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Abstract: This study was focused on deriving the MTSA-related accident reduction rate (ARR)
required to calculate the safety benefits before and after expanding the scope of the system. By
performing spatial analysis using geographic information system technology, MTSA-related accidents
were identified on maritime routes near both assessed and unassessed project sites from 2010 to
2014. Subsequently, by applying the synthetic minority oversampling technique to balance the data,
the algorithm learned from the random forest using the operational data of coastal passenger ship
operations and accident data near unassessed locations where MTSA is not implemented. Then,
the trained model was applied to predict accident occurrence in the absence of MTSA near the
latest operational information of coastal passenger ship operations at the assessed project sites. The
MTSA-related ARR was then calculated by applying the actual accident occurrences during operation
near the assessed project sites where MTSA was implemented. The MTSA-marine ARR calculated
at 17.41% can be applied to the calculation of safety benefit for MTSA. The results of this study can
provide quantitative evidence for the application of higher-level systems considering the burden on
regulatory targets when improving MTSA or similar systems.

Keywords: maritime traffic safety assessment (MTSA); MTSA-related route; MTSA-related accident
reduction rate; synthetic minority oversampling technique; random forest model

1. Introduction

With recent trends toward the development of larger and faster ships, along with
the expansion of various ports, offshore wind farms, and the designation of new routes,
there is an increased likelihood of marine accidents owing to rapid changes in the maritime
traffic environment.

The Maritime Traffic Safety Assessment (MTSA) system aims to contribute to the
reduction in marine accident risks, maximize port efficiency, and facilitate systematic
project implementation by removing potential risk factors affecting vessel traffic when
conducting marine development projects on a specific scale. The Ministry of Oceans and
Fisheries of South Korea has institutionalized safety assessments in the maritime field
for the first time globally, adopting some of the quantitative review techniques for traffic
safety measures standardized by The Japan Association of Marine Safety [1]. Since 2010,
196 assessments have been conducted using the MTSA system, progressing through the
institutionalization and enhancement stages [2].

Prior to the introduction of this system, there were concerns regarding the absence
of standardized safety assessment criteria for marine development projects, which raised
questions about its objectivity and reliability. However, since its introduction, this system
has ensured safe navigation conditions for vessels, thereby promoting sustainable marine
development. An overview of MTSA is illustrated in Figure 1.
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Initially, it was mandated that MTSA should be conducted for all marine development
projects. However, there have been concerns regarding the need to perform MTSA for
projects with minimal impact on maritime traffic safety. The government subsequently
accepted this opinion and, in 2014, it refined and relaxed the criteria for MTSA-targeted
projects. Since then, the scope of projects subject to MTSA has narrowed to areas where ma-
rine development projects are conducted in vessel traffic areas with ships over 100 m long.
The specific scope of safety assessment-targeted projects is specified in the Enforcement
Decree of the Maritime Safety Act [Appendix 2–3], and the details are shown in Table 1.

Table 1. Summary of MTSA scope (Enforcement Decree of the Maritime Safety Act).

Category Scope of Projects Subject to MTSA

Designation, notification, or modification of routes or
anchorage areas

In cases of designating, notifying, or modifying waterway facilities
such as routes or anchorage areas in waters navigated by vessels over
100 m long

Construction, establishment, or maintenance of facilities
such as bridges, tunnels, or cables installed in waterways

- When establishing or repairing bridges or tunnels in waters
navigated by vessels over 100 m long

Development or redevelopment of ports or docks - The establishment or modification of berthing facilities used by
vessels over 100 m long

While this system contributes to the prevention of marine accidents from the perspec-
tive of its effectiveness, there is a growing need for regulatory enhancements regarding
marine development projects in the waterways of maritime routes for coastal passenger
ships, which are categorized as safety blind spots. In particular, the majority (94%) of
domestic coastal passenger ships are less than 100 m in length, resulting in the exclusion
of marine development projects from safety assessment-targeted projects. Consequently,
numerous near-accidents and safety hazards have been identified on completed bridges
and in port facilities. Moreover, coastal passenger ships pose a higher risk of personal
injury compared with other types of vessels. Therefore, it is necessary to expand the scope
of safety assessments for the waterways of maritime routes for coastal passenger ships [3].

However, MTSA is regulatory in nature, and it is therefore essential to calculate the
safety benefits relative to the increased economic burden on marine developers to ensure
the validity of system improvements [4]. In numerous maritime safety-related studies, the
occurrence of marine accidents is considered a crucial aspect of risk assessment [5]. The
reduction in such accidents can be quantified by converting them into monetary values [6].

However, because of the relatively small number of marine accidents relative to the
number of voyages made by coastal passenger ships, it is difficult to assess the probability of
marine accidents using only statistical methods. In addition to statistical methods, machine
learning (ML) can also be used to predict marine accidents based on various independent
variables. There has been ongoing research that employs ML to predict accident risks for
other modes of transportation, such as automobiles [7,8].

The aim of this study was to analyze the safety benefits and efficiency of expanding
the scope of the system to include waterways of maritime routes for coastal passenger
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ships less than 100 m in length. In addition, the most appropriate option can be applied
to the improvement of the MTSA system compared to the safety benefits derived and the
administrative and economic burden on the operators. To achieve this, this study utilized
ML models to derive the MTSA-related accident reduction rate (ARR) after implementing
the MTSA system, focusing on accidents related to coastal passenger ships. The study is
structured as follows:

• The classification of maritime routes and MTSA-related accidents.
• The prediction of the occurrence of MTSA-related accidents assuming no MTSA

implementation.
• The derivation of the MTSA-related ARR by comparing the predicted number of

MTSA-related accident occurrences.

