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Abstract: Emotion recognition is a crucial research area in natural language processing (NLP),
aiming to identify emotional states such as happiness, anger, and sadness from various sources like
speech, text, and facial expressions. In this paper, we propose an improved MMER (multimodal
emotion recognition) method using TIM-Net (Temporal-Aware Bi-Direction Multi-Scale Network)
and attention mechanisms. Firstly, we introduce the methods for extracting and fusing the multimodal
features. Then, we present the TIM-Net and attention mechanisms, which are utilized to enhance the
MMER algorithm. We evaluate our approach on the IEMOCAP and MELD datasets, and compared
to existing methods, our approach demonstrates superior performance. The weighted accuracy recall
(WAR) on the IEMOCAP dataset is 83.9%, and the weighted accuracy recall rate on the MELD dataset
is 62.7%. Finally, the impact of the TIM-Net model and the attention mechanism on the emotion
recognition performance is further investigated through ablation experiments.

Keywords: emotion recognition; deep learning; multimodal; TIM-Net; attention mechanism

1. Introduction

Emotion is an important way for humans to express their inner world, and its com-
plexity and diversity play a crucial role in human communication and interaction [1]. The
American psychologist Ekman [2] proposed six basic emotions based on research needs. In
1977, the concept of affective computing was introduced [3], and emotion recognition is
an important direction in affective computing [4]. In recent years, significant progress has
been made in unimodal approaches using text, audio, and video for emotion recognition.
Emotion recognition has found applications in various fields, such as traffic safety [5],
intelligent interaction [6,7], and healthcare [8–10].

Emotion recognition in speech data is known as speech emotion recognition (SER).
SER establishes a mapping relationship between speech feature information and emotional
states through different models by extracting the feature information from the speech
data [11]. The selection and design of speech emotional features are crucial steps in
SER, which directly affect its performance. In 2021, Wang et al. [12] achieved excellent
results by using a shared-weight multimodal Transformer [13] to capture the dependencies
between modalities. Finally, the success of pre-trained models in speech recognition tasks
has garnered increasing attention in speech emotion recognition research. In 2022, Zou
et al. [14] utilized the Wav2vec [15] pre-trained model to extract the deep features from
speech and combined them with traditional acoustic features for emotion recognition. The
ablation experiment proved that adding deep features achieved better performance.

Research on the video modality primarily focuses on facial emotion recognition (FER).
AffectNet [16] is a widely recognized dataset for video-based emotion recognition. Bakariya
et al. [17] developed a real-time system capable of detecting faces, assessing human emo-
tions, and recommending music to users. Meena et al. [18] proposed a CNN-based facial
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image emotion analysis model. The study of emotion in textual data is called emotion
analysis (EA). With the rapid increase in text content created by users on the Internet, such
as product reviews, social media posts, and blogs, we have access to abundant public
opinion information. EA has also been proven to be beneficial in critical events such as the
COVID-19 pandemic [19,20].

It is difficult to obtain accurate emotional information through a single modality
alone [21,22]. With the continuous development and application of artificial intelligence
technology, against a background of multimodal information fusion, emotion recognition
technology can comprehensively analyze the information from different modalities, such as
text, speech, and facial expressions, to obtain more complementary information [23], thereby
improving the accuracy of emotion recognition [24–26]. Multimodal sentiment analysis
has a wide range of applications in human–computer interaction, business, and education
and holds great social value [27]. The core challenge of multimodal sentiment analysis
is representation fusion, which aims to learn representations reflecting the cross-modal
interactions between the “individual elements” of different modalities, effectively reducing
the number of individual representations [28]. Recent works [24,29,30] have achieved
success in the problem of multimodal sentiment analysis. The essence of multimodal
sequences is time series, and there are local interactions between modalities at the same time
node [31]. For example, the meaning expressed by a word at a particular moment is related
to the pronunciation of the word and also the accompanying facial expression. Combining
multimodal emotional features with artificial intelligence is an important research direction
in the field of emotion recognition. The cartoon animal characters developed by Bates [32]
can express set emotions and provide us with a new emotional communication experience.
The virtual tiger (Tigrito) developed by Hayes-Roth et al. [33], which can predict and
generate emotions, further demonstrates the broad application prospects of multimodal
sentiment analysis.

