first type
of algorithm is mainly based on cloud spectral characteristics (portions of the electromag-
netic spectrum), brightness, texture characteristics and geometry by analyzing the spectral
difference between the cloud and other surfaces, thresholds or rules are formulated to
realize cloud extraction [5–8]. Quan Xiong et al. [9] employed a dynamic threshold hybrid
multi-spectral feature (HMF) method for cloud extraction, which combines three kinds of
spectra of normalized difference vegetation index (NDVI), whiteness and haze optimization
transform (HOT) features to detect cloud pixels. One can utilize hybrid multi-spectral
features. The pure threshold algorithm is straightforward, efficient and applicable for
cloud detection; however, the method’s impracticality stems from its sensitivity to both
background variations and cloud coverage. To enhance the capability to recognize edge
details, some people have proposed methods based on machine learning, such as using Sup-
port Vector Machine (SVM), and Random Forest (RF) to extract hyper-spectral images [10].
Sui Y et al. [11] used simple linear iterative clustering (SLIC) to divide optical satellite
images into super-pixels, and then calculated the energy and spectral features using Gabor
transformation by extracting the texture features. The characteristics of cloud super-pixels
serve as the training samples for the SVM classifier. The SVM classifier is trained to estab-
lish the classification model. In addition, Shao M et al. [12] proposed a multi-dimensional
and multi-granularity dense cascade forest (MDForest) for multi-spectral cloud detec-
tion. MDForest is a deep forest architecture that introduces a multi-dimensional and
multi-granularity scanning mechanism, which enhances the cascade forest representation
learning ability. At the same time, the spectral information of the multi-spectral satellite
image was captured for cloud extraction. However, its recognition ability is not ideal,
especially in complex backgrounds. In addition, the overall accuracy of the above cloud
detection methods also is up to the number of image bands to effectively extract clouds.
Recently, convolutional neural network (CNN) methods have also been used to detect
clouds. For example, the M-type convolutional network model RM-Net uses atrous spatial
pyramid pooling (ASPP). ASPP consists of atrous convolution and pyramid pooling [13].
When scaling features, the phenomenon that the information loss caused by multiple down-
sampling is effectively reduced. It extracts multi-scale features of images without losing
information and combines residual units to make the network less prone to degradation.
The encoding and decoding modules extract the global context information of the image,
judge the class probability of each pixel according to the fused features, and input it into
the classifier for pixel-level cloud and non-cloud segmentation [14].

With the advancement of artificial intelligence, deep learning algorithms exhibit re-
markable performance in image interpretation, particularly in the domain of optical satellite
remote sensing imagery. Different from natural images, satellite images from optical sensors
have a larger scale, more coverage and richer ground truth details. From the perspective
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of deep learning, we categorize cloud extraction methods into the following two classes:
CNN-based and CNN-Trans-based methods. (a) CNN-based: U-Net [15] is a classic image
segmentation method with excellent performance in many binary classification tasks. Nu-
merous studies have demonstrated that methods of the U-shape structure [16,17] showcase
outstanding performance in the segmentation of optical satellite images [18]. As an illus-
tration, CloudU-Net, which is a structure derived from U-Net, uses Atrous Convolution
instead of the traditional convolution layer to enlarge the field of view. It increases the
training speed through batch normalization, which can also prevent over-fitting of the
model [19]. Although the algorithm performs well in the case of dense small objects, it
does not take into account the diversity of clouds, because the characteristics of clouds are
uncertain. (b) CNN-Trans-based: Self-attention mechanism is a core part of the transformer
algorithm. The attention mechanism draws inspiration from human visual cognition sci-
ence, where individuals naturally concentrate on detailed information related to a target
while suppressing irrelevant details when reading text or observing objects. It is a process
that goes from coarse to fine. The integration of the attention mechanism into CNN net-
works was introduced by researchers in 2017 [20]. Since then, attention-based mechanisms
in CNNs have found widespread application across various domains. The CNN-Trans at-
tention module comprises two key components: the channel and spatial attention modules,
respectively. The former accentuates the correlation among the dimensions of each layer,
which forces the attention on the interested feature information and suppresses the useless
channel. The latter can retain high-frequency feature information through spatial operation.
On one hand, Hu et al. [21] introduced a novel CNN unit called the squeeze-and-excitation
block, which dynamically adjusts the feature response value by modeling inter-channel
relationships. In comparison, CBAM [22] not only incorporates spatial attention but also
employs a concurrent structure involving multiscale pyramid pooling within the channel
attention. Experimental validation attests to its effectiveness. Spatial attention, on the
other hand, directs focus to regions of interest in the spatial aspect. While the attention
mechanism has demonstrated considerable utility since its integration into CNNs, the
issue of redundancy remains a common challenge. Therefore, numerous researchers have
employed transformer models for cloud extraction tasks in optical satellite imagery [23–26].
Zhang J. et al. [27] proposed a CNN cloud detection algorithm for GF-1 satellite images.
Through cascading the channel and spatial attention, it introduced a probabilistic upsam-
pling module to merge the downsampling channels through the entire network structure.
Then, dark channel transformation based on dark channel prior technology and NSCT was
added to the above network [28]. Even though the attention mechanism in transformer
models has demonstrated excellent performance in various domains, the direct transplan-
tation of transformer to cloud extraction tasks does not yield satisfactory results. Some
CNN-Trans-based methods connecting traditional CNN with a Transformer can increase
the complexity of the model, making it challenging to find the optimal solution through
optimization methods. Therefore, we design a network that integrates the strengths of deep
CNN and attention, making it more suitable for imagery obtained from satellite sensors.