2. Analysis of Previous Studies

Various studies worldwide have focused on accident analysis, including both marine
accidents and accidents in general. This study discusses methods for predicting marine
accidents using marine spatial analysis and artificial intelligence (AI) ML against the
backdrop of the relatively small number of systems such as MTSA. This section is divided
into four sections. The first section analyzes research on accident identification from a
spatial perspective. The second section examines systems related to risk assessment in
maritime traffic safety. Next, studies on accident or risk prediction algorithm models are
discussed in the context of various industries beyond maritime transportation. Finally,
research that utilizes techniques for data sampling across diverse topics is analyzed.

Previous studies on identifying accident risk using algorithms have several limitations.
They often focus on the data classification methodology rather than final outcomes such as
accident rates, or they derive results by comparing the importance factor values of models
based on various machine learning techniques. However, they do not identify the variables
that are important for predicting accident risks. In this study, we addressed the problem
of imbalanced data sets containing accidents using the SMOTE technique mentioned in
the fourth section. Subsequently, we derived improvement metrics for accident occurrence
probabilities after applying the MTSA system and identified the variables that are important
for predicting accident risks. Furthermore, considering the accuracy derived from the
evaluation to represent the validity of the model, we used it as a correction factor to
determine the reduction rate of accidents after MTSA from a conservative perspective. The
technical novelty of our study lies in the application of these multifaceted methodologies
to derive the final results.

2.1. Spatial Identification

When combined with quantitative data analysis, the use of spatial data can result in
synergistic effects to derive results on various topics. An analysis of similar studies using
geographic information system (GIS) technology revealed the usefulness of GIS-based
analysis in the identification of assessed project sites, related routes, and marine accidents.

Hazaymeh et al. investigated the spatiotemporal patterns of car accidents over several
years in Jordan [9]. They used a GIS-assisted technique based on statistical and clustering
approaches to identify areas with car crash points.

Mesquitela et al. conducted research to identify safety measures to prevent traffic
accidents in Lisbon [10]. They applied meteorological data, historical traffic status data,
and location datasets to ArcGIS Pro software.

Thanopoulou et al. conducted research on methods for monitoring vessels potentially at
high risk of oil spills in marine pollution accidents using an electronic platform [11]. The au-
thors proposed the construction of an AI-based monitoring system within a GIS environment.

Yildiz et al. used GIS to develop a “Marine Accidents Density Map” for the Singapore
Strait by reviewing areas where marine accidents are concentrated by performing the
Kernel Density Analysis method [12].
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Studies have also combined GIS and electronic charts (e-charts) to analyze the rela-
tionship between marine accident locations and specific causes. Chou et al. used GIS to
integrate spatiotemporal information, such as marine accident locations and timings, with
environmental factors such as wind, waves, tides, and currents, after which the data were
combined on e-charts [13].

2.2. Maritime Traffic Safety Assessment

Various approaches have been investigated to identify and assess risks related to
maritime traffic safety, such as Formal Safety Assessment (FSA), the IALA Waterway Risk
Assessment Program (IWRAP), Ports And Waterway Safety Assessment (PAWSA), and
the Event Sequence (ES) model. When revising agreements, regulations, and laws with
regulatory characteristics, the cost–benefit of obtaining them, administrative burdens, and
incurred costs should be extensively considered. In addition, it was confirmed that it is
important to quantify data such as the number of marine accidents to obtain a quantitative
data assessment in maritime risk assessment.

The FSA approach was formally adopted as a guideline at the 74th IMO MSC meeting
in 2001, and is still in use today. The IMO defines FSA as an organizational and systematic
safety assessment method that uses risk and cost–benefit assessments to improve maritime
safety, including human life, the marine environment, and property protection [14].

IWRAP, which was developed by the Technical University of Denmark’s ISESO Project,
calculates the risk of ship collisions and grounding incidents. This program analyzes the
risk to waterways using a quantitative risk assessment that is based on factors such as the
type and size of vessels as well as vessel navigation data for specific water areas [15].

PAWSA, an assessment model developed in the United States to ensure maritime traffic
safety in waterways, uses the Analytical Hierarchy Process (AHP) developed by Dr. Jack
Harrald of George Washington University and Jason Merrick of Virginia Commonwealth
University [16,17].

The ES model is used to quantitatively evaluate the degree of burden imposed on ship
operators, and is also utilized in the MTSA Scheme in Korea [18,19].

The Potential Assessment of Risk (PARK) model, which is a Korean model under de-
velopment, measures the maritime traffic risk based on quantitative data that distinguishes
ship type, tonnage, length, width, boarding experience, license possession, duties, etc.,
using regression analysis methods [20].

Kim et al. investigated the feasibility of automatically setting the optimal route
for ships without human intervention using ML techniques to ensure safety during
navigation [21].

Fu et al. identified the major thematic clusters in risk-influencing factors. They
proposed a model for synthesizing and illustrating the relationships among environmental
factors, ship-related risk-influencing factors, and accident scenarios in Arctic shipping [22].

2.3. Risk Prediction Using Algorithms

It was found that weather conditions significantly influence the road conditions for
automobiles. Accordingly, several studies have reported the development of models that
predict risk using ML based on basic data, such as road and weather condition data collected
from each country. Random forest models are widely used among ML algorithms for
reasons such as unnecessary data-scale transformations and superior model performance,
leading to high accuracy.

Amorim et al. developed a model using ML algorithms to identify accident hotspots
by collecting data on accident dates, road types, and weather conditions. They devised
methods for drivers on the Brazilian Federal Highway to alert them to potential highway
risk areas in advance [23].