In the process of delving deeper into the field of multimodal emotion recognition,
we have discovered that integrating information from different modalities often leads to
more precise and comprehensive analysis results. Especially in the current flourishing
landscape of deep learning technologies, some advanced model architectures provide
powerful tools for processing both speech and text data. Based on this, we propose a
multimodal MMER-TAB model focusing on two modalities: speech and text. Building
upon the previous research, we have made improvements to the existing MMER model.
While MMER has achieved significant results in some respects, it also has some limitations
that motivate our work. Firstly, the MMER model faces challenges in handling long-term
dependencies and global context. To address this issue, we introduce a new structure
consisting of three layers of TAB modules combined with attention mechanisms to enhance
the modeling capability of the model. These improvements enable our model to better
capture the long-term dependencies and global contextual information in speech signals,
thereby improving its performance and robustness. The main contributions of our study
are as follows:

• We particularly focus on two Transformer-based feature extraction methods, namely
Wav2vec and BERT (Bidirectional Encoder Representation from Transformers) [34].
Additionally, we investigate the TIM-Net [35] model and make corresponding im-
provements to better adapt it to our application scenario in multi-modal emotion
recognition tasks.

• We introduce a multi-head attention mechanism, which accurately captures significant
emotional features from both speech and text, thereby enhancing the model’s sensitiv-
ity and capability to capture emotional information. This innovation gives our model
a competitive edge in emotion recognition.

• To validate the effectiveness of our proposed model, we conduct extensive experiments
on the IEMOCAP [36] and MELD [37] datasets. The experimental results demonstrate
that our MMER-TAB (Multi-Modal Emotion Recognition–Temporal-Aware Block)
model exhibits outstanding performance in multi-modal conversation emotion analy-
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sis tasks. This not only confirms the effectiveness of the feature extraction methods
and model improvements we have adopted but also provides new insights into and
methods for research in the field of multi-modal emotion recognition.

The rest of the paper is structured as follows: Section 2 introduces the feature extraction
methods for the speech and text modalities, respectively. Section 3 presents the TIM-Net
network architecture and attention mechanism. Section 4 elaborates on the proposed
model’s structure. Section 5 discusses and analyzes the experimental results. Finally,
Section 6 provides a summary of the paper.

2. Methodology
2.1. Wav2vec Speech Features

Early approaches to speech features involved manually crafted Low-Level Descrip-
tor (LLD) features, such as prosodic features, acoustic features, and spectral features.
Mel-Frequency Cepstral Coefficients (MFCCs) are classic audio features known for their
simplicity and efficiency. However, MFCCs only consider frequency information and
overlook the temporal correlation in audio data. Additionally, MFCCs often require manual
parameter settings, such as for the window size and stride. With the advancement of
deep learning, researchers have turned to deep learning methods for extracting speech
emotion features. Common deep learning methods for speech feature extraction include
Convolutional Neural Networks (CNNs) [38,39], Recurrent Neural Networks (RNNs) [40],
Bidirectional Long Short-Term Memory (BiLSTM) [41–43], etc. The Wav2vec2.0 version
used in this paper is an end-to-end training approach that can learn representative feature
descriptions directly from audio data through self-supervised learning, eliminating the
need for manual parameter tuning.

For speech emotion recognition tasks, the Wav2vec2.0 method effectively captures
the emotional information in audio. Furthermore, Wav2vec2.0 can enhance the model
performance through pre-training, such as Wav2vec2-base-960h, which is pre-trained on
diverse audio data for 960 h. This pre-training allows the model to capture more audio
patterns and structures, resulting in improved robustness in speech emotion recognition
tasks. In practical applications, fine-tuning can be performed based on specific tasks and
data to further enhance the model performance. It is important to note that Wav2vec2-
base-960h is a relatively complex model, requiring significant computational resources and
longer training times.