In this article, we refined a Multiscale Soft Attention Convolutional Neural Network
(MSACN) which is a multiscale deep convolutional network structure with a soft attention
mechanism incorporating spatial information. Taking inspiration from the U-Net [15],
ResNet [29] and attention mechanism [20], MSACN consists of two parts: a deep feature
encoder module and a multi-head soft attention decoder module for cloud prediction.
Compared with other networks, MSACN exploits the shallow-level information and high-
level features of cloudy/non-cloudy pixels, which improves the extraction decision without
any manual specific spectral information processing, since the pre-trained network can be
visual objects in images to extract rich and unique high-level representations. Summarily,
the contributions can be succinctly outlined as follows:

(1) We expand the scale of the ZY-3 satellite remote sensing cloud extraction dataset. To
test in more complex scenarios, we augmented the dataset by incorporating a subset of
clouds with snow images. The raw data are pre-extracted using the model, followed
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by manual refinement using Photoshop. Each image underwent meticulous selection
to ensure the training data accuracy.

(2) We refine a multiscale deep convolutional neural network with soft attention and
spatial information for cloud segmentation from satellite remote sensing images.
Following the encoder–decoder architecture, our primary enhancement lies in the
incorporation of a concurrent dilated residual convolution module and a multi-head
soft attention fusion between the encoding and decoding processes, respectively.

(3) To evidence the validation, we employ comparative analyses with similar methods,
including traditional CNN-based approaches, as well as dissimilar methods such as
transformer-based models, all within the same datasets and training environment. In
terms of the overall accuracy, precision, recall, F1-score and IoU, the performance of
MSACN outperformed with other networks, showcasing its superior effectiveness.
Meanwhile, we transplant the model to other datasets to assess its adaptability.

2. Materials and Methods

In this paper, MSACN consists of two parts: concurrent dilated residual convolution
module, and multi-head soft attention module. To adaptively accommodate the diversity
of cloud-shaped dimensions, the concurrent dilated convolutional module establishes
pyramid-like features via multi-scale dilated factors in the front of the architecture. The
residual convolution units are used for the remaining of the encoding process. The multi-
head soft attention module is integrated into the process of decoding for extracted results
restoration. By fusing spatial features at different feature resolution levels, a multi-head
spatial fusion attention module is established based on depth semantic features, and then
the dots of every head-attention channel are connected to achieve the prominent cloud
linear distinguishable features. By concatenating the encoding features and upsampling
channels, the soft attention module alleviates the cloud boundaries problem caused by the
roughness of the architecture.

2.1. The Overall Structure

As shown in Figure 2, MSACN is a U-shape structure including an encoder and
decoder components, which are multi-scale Concurrent Dilated Residual Convolution
Module (CDRCM) and Multi-head Soft Attention Module (MSAM), respectively. The
MSACN is taking inspiration from U-Net as a whole. In addition to the core modules parts
(CDRCM and MSAM), other backbone parts refer to ResNet50. Its expansion path and
contraction path also have a corresponding relationship. Thus, the feature extraction part
uses the residual module to deepen the model without loss of resolution and learn more
complex features to reinforce the representation ability of the model. Before inputting the
feature extractor part to the cloud semantic prediction module through skip connection, the
shape is changed through convolution to adapt to the prediction module, and CDRCM is
used in the first convolution to expand the field of view and preserve the spatial resolution.
The input layer has the richest and most primitive features, and the reflected features
are not lost due to processing. Therefore, the dilated pyramid-like unit is built for the
original input image to control the scale difference by the dilation–convolution factor
in order to improve the shape-scale in-variance performance. A series of multi-head
attention modules are added to the cloud semantic prediction module. The multi-head
attention of the decoding process belongs to the soft attention mechanism. Through the
combination of multiple heads soft attention blocks, the depth semantic features of the
cloud are strengthened and make them more approximate to be linear separable features.
The multi-head soft attention module consists of these white blocks, as shown on the right
half of the structure in Figure 2. Each multi-head attention module is based on concatenated
features. It receives two inputs from the encoder and decoder parts, and performs splicing
and convolution operations on its output and upsampling results to ensure the depth of the
network. The attention mechanism believes that features at different levels in the network
have different importance, and by assigning greater weight to important features, it can
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inform subsequent layers to focus more on the interested information and suppress useless
information. This improved method trains the network to more accurately capture the
spatial location information and boundary details of clouds, thereby enhancing the model’s
accuracy. Through multiple operations of upsampling and attention modules, the network
is able to gradually restore spatial details and perform fine boundary segmentation to
improve the accuracy and clarity of cloud boundaries.
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2.2. Concurrent Dilated Residual Convolution Module