Lee et al. focused on the occurrence of risks, such as hydroplaning, owing to variations
in road friction coefficients during rainy seasons caused by climate change. They estimated
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the importance of factors that contribute to accidents during rainy seasons and developed
a traffic accident forecasting model using ML [24].

Jeong et al. aimed to identify the factors affecting the frequency and damage caused
by traffic accidents in Seoul City by collecting data and using algorithms to analyze the
impact of these factors [7].

Kim et al. noted a high mortality rate owing to traffic accidents on highways during
winter. They addressed the data imbalance using SMOTE and devised a winter highway
risk prediction model using ML [8].

2.4. Application of Data Sampling Techniques

Recent advancements in the construction of large databases have led to various ML
studies being conducted on diverse topics. It has been shown that for the application of
these ML algorithms, the quality of data, particularly the balance of data, is crucial, and
several cases applying the SMOTE technique have been identified.

Xu et al. conducted research to predict the turnover rate of crucial nurses to ensure
the quality of nationwide healthcare services. They selected 18 variables from a database
and applied four ML algorithms after balancing the distribution of data between variables
through data sampling [25].

Imani et al. devised methods to reduce customer churn in the telecommunications
industry by analyzing customer behavior and predicting churn variables through ML after
addressing the data imbalance issue by sampling open data related to the telecommunica-
tions industry [26].

Farooqi et al. conducted research on enhancing network intrusion detection. They
applied the SMOTE technique to address the class imbalance issue in basic data. This
ensemble voting classifier significantly enhances the accuracy and precision of network
intrusion detection systems [27].

3. Methodology

The aim of this study was to derive the MTSA-related ARR from routes near the
assessed project sites when undergoing MTSA evaluation. The key procedures of this study
are listed below and summarized in Figure 2:

• Data collection included an assessment of projected site data, marine accident data,
and coastal passenger ship operation data, followed by data pre-processing.

• The classification of maritime routes for coastal passenger ships related to the assessed
projected sites and those unrelated through GIS analysis.

• The classification of MTSA-related accidents among marine accidents occurring on
these routes using GIS analysis.

• Performing oversampling on the group of MTSA-related accidents with a relatively
low occurrence compared to the coastal passenger ship operation information.

• The calculation of feature importance for deriving accident occurrence probabilities
using the ML algorithm based on coastal passenger ship operation information and
MTSA-related accident information on routes unrelated to the assessed projected sites.

• The prediction of MTSA-related accident occurrences assuming no MTSA implemen-
tation using the trained ML model on the operation information of routes associated
with the assessed projected sites.

• Validation and evaluation of the modeling results using both sampling and original data.
• The derivation of MTSA-related ARR by comparing the predicted number of MTSA-

related accident occurrences based on the MTSA implementation status derived from
the modeling results.

To carry out these processes, it is necessary to examine important methods such as the
concept of MTSA-related accident scope, data sampling, marine accident reduction, and
ML techniques. The results of this analysis are discussed in the following subsections.
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3.1. Data Collection Considering Marine Development Project Cycle

First, we collected MTSA-assessed project site data from 2010 to 2014 for marine
development projects that directly or indirectly affected the operation of coastal passenger
ships with a length of less than 100 m in waterways.

Moreover, we collected data on coastal passenger ship operations and marine ac-
cidents that occurred between 2017 and 2022. MTSA is required to obtain regulatory
approval for project plans before commencing operations. Additional processes, such
as user consultations, are required, which extend the timeframe from MTSA completion
to project commencement to 1–3 years. Furthermore, depending on the type of project,
construction periods range from 2–5 years after commencement. Therefore, we applied data
from 2017 to 2022, assuming that this period provided sufficient time for the formation of
maritime traffic patterns, reflecting post-MTSA project completion and the establishment of
new facilities.

3.2. Methodology for Classifying MTSA-Related Accidents

To achieve the above-mentioned research goal of deriving the MTSA-related ARR, it
is necessary to establish concepts, such as identifying routes passing through the vicinity
of MTSA-assessed project sites, the types of marine accidents occurring on those routes,
their relationships with the MTSA scheme, and the distance between the location of marine
accidents and the marine development project site. In this subsection, we establish concepts
for sea routes near MTSA-assessed project sites and MTSA-related accidents.

3.2.1. Classification of Sea Routes near MTSA-Assessed Project Site

In South Korea, licenses for coastal passenger ship routes are obtained from the
government, and sea routes are designated by passenger ship operators and typically
operated consistently unless there are specific reasons for this not to be the case. Based on
this fact, we assessed the association between the maritime route for passenger ships and
the distance to the assessed project site to determine whether there is a connection with the
MTSA-assessed project site.
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In this context, the distance was measured at three nautical miles (NMs) as the crite-
rion for adjacency between the maritime route and the MTSA-assessed project site. This
choice was based on the technical standards specifying the requirement for surveying the
status within a range of 3 NM from the marine development project site during MTSA
implementation.

By performing this process, maritime routes intersecting within a radius of 3 NM of
the MTSA-assessed project site were classified as MTSA-related routes, whereas those that
do not intersect within this radius were categorized as MTSA-unrelated routes.

3.2.2. Classification of MTSA-Related Accidents Based on Accident Types and
Occurrence Locations

Marine accidents can be broadly categorized into human and environmental categories.
MTSA is related to environmental factors, which refer to the physical and systematic
conditions required for vessel navigation.

In this study, we focused on quantitatively deriving the reduction in marine accidents
using MTSA. Therefore, accidents related to human elements indirectly associated with
MTSA and incidents unrelated to vessel operations, such as equipment damage, were
excluded. Consequently, accident types considered amenable to reduction through MTSA
were classified into seven categories: collision, minor collision, grounding, buoy fouling,
navigation obstruction, submersion, and damage to the steering gear; these are shown in
Table 2.

Table 2. Classification of MTSA-related accidents based on the location of marine accidents.

Classification Discrimination Criteria

Common The distance from the marine development project site or
land structures is within 3 NM

Collision The accident occurred in front of the project site

Minor collision Direct contact with the project site or nearby
navigational marks

Grounding The accident occurred owing to non-dredging shallow
waters near the project site

Buoy fouling The accident occurred because of unremoved hazards near
the project site

Navigation obstruction The accident occurred because of non-dredging shallow
waters near the project site

Submersion Submersion occurred at or near the project site

Damage to steering gear There was steering gear failure at or near the project site

Among these categories, minor collisions represent the most direct accidents involving
collisions related to MTSA resulting in facilities, whereas the remaining six accidents are
considered to be relatively indirect.

However, not all seven types of marine accidents can be classified as MTSA-related.
Spatial connections, including the location of marine accidents and the distance from the
marine development project site, should be carefully considered. Thus, to identify MTSA-
related accidents based on their location relative to the MTSA-assessed project site, the
following criteria were established:

• Initially, the grouping of accidents was based on their distance from the marine
development project site or land-based structures.

• Within each group, to identify MTSA-related accidents, a detailed examination of the
accident locations was conducted based on the criteria outlined below.

Further details on this process are provided in Section 4.2.
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3.3. Data Sampling Methodology

When incorporating imbalanced data into a model, there is a concern in that while the
majority class may have high accuracy, biased results with low accuracy may be obtained for
the minority class. To address this issue, several sampling methods have been proposed [28].
Sampling techniques alter the class distribution of imbalanced data to create balanced data,
which are typically classified into two categories: undersampling, where instances of the
majority class are removed, and oversampling, where instances of the minority class are
artificially increased.

Unlike simple methods that merely replicate instances of the minority class, SMOTE
innovatively crafts synthetic samples through interpolation between existing instances of
the minority class [29]. This expansion leads to a more diverse and enriched decision space
boundary, which is useful for applying ML algorithm models.

3.4. MTSA-Related Accident Reduction Rate Theory

The MTSA-related ARR is the ratio of the decrease in MTSA-related accidents at
MTSA-assessed project sites to those at unassessed project sites.

First, coastal passenger ship operation information near MTSA-unassessed project
sites and the history of MTSA-related accidents were combined into a dataset. This dataset
was then used to train a pre-implemented ML algorithm to derive the feature importance.

Second, the trained model from the first step was applied to recent coastal passenger-
ship operation information near the MTSA-assessed project sites. If safety diagnostics
were not performed, the probability of future MTSA-related accidents could be determined.
This probability was then summed to obtain the number of accidents before applying
MTSA (BNA).

Third, the annual average number of MTSA-related accidents occurring on coastal
passenger ships operating near the MTSA-assessed project sites was calculated. This
number represented the number of accident cases after the application of MTSA (ANA).

In the second and third steps, the BNA and ANA were calculated under the same
environmental conditions. These values were substituted into Equation (1) to derive the
MTSA-related ARR.

ARR =
BNA − ANA

BNA
. (1)

3.5. ML Algorithm Methodology

Ensemble learning is a widely used ML technique that combines multiple decision
trees [30,31]. In ensemble learning, the combination of various weak ML models enables
the development of a stronger model with more accurate predictions [32].

The random forest technique applies the bootstrap aggregation (bagging) approach [33].
The random forest algorithm was applied to the training set using the following formula:
in this process, bagging is repeated B times, and each repetition involves selecting random
samples to fit trees to the sample [27]. The formula for this random forest is shown in
Equation (2):

f̀ =
1
B∑B

b=1 fb

(
x
′)

, (2)

where the elements are defined as follows:

B: number of bagging iterations.

fb

(
x
′
)

: output the ensemble of trees.

f̀ : results of random forest regression.

4. Data Pre-Processing
4.1. Data Collection

The first step involved the collection of past MTSA performance data. This included
gathering available datasets from the Korea Maritime Transportation Safety Authority
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(KOMSA) regarding MTSA implementation from 2010 to 2014, before the scope of the
MTSA system was reduced in accordance with the marine development project cycle
mentioned in Section 3.1. During this period, 75 MTSAs were implemented. The data
columns are structured as shown in Table 3.

Table 3. Columns from data for MTSA scheme.

Column Description

code Code for classification by MTSA project, e.g., 10,000, 20,000, etc.

project Name of MTSA project

year/month Date of occurrence in format yyyy/mm, e.g., 2011.03

location Longitude and latitude in format N 00◦00′00.00′′, E 00◦00′00.00′′

The second step involved the collection of information on coastal passenger ships
and marine accidents. Data on the sailing of coastal passenger ships from 2017 to 2022
were collected from open data provided by the Korea Shipping Association (KSA). In
addition, marine accident occurrence data for coastal passenger ships from 2017 to 2022
were collected from KOMSA. The major data column structures are listed in Table 4 below.

Table 4. Major columns from data for coastal passenger ship operation and accidents.

Column Description

sailing year Year of operation of passenger ship, e.g., 2017, 2018, etc.

operation distance Represents distance travelled by the passenger ship
during operation

regional office Regional office in area for passenger ship

gross tonnage Gross tonnage of passenger ship

capacity Passenger capacity

number of ports Total number of ports

operating minutes Operating minutes per sea route

operation number Total number of operations per year

maritime route Regional maritime route for coastal passenger ship, e.g., C,
M, etc.

position_ship Position of a ship per unit of time in format N 00◦00′00.00′′,
E 00◦00′00.00′′ (longitude and latitude)

accident date Date of occurrence in format yyyy/mm/dd, e.g.,
2020/12/01

position_accident Position of an accident in format N 00◦00′00.00′′, E
00◦00′00.00′′ (longitude and latitude)

accident_classification Classification according to the type of accident,
e.g., Collision

maritime route_accident ship Regional maritime route for a ship that has been involved in
an accident, e.g., C, M, etc.