The concurrent dilated residual convolution module is a core component of the encod-
ing process in MSACN. CDRCM plays a pivotal role in the enhancement of our proposed
method. During the encoding phase, it systematically incorporates concurrent dilated
convolutions with varying dilation factors, forming a pyramid-like structure. This design
is strategically implemented to capture features at multiple scales and enrich the model’s
receptive field. Typically, the concurrent dilated residual convolution module is used to
be integrated into the residual basic block. The concatenated output from these dilated
convolutional channels is further processed through residual modules to facilitate effec-
tive feature encoding. The design of dilation factors considers the relatively high spatial
resolution of the raw images, making it unsuitable to employ smaller dilation sizes for
establishing sparse convolutional kernels. The expansion of the basic block is set to 1,
so the shape of the feature channel is the same as the input. The bottleneck has an extra
convolution layer on the right side of the basic block, and expansion is set to 4, which
means that the size of input and output maps is different at this time. As illustrated in
Figure 2, after the skip connection is matched with the shape of the cloud semantic predic-
tion module, a full convolution layer is introduced to the middle part of ResNet50 to change
the channel-matching shape. To better receive the validated information of the cloud, we
enlarge the field of view and maintain the resolution features of the input channel, and
replace the first convolution with the dilation convolution of dalition = 4, as illustrated in
Figure 3a, kernel1. It is the dilated convolution of dalition = 2, while kernel2 is an ordinary
convolution. Through a series of residual blocks and convolutional layers, the dimensions
of channels gradually increase, the shape gradually decreases, and finally a preliminary
effective feature layer with a shape of [2048, 8, 8] is obtained.

In the part of the remaining encoding process, apart from a series of convolutions, BN,
ReLU, and MaxPooling to obtain output, the basic residual block includes multiple bottle-
necks and the basic block module is shown in (b) and (c) of Figure 3. The inclusion of these
two modules addresses the vanishing gradient problem inherent in DCNNs by introducing
cross-layer shortcut connections, making the network easier to train and optimize.
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2.3. Multi-Head Soft Attention Module

During the encoding process, we employ the multi-head soft attention module, as
illustrated in Figure 4. Each attention head within this module functions as a soft attention.
Inspired by [30,31], it encompasses various convolutional operations culminating in a
final attention score. This design empowers the model to dynamically allocate attention
across features, adapting to the diverse inputs. Unlike conventional attention mechanisms,
multi-head soft attention modules can process input representations with spatial dimen-
sions, such as images, feature maps, or other numerical data types. The x1 input from
the skip-connection and the x2 input generated by the previous layer are fed into the
1 × 1 convolution, turning them into the same number of channels, because x2 comes
from the next layer of x1, and the size is x1 = 1/2, so x1 is downsampled. After that, they
are accumulated and passed through ReLU via another 1 × 1 convolution and sigmoid
activation function. The process involves assigning an importance score, ranging from
0 to 1, to every segment of the feature map. Subsequently, this attention channel map is
multiplied by the input of the skip connection, leading to the generation of the final output
for the attention block. Following this, the outputs of identical 4 or 8 soft attention modules
are concatenated, followed by subsequent average pooling across different attention heads.
This ensemble ultimately produces the final output.
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The semantic concatenation layer serves the purpose of connecting the outputs gener-
ated by the multi-head soft attention modules. This structure aligns with the framework
of the encoder. Utilizing these five initial effective feature channels, the output from the
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preceding layer is concatenated, followed by feature fusion. The method of feature fusion
involves upsampling and stacking the feature layers.

x = merge(x1, x2) (1)

In Formula (1), x1 is the corresponding positions in the encoding process, and x2 is
the feature from the upper layer convolution output. We upsample the output of the fifth
convolutional pooling block to obtain a feature layer of [16, 16, 512], and then change
the channel through 1 × 1 convolution and connect the output x1 to the fifth convolution
pool through jump x2 after block upsampling is used as the two inputs of the multi-head
soft attention module, and then the output is concated with x1 to obtain a feature layer of
[32, 32, 256], and so on, and finally through the bilinear interpolation method restores the
feature layer shape back to the input image size, uses a 1 × 1 convolution to adjust the
channels, and adjusts the dimension of channels of the final feature layer to num_classes
(cloud and non-cloud pixels).

2.4. MSACN Deformation

In this part, the depth of the network is categorized based on both relative depth and
absolute depth. The absolute network depth generally refers to all layers of the network.
Relative depth primarily denotes the dimensions of pooling layers in the network. As
the characteristic resolution in satellite imagery is often associated with pooling layers,
especially for medium-resolution remote sensing images, an excessively deep network with
numerous pooling layers not only results in information resolution loss but also causes
irreversible loss of resolution, leading to sub-optimal cloud extraction performance. Addi-
tionally, training such deep networks becomes challenging. Thus, considering the strong
correlation between the depth of the network structure and the resolution characteristics of
input images, we undertake a local deformation of the refined method: MSACN-small. We
divide the entire network into four segments, using pooling layers and upsampling layers
as boundaries for both encoding and decoding parts. In the context of medium-resolution
remote sensing images, where pruning the network to reduce its scale is necessary, we
conduct experiments and analyses with a downsized model, denoted as MSACN-small,
feathering three pooling layers. This compact variant participates in the comparative
analysis of our proposed method.

3. Experiments and Results

To assess the effectiveness of MSACN, extensive experiments are evident on the ZY-3
optical satellite image dataset. In the experiment, we strictly set a series of hyper-parameters
and conditions to ensure the accuracy and comparability of the experiment. We compare
the MSACN with other methods using convolutional neural network (CNN) architectures
and Transformer-based methods to evaluate the performance advantages of MSACN, and
try to explore the different impacts of architecture on remote sensing image processing.
In terms of experimental results, we record various performance indicators in detail, to
comprehensively assess the performance of various methods. A detailed presentation of
our experimental results will follow in the subsequent sections.

3.1. Experiments Setup
3.1.1. Data Augmentation and Preprocess

We utilize the ZY-3 cloud dataset provided by [31]. In terms of data conditions,
the quality of cloud datasets plays a crucial role in the training and processing of cloud
detection. The variety and comprehensiveness of cloud datasets are of great importance.
To enrich the dataset, we augment 1160 images with dimensions of 1024 × 1020 × 3. The
newly added images predominantly feature cloud and snow instances within the same
scene, as depicted in Figure 5. Notably, these cloud and snow patterns exhibit strikingly
similar characteristics in the images, increasing the complexity of the training scenarios.
This augmentation aligns more closely with real-world situations encountered in satellite
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imagery quality assessments. The dataset distribution after augmentation is outlined in
Table 1. To ensure the accuracy of data, a meticulous labeling process is employed for the
newly added images. In this process, an existing model is used for preliminary feature
extraction, followed by manual refinement for each image using Photoshop. This iterative
approach ensures the precision of the labels, as human expertise is applied to correct and
validate the automatically generated labels. Regardless of cloud thickness, we label pixels
as “1” and non-clouds as “0”.
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Table 1. Distribution of datasets.

Train Set (70%) Validation Set (20%) Test Set (10%)

No. Of Original ZY-3Images 3351 957 479
No. Of Added ZY-3 Images 4163 1189 595

38-cloud of Landsat OLI 8 dataset 27 8 3
GF-1 WFV dataset 76 22 10

Our augmented training data come from the ZY-3 satellite, which comes from the Land
satellite Remote Sensing Application Center, Ministry of Natural Resources. The website is
http://www.lasac.cn/ (accessed on 5 April 2024). We use a square color pan-sharpened
version of the image with a resolution of 5.8 m.

In the discussion section, we use two datasets for further exploration, the 38-cloud
dataset [32,33] and the GF1_WHU dataset [34]. All data in the 38-cloud dataset were
compiled by the Robot Vision Laboratory (LRV). It contains 38 Lansat OLI 8 scene images
and their manually labeled ground truth for remote sensing cloud extraction. For the
consistency of experimental comparison, the unified size of all pictures in the dataset is
adjusted to 256 × 256. The SENDIMAGE laboratory released this validation dataset, which
includes 108 GF-1 Wide Field of View Level 2A scenes and their reference clouds and cloud
shadow masks. Ground truth images are obtained by manually labeling cloud boundaries
after a visual inspection conducted by an experienced user. The GF1_WHU dataset contains
two labels: cloud and shadow. To make the dataset labels consistent, the cloud shadow
labels summarized in the dataset are preprocessed and marked as the background. The
scene image is converted from tif format to png format by ArcMap 10.3 software.

3.1.2. Training and Implementation

In terms of hardware environment, this experiment is carried out under the pytorch
deep learning framework of the Windows10 system, whose Intel (R) Core (TM) i5-11400F
CPU@2.60 GHz GPU NVIDIA 3060 12G memory.

http://www.lasac.cn/
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In the training phase, we use AdamW optimizer [35] to train on 256 × 256 im-
ages with some hyper-parameters: learning rate (lr) = 0.001, β1 = 0.9, β2 = 0.999 and
ε = 1 × 10−8. On top of our network, we set the Sigmoid function to tidy up the results. The
loss function adopts the Dice loss function. Training optimization indicators include overall
accuracy, recall, precision, F1, and IoU. It took our network about 200 epochs to converge.