4.2. Data Analysis and Processing

Based on the collected data, we identified the connections between maritime routes
for coastal passenger ships, marine accidents, and past MTSA-assessed project sites. By
performing this process, three types of data were derived: MTSA-related routes associated
with past MTSA-assessed project sites, MTSA-unrelated routes, and marine accidents that
occurred along each route.
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Here, we denote the combination of MTSA-unrelated route information and MTSA-
related accident data as the original dataset set U. The configuration of the original dataset
U is shown in Figure 3. In addition, as mentioned in Section 4.4, the dataset obtained after
applying SMOTE was named SMOTE dataset U.
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Figure 3. Overview of Data U set composition.

The modeling process involved training the algorithm on the SMOTE Data U set and
then testing it on MTSA-related route information. This process was conducted twice. The
analysis and processing steps for each dataset are illustrated in Figure 3.

The process of deriving MTSA-unrelated route information and MTSA-related route
information and the extraction of MTSA-related accidents were performed using QGIS
software. QGIS is the most popular free geospatial software available worldwide. We used
QGIS version 3.28 and executed it on a machine with 8 GB of RAM and an Intel Core i3
3.60 GHz CPU.

4.2.1. Classification and Calculation of Coastal Passenger Ship Routes and
Operation Frequency

First, we sequentially connected point-shaped data representing waypoints to con-
struct linear coastal passenger ship routes. Next, we visualized the locations and extents of
MTSA-assessed project sites from 2010 to 2014 using GIS software. Based on the range of
each project site, we calculated the centroid of the objects and generated circular ranges with
a radius of 3 NM from the centroid, as per the distance criterion mentioned in Section 3.2.1.

By overlaying these two spatial information layers, we measured whether the distance
between each route and the location of past MTSA-assessed project sites was within
3 NM. If the distance was 3 NM or less, we classified the route as an “MTSA-related route;”
if the distance exceeded 3 NM, we categorized it as an “MTSA-unrelated route.” These
classification methods are summarized in Figure 4.
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Figure 4. Classification of “MTSA-related route” and “MTSA-unrelated routes” and derivation of
sailing information.

To organize the operational information for the classified routes, we combined annual
sailing information based on port calls for each route and port data for each route to
derive sailing information from 2017 to 2022 for both “MTSA-related routes” and “MTSA-
unrelated routes.” The derived results are shown in Figure 5 and in Table 5.
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Figure 5. MTSA-related route and MTSA-unrelated route.

Table 5. Features of each maritime route.

Category Number

MTSA-related route 94

MTSA-unrelated sea route 31

Total 125

4.2.2. Classification of MTSA-Related Accidents

The marine accident data utilized in this study included the maritime routes of pas-
senger ships involved in accidents. Therefore, by combining the reviewed sailing data on
maritime routes, it is possible to distinguish between ships operating on MTSA-related
routes and marine accidents on MTSA-unrelated routes. In addition, the association
between marine accidents and MTSA was examined. This process allowed for the identifi-
cation of MTSA-related accidents and MTSA-unrelated accidents. This process is illustrated
in Figure 6.
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Figure 6. Process of deriving MTSA-related accidents by route.

First, an overlay analysis of marine accidents and MTSA-related route data was
conducted to identify marine accidents involving coastal passenger ships on MTSA-related
routes. Subsequently, these data were implemented in the GIS software, and the location
information of past MTSA-assessed project sites was input. Marine accidents occurring
within 3 NM of the centroid of the project site boundary objects were extracted. Then, based
on the maritime spatial characteristics of the extracted marine accident locations and the
criteria mentioned in Table 2 of Section 3.2.2 regarding the classification of MTSA-related
accidents, MTSA-related accidents on MTSA-related routes were confirmed.

Second, marine accident data were overlaid with data on MTSA-unrelated routes,
and an analysis was conducted to identify marine accidents involving coastal passenger
ships on MTSA-unrelated routes. These data were visualized in GIS software to verify
whether marine accident locations were within 3 NM of various nearby structures (such as
ports, piers, and bridges) where MTSA was not previously conducted. Marine accident
data beyond 3 NM were excluded from this study. The marine accident classification is
illustrated in Figure 7, and the corresponding results are presented in Figure 8 and Table 6.
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Table 6. Number of MTSA-related/unrelated accidents.

Category Number

MTSA-related accidents 47

MTSA-unrelated accidents (exclude) 599

Total 646

4.3. Data Pre-Processing

To effectively utilize raw data in ML algorithms, they should be transformed into
a suitable format, and data pre-processing plays a crucial role in this regard. Data pre-
processing involves the selection of variables to eliminate irrelevant features, thereby
enhancing the performance of ML algorithms and reducing computational complexity.
In this study, the data were subjected to four key stages to ensure the suitability of the
classification techniques.

First, the categorical variables were simplified. For example, in the marine accident
column, a One-Hot Encoding process was applied, where occurrences of marine accidents
were assigned a value of 1, and instances where no marine accidents occurred were assigned
a value of 0.

Second, columns deemed simple strings or those with low relevance were excluded
during the data collection stage.

Third, if special characters such as dashes or underscores were inserted into the
numerical variables in the raw data, they were all removed to reflect only pure numbers.