As mentioned above, we use Pytorch framework to build and train our model. All
training is performed with a batch size of 16 and a validation set is used to evaluate
performance during training. The main software packages used include python 3.7, CUDA
11.6, cuDNN 8.5, pytorch1.12, etc. The experimental loss function is shown in Figure 6.
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3.1.3. Estimate Metrics

To assess the computational feasibility of MSACN in the domain of cloud extraction,
we adopted a variety of metrics, including P (Precision), R (Recall), F1 score based on
confusion matrix, accuracy and cross-union ratio (IoU), expressed as follows.

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 = 2 × P × R
P + R

(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

IoU =
TP

TP + FP + FN
(6)

In the case of cloud extraction, P (precision) stands for the ratio of true cloud pixels in
the output results, while recall refers to how many pixels are detected as clouds out of all
cloud pixels in the image. Both are important metrics for evaluating the performance of
classification models. TP means True Cases, which is the part of pixels correctly labeled
as clouds; FN stands for False Negatives, which is the number of cloud pixels incorrectly
marked as belonging to non-clouds; FP represents False Positives, which is the number
of cloud pixels identified instead of labeled, TN represents true negative examples, the
pixels of non-clouds marked as non-clouds. For F1, it better reflects multifaceted cloud
extraction errors. The F1 score is figured by precision and recall, and is a comprehensive
indicator considering P and R. The accuracy rate is expressed as the ratio of cloud pixels
correctly detected as clouds and non-clouds to the total number of pixels, which can reflect
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the ability of MSACN in correctly classifying pixels. IoU is used to measure the ratio of the
overlapping area between the model-predicted cloud area and the truth cloud area.

3.2. Experiments Analysis

As shown in Table 2, a total of Transform-based and CNN-based models are compared
in the same experimental environment. TransUNet [36] and SwinUNet [37] are improved
models based on the Transformer structure. TransUNet is a network combined with the
Transformer module. The Transformer module is used to establish global dependencies,
and the detailed information is retained through the U-Net structure. Among them, a Trans-
former is a neural network structure, which captures long-distance dependencies through
the global self-attention mechanism, so as to better understand the context information of
the input sequence. The multi-head soft attention mechanism performs self-attention and
weight calculation on different positions of the input, allowing the model to strengthen or
weaken the degree of attention according to different positions. TransUNet may perform
better for small-size images or low-resolution images, but requires enormous data for
training, and has a poor ability to extract local detail information. SwinUNet is a network
structure that combines Swin Transformer and U-Net. Swin Transformer is a network struc-
ture based on Transformer that introduces Swin Block and window attention mechanism.
Swin Block as a basic building block includes a displacement layer and a window attention
layer. The traditional self-attention mechanism requires the entire input sequence when
calculating the attention weight. Perform global operations, which is computationally
expensive for large-scale images. Swin Transformer divides large-scale image input into
multiple fixed-size image blocks (called windows), and calculates self-attention weights at
each window level to reduce computational complexity. SwinUNet may encounter resource
constraints when processing high-resolution images or large-scale datasets.

Table 2. Various verification indicators of MSACN and various models.

Method Accuracy IoU Precision Recall F1

TransUNet 0.9653 0.8988 0.9528 0.9409 0.9464
SwinUNet 0.9189 0.8147 0.8908 0.9011 0.8941

U-Net 0.9704 0.9285 0.9595 0.9665 0.9628
DeeplabV3+ 0.9714 0.9218 0.9589 0.9559 0.9574

MSACN-small 0.9746 0.9403 0.9703 0.9689 0.9699
MSACN 0.9857 0.9510 0.9761 0.9737 0.9748

In order to compare with the traditional cloud extraction model based on CNN,
the added CNN-based includes the combination network of U-Net, and DeeplabV3+ for
comparative experiments. U-Net is a classic structure for image semantic segmentation.
Owing to the limitations of the local receptive field and upsampling layer of the network
structure, U-Net often performs poorly in the segmentation of fine boundaries, including
important global context information. For more demanding tasks, the performance of U-
Net is limited. And DeeplabV3+ [31] is a convolutional neural network image segmentation
model based on pyramid pooling. This model improves the traditional DeepLabV3+ by
introducing atrous convolution and decoder modules, but for small-sized target objects, its
detection and segmentation accuracy may be reduced. MSACN-small is a deformation of
the proposed method. MSACN is the main network proposed in this paper. The number of
multi-head modules of MSACN in Table 2 is 8. In the ablation experiment in Section 3.3,
the relationship between the heads of soft attention modules and the model accuracy will
be further explored.