Finally, to address the issue of class imbalance, a synthetic minority oversampling
technique (SMOTE) was applied using a model [34]. Further details regarding SMOTE are
provided in Section 4.4.
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In addition, to better evaluate the proposed ML algorithm model, a subset of the
original Data U set was utilized. This subset consisted of 10 instances representing MTSA-
related accident occurrences (label 1) of a total of 47 instances, and 10 instances representing
no MTSA-related accidents (label 0). These instances were randomly sampled and used for
ML model evaluation.

4.4. Execution of Synthetic Minority Oversampling Technique (SMOTE)

After constructing the original Data U set, the class imbalance issue of the dataset was
addressed using SMOTE. This approach significantly improves the distribution of each
class. Consequently, newly generated instances exhibit high similarity to the original data
distribution [35,36].

Using the SMOTE method, the number of groups related to MTSA-related accidents
and non-accidents within the original U set was equalized to 50.0%.

The SMOTE Data U set, which underwent oversampling using the SMOTE technique,
was then divided into a training set consisting of 1560 groups, accounting for 80%, and a
validation set consisting of 390 groups, representing 20%, using random sampling. The
distribution of classes in each dataset was balanced, as depicted in Figure 9.
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5. Application of Marine Accident Occurrence Prediction Model and Results
5.1. Characteristics of Data U Set

First, the characteristics of the Data U dataset were analyzed. In the original Data U
set, the group in which related accidents occurred most had a travel distance of less than
50 km, accounting for 78.38%. Ships with a gross tonnage of 500 tons or more accounted
for 43.24% of this group, indicating a relatively high presence of larger vessels. Moreover,
approximately 67.57% of the vessels in this group had an annual sailing frequency of over
1600, indicating a correlation between higher sailing frequency and increased occurrence of
MTSA-related accidents. The group where MTSA-related accidents occurred accounted
for 37 cases (3.66%) within the original Data U set, which was relatively lower than the
group where accidents did not occur. Table 7 illustrates the distribution of the independent
variables after applying SMOTE. Using this SMOTE oversampling technique, the imbal-
ance in the distribution of the original Data U set was effectively addressed. The newly
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generated dataset maintained the characteristics of the original dataset because there were
no significant changes in the distribution.

Table 7. Characteristic distribution of the extracted variables in the Data U set.

Original Data SMOTE

Characteristic

Accident
occurrence

Accident
occurrence

Accident
occurrence

Accident
occurrence

Yes (N = 975, 96.34%) No (N = 37, 3.66%) Yes (N = 975, 50.00%) No (N = 975, 50.00%)

Categorical Variables Count Percentage Count Percentage Count Percentage Count Percentage

Year

2017 171 17.54% 5 13.51% 171 17.54% 98 10.05%

2022 155 15.90% 10 27.03% 155 15.90% 62 6.36%

Annual sailing distance

Less than 50 km 611 62.67% 29 78.38% 611 62.67% 809 82.97%

50 km to 100 km 139 14.26% 1 2.70% 139 14.26% 38 3.90%

More than 100 km 225 23.08% 7 18.92% 225 23.08% 128 13.13%

Passenger ship

Ship managed by B
regional office 3 0.31% 1 2.70% 3 0.31% 1 0.10%

Ship managed by Y
regional office 118 12.10% 5 13.51% 118 12.10% 21 2.15%

Gross tonnage

Less than 300 tons 512 52.51% 15 40.54% 512 52.51% 370 37.95%

300 Ton to 500 tons 261 26.77% 6 16.22% 261 26.77% 212 21.74%

More than 500 tons 202 20.72% 16 43.24% 202 20.72% 393 40.31%

Passenger capacity

Less than 200 people 353 36.21% 12 32.43% 355 36.41% 280 28.72%

200 to 400 people 373 38.26% 9 24.32% 374 38.36% 338 34.67%

More than 400 people 249 25.54% 16 43.24% 246 25.23% 357 36.62%

Number of port calls per sea route

Less than 3 230 23.59% 7 18.92% 230 23.59% 192 19.69%

3 to 5 478 49.03% 20 54.05% 478 49.03% 507 52.00%

More than 5 267 27.38% 10 27.03% 267 27.38% 276 28.31%

Operating minutes per sea route

Less than 60 300 30.77% 18 48.65% 300 30.77% 386 39.59%

60 to 120 288 29.54% 12 32.43% 288 29.54% 410 42.05%

More than 120 387 39.69% 7 18.92% 387 39.69% 179 18.36%

Number of operations per year

Less than 800 347 35.59% 7 18.92% 347 35.59% 139 14.26%

800 to 1600 257 26.36% 5 13.51% 257 26.36% 167 17.13%

More than 1600 371 38.05% 25 67.57% 371 38.05% 669 68.62%

Regional sea route

D sea routes 103 10.56% 8 21.62% 103 10.56% 314 32.21%

Q sea routes 37 3.79% 1 2.70% 37 3.79% 1 0.10%
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Secondly, the characteristics of the MTSA-related route information used for testing
based on the trained model to predict the probability of MTSA-related accidents were
as follows: The annual sailing frequency, which exceeded 1600 voyages, accounted for
37.62%, indicating a relatively high frequency of voyages. Voyages covering a distance of
less than 50 km annually constituted 55.45%, indicating the prevalence of short-distance
voyages. Furthermore, voyages with a duration exceeding 2 h (120 min) per leg accounted
for 41.58%. From these data, it can be inferred that although the sailing distance may be
short, the duration of the voyages is often considerable. Regarding the total tonnage of
coastal passenger ships, vessels weighing less than 300 tons accounted for the majority
(45.54%), indicating the prevalence of small vessels. Table 8 presents the distribution of the
characteristics of the main independent variables.

Table 8. Characteristic distribution of the extracted variables in the 2022 MTSA-related route information.

Characteristic Data Characteristic Data

Categorical Variables Count Percentage Categorical Variables Count Percentage

Year
2022 101 100.00%

Annual sailing distance Number of operations per year

Less than 50 km 56 55.45% Less than 800 36 35.64%

50 km to 100 km 13 12.87% 800 to 1600 27 26.73%

More than 100 km 32 31.68% More than 1600 38 37.62%

Operating minutes per sea route Number of port calls per sea route

Less than 60 23 22.77% Less than 3 22 21.78%

60 to 120 36 35.64% 3 to 5 57 56.44%

More than 120 42 41.58% More than 5 22 21.78%

Passenger capacity Gross tonnage

Less than 200 people 30 29.70% Less than 300 tons 46 45.54%

200 to 400 people 40 39.60% 300 tons to 500 tons 34 33.66%

More than 400 people 31 30.69% More than 500 tons 21 20.79%

Passenger ship Regional sea route

Ship managed by C
regional office 12 11.88% D sea routes 15 14.85%

Ship managed by P
regional office 5 4.95% L sea routes 13 12.87%

5.2. Training

All the simulations, including model training and prediction analyses, were performed
using Google Colaboratory, which is well suited to ML, data science, and education, and
thus, served as a platform for simulating our proposed ML method. The experiments were
performed on a machine equipped with GPU NVIDIA V100 and 60 GB of RAM.

As described in Section 4.4, training was conducted for the related accident-occurrence
prediction algorithm on the training set, which accounted for 80% of the SMOTE Data U
set. The importance of the derived features is illustrated in Figure 10.
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The six most important features of the ML algorithm are ranked as follows: number of
operations per year (0.158288474), annual sailing distance (0.125514964), operating minutes
per sea route (0.124485911), gross tonnage (0.099032723), number of port calls per sea route
(0.095755849), and passenger capacity (0.073789485).

An assessment of the main characteristics associated with these high-importance fea-
tures reveals that the frequency of vessel operation, distance traveled, time spent operating,
and number of port calls significantly influence the related accidents. In particular, the
frequency can be considered from a probabilistic perspective to be the number of attempts
made at an event under the same conditions. The likelihood of an event occurring increases
with the frequency of attempts.

5.3. Test for Predicting Marine Accident Probability

In Section 5.3, we discussed the training of a model for predicting the probability of
MTSA-related accidents during coastal passenger ship operations based on the SMOTE-
applied training set. In this section, the trained model is applied to the 2022 MTSA-related
route information for testing, as described in Section 4.2. This process was performed
to estimate the probability of related accidents, assuming that the respective project site
did not perform MTSA. The MTSA-related route information was divided into individual
groups consisting of ship-route-sailing information, and the predicted probabilities of
MTSA-related accident occurrences were derived for each group after applying the model.
To ensure the accuracy of the experimental results, probabilities below 0.005 were set to
zero and the remaining values were rounded to the third decimal place. The distribution of
the predicted MTSA-related accident probabilities for the 101 data groups is illustrated in
Figure 11.
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5.4. Evaluation of ML Model

To validate the SMOTE Data U set, the precision, recall, F1 Score, and accuracy were
calculated. For the validation, 20% of the SMOTE Data U set was used as the validation
set. Moreover, to better evaluate the ML model, the original Data U set was evaluated. The
results of validation and evaluation are presented in Tables 9 and 10, respectively.

Table 9. Results of validation on the SMOTE Data U set for ML RF model.

Acc Pr Rc F1

0.0 0.98 0.97 0.98

1.0 0.97 0.98 0.98

Macro avg 0.98 0.98 0.98 0.98

Table 10. Results of evaluation on the original Data U set for ML RF model.

Acc Pr Rc F1

0.0 0.71 1.00 0.83

1.0 1.00 0.60 0.75

Macro avg 0.80 0.86 0.80 0.79

5.5. Reduction in MTSA-Related Accidents upon Implementation of MTSA
5.5.1. Annual Number of Cases of Accidents before Application of MTSA (BNA)

The collection of all possible events, represented as a set, is called the sample space.
If the sample space is denoted by Ω, and assuming an experiment A is conducted under
exactly the same conditions repeatedly n times, with the occurrence of A denoted as
n(A), then the probability (P) of event A is represented as P(A) and is defined as follows,
according to Equation (3):

P(A) = lim
n→∞

n(A)

n
. (3)

Considering A as an MTSA-related accident and n as the number of data groups
for passenger ship operations, the derived probability (P) P(A) can be interpreted as the
expected number of MTSA-related accidents per data group in the 2022 MTSA-related route
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information. Following this logic, by summing the individual real-numbered MTSA-related
accident prediction probability values for the I data groups of all routes near the MTSA-
assessed project sites and the ships navigating these routes, it is possible to obtain the
predicted number of annual related accidents for coastal passenger ships when not subject
to MTSA. However, for an accurate assessment, the accuracy value from the evaluation
of the original Data U set is set as the correction factor (C) for the trained model, which is
multiplied to correct the prediction.

BNAi = ∑N
i=1 Pi × C. (4)

The results calculated using this formula are presented in Table 11 below.

Table 11. Predicted number of accident cases.

Number (i) Predicted Values (P) Correction Factor (C) BNi

1 0

2 0.01

51 0.04

101 0.16

Total 2.51 0.80 2.01

5.5.2. Annual Number of Cases of Accidents after Application of MTSA (ANA)

The average number of MTSA-related accidents occurring within a 3-NM radius of
past MTSA-assessed project sites over the last six years is defined as the anticipated annual
MTSA-related accident prediction. As mentioned in Section 3.1, marine accident data
should be based on accident data following the MTSA according to the marine development
project cycle. Therefore, the annual average number of MTSA-related accidents from 2017
to 2022 in the MTSA-related route information was derived. The results of the calculation
of the number of accident cases after the application of the MTSA (ANA) are shown in
Table 12.