In Table 3, IoU and accuracy take the optimal values in all rounds, while Precision, Re-
call and F1 take the values in the round where the IoU optimal value is located (hereinafter
MSACN refers to MSACN-8 head). Figure 6 is the trend chart of the five evaluation indica-
tors in 200 epochs. As illustrated in Table 3, the MSACN-8 head performs outstandingly
in the ZY-3 satellite image dataset. The accuracy is 2.03% higher than the Transformer-
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based:TransUNet and 1.32% higher than the CNN-based:U-Net; the IoU ratio of TransUNet
is 5.32% higher and 2.35% higher than U-Net. The qualitative and quantitative analysis
reveals that MSACN demonstrates excellent performance and yields satisfactory extraction
results in complex scenes characterized by significant variations in cloud distribution and
content. The pre-trained weights of ResNet50 are used for transfer learning, and the model
undergoes improvement through fine-tuning so that the model can swiftly adapt and
converge in the domain of cloud extraction from satellite imagery.

Table 3. Comparison of various verification indicators between MSACN and each model on the same
cloud dataset.

Image Method Accuracy IoU Precision Recall F1

Image1

TransUNet 0.9171 0.9033 0.6792 0.9024 0.7751
SwinUNet 0.9306 0.9217 0.8159 0.7256 0.7681

U-Net 0.9508 0.8159 0.8867 0.7905 0.8358
DeeplabV3+ 0.9504 0.9400 0.7993 0.9172 0.8542

MSACN-small 0.9387 0.9297 0.8026 0.8129 0.8077
MSACN 0.9641 0.9580 0.9210 0.8617 0.8904

Image2

TransUNet 0.9246 0.8968 0.8637 0.8914 0.8773
SwinUNet 0.9319 0.9088 0.9321 0.8357 0.8812

U-Net 0.9401 0.9197 0.9575 0.8392 0.8944
DeeplabV3+ 0.9505 0.9322 0.9392 0.8944 0.9162

MSACN-small 0.9487 0.9297 0.9328 0.8949 0.9135
MSACN 0.9594 0.9441 0.9575 0.9061 0.9311

Image3

TransUNet 0.8675 0.7517 0.9068 0.8147 0.8582
SwinUNet 0.8880 0.7763 0.9223 0.8307 0.8741

U-Net 0.8764 0.7574 0.9267 0.8057 0.8619
DeeplabV3+ 0.8995 0.7925 0.8851 0.9390 0.9113

MSACN-small 0.7070 0.7851 0.9128 0.8488 0.8796
MSACN 0.9238 0.8446 0.9334 0.9274 0.9304

In addition to the numerical results in the table above, for the case of cloud coverage
under complex backgrounds, three remote sensing cloud coverage images with different
characteristics are selected from the ZY-3 satellite images for analysis. These images have
different degrees of cloud cover and background, and the experimental results of MSACN
are demonstrated in Figures 7–9. The figures below illustrate the raw satellite image, and
the outputs of TransUNet, SwinUNet, U-Net, DeeplabV3+, MSACN-small, MSACN and
Ground Truth, respectively. Upon visual inspection of the results, the result of MSACN is
closer to the labeled image, where white represents cloud pixels.
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As can be seen in Figure 7, clouds cover a snowy mountain. The reflection between
clouds and snow is very similar, and the extraction of clouds in satellite images is more
susceptible to interference from such high-reflectivity ground objects such as snow or ice.
Figure 7h shows the results of MSACN. Compared with the Transformer-based methods in
Figure 7b,c and the CNN-based approaches in Figure 7d,e, MSACN is shown in Figure 7g.
In the red rectangle area, MSACN can clearly distinguish clouds from the complex back-
ground containing snow. From this point of view, MSACN has excellent cloud detection
capabilities and can resist the interference of snow factors in complex environments. From
the data indicators of image1 in Table 3, we can see that the accuracy of MSACN is 4.7%
higher than TransUNet and 1.33% higher than U-Net; the F1 of MSACN is 12.23% higher
than SwinUNet with Swin Transformer as the backbone, and higher than U-Net is 5.46%
higher. Although MSACN pays more attention to the boundaries and details of cloud
layers, its focus on details results in poor performance of the Recall indicator.