Table 12. Annual number of cases of MTSA-related accidents after application of MTSA (ANA).

2017 2018 2019 2020 2021 2022 Mean

Number of accidents 4 1 1 2 1 1 1.66

5.5.3. MTSA-Related Accident Reduction Rate Calculation

In this study, the MTSA-related accident occurrence predictive model was employed
to learn the probability of MTSA-related accident occurrences using the SMOTE dataset
U. Subsequently, the number of cases of accidents before the application of MTSA (BNA)
was derived by applying this probability to Data R in 2022. In addition, the annual average
number of MTSA-related accidents from 2017 to 2022 near the sites where MTSA was
implemented was defined as the expected number of MTSA-related accidents after the
implementation of MTSA (ANA), and it was then calculated. These values were then used
to calculate the ARR defined in Section 3.5 according to Equation (1), and the findings are
presented in Table 13.

Table 13. Calculation result of the MTSA-related accident reduction rate.

BNA ANA Calculation Result (%)

2.01 1.66 17.41%
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6. Conclusions

The MTSA regulations are regulatory in nature. Hence, when considering the applica-
tion scope of these regulations, the system should be revised to consider the safety benefits
of each option and account for the administrative and economic burden on the operators.
The MTSA regulations often overlook coastal passenger ships less than 100 m long. In this
study, the MTSA-related ARR—an important safety benefit factor for areas where coastal
passenger ships less than 100 m long operate—was derived while taking into account the
expansion and application of marine development projects.

Using GIS technology, spatial information on marine structures and facilities that re-
ceived MTSA over the past five years (2010–2014) was obtained. Subsequently, considering
the marine development project cycle, the route information of coastal passenger ships col-
lected in the last six years (2017–2022) after MTSA implementation was analyzed to classify
the routes near marine structures and facilities into MTSA-related and MTSA-unrelated
route information. The MTSA-unrelated route information was combined with the MTSA-
related accident occurrence information to derive the original Data U set. However, the
original Data U set had a relatively small number of accident occurrence data groups; there-
fore, SMOTE oversampling was applied to adjust the ratio of the data. Next, the random
forest technique, which is an ML algorithm, was used to train the probability of MTSA-
related accident occurrence by group using 80% of the SMOTE Data U set. Subsequently,
the occurrence of MTSA-related accidents in an MTSA-unrelated operating environment
was predicted based on the safety diagnosis of the project site’s operating information in
the 2022 MTSA-related route information. The annual number of operations was identified
as the most important feature among the independent variables. The validation of the
random forest algorithm model based on the SMOTE Data U set yielded an accuracy of 0.98.
Finally, the annual average number of actual MTSA-related accidents that occurred over the
past six years in the MTSA-related route information was applied to denote the expected
number of MTSA-related accidents in the future. The predicted numbers of MTSA-related
accidents in the MTSA-unrelated and MTSA-related operating environments (derived from
the same MTSA-related route information) were both applicable to the accident reduction
formula. By applying a correction coefficient of 0.80 for the model accuracy of the original
Data U set, the MTSA-marine ARR was calculated to be 17.41%.

The future application of the results of this study to safety benefit assessments could
provide evidence for improving the MTSA system. In addition, the findings of this study
can serve as a tool for identifying appropriate regulatory relaxation or improvements in
similar regulatory frameworks.

However, this study has the following limitations:
First, this study was focused on expanding the limited scope of MTSA to coastal

passenger ships and analyzing coastal passenger ship accidents. The scope of MTSA
should be further expanded in the future by examining and analyzing the maritime routes
and accidents of other vessel types. In particular, accidents involving dangerous cargo ships
can lead to significant environmental damage. Hence, the scope of the MTSA regulations
should be expanded regardless of the length and type of the vessel. Dangerous cargo
ships frequently travel from ports near onshore oil-refining and petrochemical plants to
their destinations; therefore, new methods for data collection and pre-processing may be
necessary for other maritime routes.

Second, the structural and motion characteristics of the operating ships were not
reflected in the basic data. Coastal passenger ships are classified into various types, such
as general passenger ships, high-speed crafts, and car-ferries. Their speeds and engine
outputs differ, and these factors are significant in accident prediction. However, due to
the limited number of MTSA-related accident occurrence data groups in this study, there
was a constraint in excluding data about vessel characteristics by narrowing down the
variable range to prioritize data deemed highly relevant to accidents. In the future, the
structural and motion characteristic data of operating ships can be exploited to account
for the inherent characteristics of ships and the associated accident risks. Thus, predicting
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the maritime accident probabilities and deriving the corresponding ARR may be possible.
Consequently, the MTSA scope for dangerous cargo ship navigation in coastal areas may
be expanded.

Finally, a cost–benefit analysis regarding the expansion of the MTSA scope needs
to be conducted. Obtaining high-quality outcomes through cost–benefit analysis was
difficult owing to the wide scope of this study. The focus of this study was on utilizing
ML techniques to predict accident probabilities and derive MTSA-related ARRs. In future
marine development projects, a cost–benefit analysis of MTSA scope expansion will be
conducted to analyze its economic feasibility. This will involve comparing the safety
benefits of implementing MTSA to prevent future maritime accidents while accounting for
the expenses that regulatory targets, such as business owners, will bear in delegating the
MTSA tasks to other agencies.

In this context, future research should broaden its scope to include other types of
vessels, such as dangerous cargo ships, to enable a comprehensive assessment of the impact
of MTSA on maritime safety near marine developments. In addition, in future studies,
various ensemble learning techniques other than random forest will be applied to further
strengthen the research results.
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