Figure 8 shows an image of thick clouds. The underlying surface of the entire image
includes a body of water, large areas of land, and hillsides. These make the cloud detection
task difficult. As exhibited in Figure 8, the process of extracting cloud details by MSACN
is more effective than the other two methods. The results of MSACN are better than U-
Net, but the thin cloud segments of those neighborhood pixels are very blurry. There are
two reasons for this. First, cloud images are of high resolution and contain a variety of
objects. Second, cloud segmentation is different from natural image segmentation. The
task is a pixel-to-pixel binary classification problem, which focuses on retaining edge
details. However, the network we proposed obtains inter-class distance information by
combining the advantages of multi-head soft attention modules and CNN, and strengthens
the control of important features, thereby making the model have better spatial adaptability.
This integrated method provides an effective solution for the fine division of cloud layer
boundaries and brings significant improvements and enhancements to cloud detection
tasks. In the area chosen by the red rectangle in Figure 8, the advantages of MSACN
can be clearly seen. As shown in the indicators in Table 3, MSACN’s accuracy is 2.75%
higher than SwinUNet and 1.93% higher than U-Net; MSACN’s IoU is 4.74% higher than
Transformer-based SwinUNet and 1.19% higher than CNN-based DeeplabV3+.
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In Figure 9, there is haze and clouds of varying thickness covering half of the image. In
contrast, U-Net and DeeplabV3+ perform poorly in distinguishing thin clouds and cloud-
free areas. We use the image3 part in Figure 9 to evaluate the performance of MSACN when
facing various boundary thin and thick clouds. As shown in Figure 9e, it can be seen that
DeeplabV3+ cannot process detailed information, resulting in difficulties in distinguishing
fine clouds. According to the indicators of image3 in Table 3, MSACN’s accuracy is 3.58%
higher than that based on Transformer and 2.43% higher than DeeplabV3+; MSACN’s F1
is 5.63% higher than SwinUNet and 3.01% higher than U-Net. Compared results show
that MSACN can obtain excellent results regardless of complex backgrounds or unevenly
thick clouds. The results of various indicators evident the feasibility and effectiveness of
MSACN architecture.

3.3. Ablation Analysis

In this part, to explore the availability of MSACN, we explore whether the difference in
the heads of soft attention modules in the backbone affects the overall model accuracy from
two aspects: the difference in the backbone and the number of attention modules. As can
be seen from Table 4, the backbone uses ResNet50 and the number of head soft attention
modules is set to 8, which works best. So, the results indicate a nuanced trade-off between
the complexity of the model structure, as defined by the multiple heads, and its overall
performance. While a higher number of heads can enhance accuracy, it might incur an
additional computational burden. At the same time, the ResNet50 backbone, especially with
eight heads, emerges as particularly effective, achieving the highest quantitative evaluation
indexes like accuracy, IoU, Precision, Recall, and F1 among the configurations tested.

Table 4. Accuracy evaluation of different network structure complexities and different backbones.

Backbone Heads Accuracy IoU Precision Recall F1

VGG16
4 0.9724 0.9317 0.9679 0.9612 0.9645
8 0.9684 0.9267 0.9643 0.9592 0.9617

ResNet50
4 0.9667 0.9283 0.9693 0.9569 0.9626
8 0.9857 0.9510 0.9761 0.9737 0.9748

4. Discussion

In this section, in order to assess the adaptability of MSACN, we further discuss the
results of training and validation from other satellites of two different sensors, Landsat OLI
8 and GF-1. From the results, we try to discuss the relationship between the resolution of
satellite images and the depth of CNN.

For the test image collected from Lansat OLI 8, we present the comparative experi-
mental results using different methods, shown in Table 5. Overall, the results suggest that
MSACN-small stands out in achieving a balance between accuracy, IoU, and precision-recall
trade-offs. In contemplating the observed results, it is plausible that the 30m resolution of
Landsat OLI 8 imagery might be a contributing factor. Lower resolutions often necessitate
less complex neural networks to achieve satisfactory results. Additionally, as depicted in
Table 5, for lower-resolution images, various cloud extraction methods exhibit minimal
discrepancies in their outcomes. MSACN-small achieved the highest accuracy (97.18%),
closely followed by TransUNet (97.16%). MSACN-small exhibits the highest IoU (94.50%),
indicating superior spatial overlap between predicted and ground truth cloud images.
TransUNet and DeeplabV3+ also show competitive IoU values, reflecting their strong seg-
mentation performance. Meanwhile, MSACN-small consistently performs well, balancing
precision and recall effectively.
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Table 5. Comparative experimental results of 38-cloud dataset with different lr (learning rate).

lr Method Accuracy IoU Precision Recall F1

1 × 10−3

TransUNet 0.9716 0.9429 0.9712 0.9700 0.9706
SwinUNet 0.9518 0.9045 0.9508 0.9489 0.9494

U-Net 0.9688 0.9384 0.9595 0.9665 0.9628
DeeplabV3+ 0.9697 0.9393 0.9719 0.9661 0.9743

MSACN-small 0.9718 0.9450 0.9735 0.9707 0.9717
MSACN 0.9635 0.9268 0.9678 0.9575 0.9619

7 × 10−5

TransUNet 0.9699 0.9381 0.9685 0.9680 0.9681
SwinUNet 0.9453 0.8937 0.9450 0.9427 0.9434

U-Net 0.9670 0.9353 0.9674 0.9666 0.9666
DeeplabV3+ 0.9696 0.9409 0.9702 0.9695 0.9703

MSACN-small 0.9641 0.9278 0.9648 0.9604 0.9625
MSACN 0.9691 0.9391 0.9687 0.9684 0.9686

In Table 6, we present the comparative experimental results for the GF1-HWU dataset,
evaluating various cloud-extracting methods. Across all evaluated metrics, the cloud
extraction methods exhibit consistently high performance. MSACN-small stands out
with the highest scores, indicating robust performance in terms of accuracy, IoU, and
precision-recall balance. In the GF-1 dataset, both TransUNet and SwinUNet exhibit
oscillating results with comparatively lower IoU scores of 94.84% and 93.84%, respectively.
Contrarily, conventional CNN methods like U-Net and DeeplabV3+ exhibit more stable and
robust outcomes in the given context. The MSACN series methods consistently showcase
outstanding performance across different datasets. This dual accomplishment not only
affirms the effectiveness of the method but also indicates a certain level of robustness in
its methodology.

Table 6. Comparative experimental results of GF-HWU dataset with different lr (learning rate).

lr Method Accuracy IoU Precision Recall F1

1 × 10−3

TransUNet 0.9734 0.9484 0.9870 0.9734 0.9865
SwinUNet 0.9730 0.9384 0.9662 0.9697 0.9678

U-Net 0.9878 0.9757 0.9881 0.9874 0.9877
DeeplabV3+ 0.9885 0.9759 0.9878 0.9878 0.9879

MSACN-small 0.9907 0.9794 0.9896 0.9896 0.9896
MSACN 0.9889 0.9749 0.9884 0.9861 0.9873

7 × 10−5

TransUNet 0.9824 0.9656 0.9809 0.9824 0.9811
SwinUNet 0.9778 0.9491 0.9724 0.9751 0.9737

U-Net 0.9662 0.9335 0.9649 0.9664 0.9656
DeeplabV3+ 0.9886 0.9752 0.9879 0.9870 0.9837

MSACN-small 0.9907 0.9810 0.9897 0.9913 0.9904
MSACN 0.9872 0.9742 0.9864 0.9874 0.9869

To assess the performance of MSACN at different learning rates and the linear relation-
ship between the learning rate and the image resolution, we try to use different learning
rates for experimental comparison. In many experiments on the 38-cloud dataset, by com-
paring the model indicators in the table, it can be seen that the accuracy of the large learning
rate is higher. In particular, the lr has a great effect on the Transform-based model. In
the CNN-based model, MSACN-small, which removes the low-level convolution-pooling
block, can explore the relationship between network structure and image resolution. In the
GF-WHU dataset, regardless of the lr, the accuracy of MSACN-small is 0.29% higher than
that of U-Net. It can be seen that the GF-WHU dataset works better in the shallow network.
The 38-cloud dataset is affected by the hyper-parameter and learning rate, and the shallow
network MSACN-small only performs well in large learning rates. This is all due to the
fact that the 38-cloud dataset and the GF-WHU dataset have the characteristics of spatial-
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resolution images. The lower-resolution satellite images have fewer details, and the shallow
network makes it easier to capture the texture features in the image. The 38-cloud where
the low-resolution images are located is more susceptible to the impact of the learning rate,
so it shows better results at a larger learning rate. Both Tables 5 and 6 illustrate that the
optimal models in all cases are based on CNN, so the Transformer may not be able to make
full use of its self-attention when processing these images due to the low-resolution remote
sensing image datasets with less-detailed mechanism and sequence modeling capabilities.
In contrast, CNNs excel at extracting image features and capturing local and global context.
The following conclusions can be depicted from the experimental data:

• For high-resolution complex scenes, there is a certain relationship between model
accuracy and attention module;

• The size of lr: (a) When the data are low-resolution images, a large learning rate works
better. (b) The learning rate has a greater impact on the fusion attention module, and a
small learning rate is better.

5. Conclusions

In conclusion, a Multiscale Soft Attention Convolutional Neural Network structure
is proposed to alleviate the mixture-pixel problem of cloud extraction in optical satellite
images. MSACN is an end-to-end structure that consists of a concurrent dilated convolution
module and a multi-head soft attention module. Experiments prove that for high-resolution
images, MSACN achieves remarkable results. There is a certain relationship between the
performance of the CNN structure and the attention mechanism for the complex scenes.
For ZY-3 satellite images, the combined dilated convolution module and multi-head soft
attention model significantly enhance the extraction accuracy of complex scenarios in
satellite imagery with cloud and snow. To further assess the effectiveness of MSACN,
we compared TransUnet, SwinUnet, UNet, and DeepLabV3+. The experimental outputs
demonstrate the outstanding performance of MSACN. On the ZY-3 dataset, the accuracy of
MSACN achieves 98.79%. Although MSACN has good performance on cloud extracting
tasks, there are still several directions for further improvement, including optimization of
hyper-parameters and network structure. Furthermore, we will make more improvements
in proposing the novel cloud extraction method integrating prior knowledge as a post-
processing step.
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