The Wav2vec2.0 process mainly involves taking an input speech signal X and encoding
it using a seven-layer CNN network to obtain the latent variable Z. The latent variable Z is
quantized into the quantized variable Q through the Gumbel softmax quantization module.
Simultaneously, Z is randomly masked at some positions and put into the Transformer [28]
network to obtain the contextual feature vector C. The structure and overall process of
Wav2vec2.0 are illustrated in Figure 1.
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2.2. BERT Text Features

The text information corresponding to speech is the most fundamental and intuitive
carrier of emotion, often used to infer the emotional state of the speaker [44]. The process of
emotion state recognition based on text is illustrated in Figure 2, primarily encompassing
data preprocessing, text feature extraction, model training, and emotion recognition.
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Figure 2. Text emotion recognition process.

Text emotion recognition first requires collecting text data from various sources, such
as social media, comments, news articles, etc. The collected text data are then subjected
to preprocessing operations, including cleaning, tokenization, the removal of stop words,
stemming, and punctuation handling. Text feature extraction involves converting the
text into numerical features suitable for machine learning algorithms. Common feature
extraction methods include the bag-of-words model, TF-IDF (Term Frequency–Inverse
Document Frequency) [45] features, word embedding [46] of syntactic features, etc.

Word embedding is currently the most commonly used method in text feature extrac-
tion, aiming to map words from the text data to a continuous vector space. This mapping
process is achieved by capturing the contextual relationships between words. Common
word embedding techniques include Word2Vec [47], Glove (Global Vectors for Word Rep-
resentation) [48], Elmo (Embeddings from Language Models) [49], etc. However, it is
important to note that using a single vector to represent a word in different contexts may
lead to some semantic understanding errors.

Considering these factors, this paper adopts the language representation model BERT
for feature extraction. BERT is a pre-trained language model based on the Transformer
architecture, utilizing a bidirectional training approach during pre-training, allowing it
to consider both the left and right context information simultaneously. BERT’s strength
lies in its powerful context modeling and multi-task pre-training, enabling the model to
learn richer, more universal semantic representations, resulting in outstanding performance
across various natural language processing tasks. BERT, proposed by Google in 2018 as
an alternative to Word2Vec, is essentially composed of stacked Transformer encoders. It
follows a two-phase framework comprising pre-training and fine-tuning on specific tasks.
BERT’s innovation lies in using two pre-training tasks: a Masked Language Model (MLM),
which predicts masked words in a sequence, and Next Sentence Prediction (NSP), which
predicts whether the next sentence is related to the current one. This addresses the issue of
different semantic expressions for the same word in different contexts. The structure of the
BERT model is illustrated in Figure 3.
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2.3. Multimodal Feature Fusion

Multimodal feature fusion [50] enables the acquisition and interpretation of infor-
mation from different dimensions, providing a more comprehensive and accurate under-
standing. The two most commonly used modalities in speech emotion recognition are
audio and text data. Audio data contain information such as speech rate, intonation, and
volume, which can represent the speaker’s emotions but may struggle to convey contextual
semantic information. Text data can capture rich semantic information but may suffer from
ambiguity and are significantly influenced by the text recognition accuracy. This paper
proposes an algorithm that integrates the strengths and mitigates the weaknesses of both
audio and text data, achieving complementary multimodal feature information.

The focus of multimodal feature fusion lies in the fusion stage and the fusion method,
which will be discussed separately below.

2.3.1. Classification Based on the Fusion Stage

The fusion stage can be categorized into three types, as illustrated in Figure 4: feature-
level fusion, model-level fusion, and decision-level fusion.
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Feature-level fusion, or early fusion, involves extracting different modality features
and concatenating them to form an overall multimodal feature representation. Since
various modality information often exhibits high correlation, extracting this correlation
after feature-level fusion can be challenging. Therefore, this method may not fully capture
the correlation between different modalities, and in the temporal dimension, simple feature
fusion may not achieve cross-temporal fusion of multimodal data. As the number of
modalities increases, concatenating feature vectors may lead to high-dimensional features,
difficulty in training models, and information redundancy.

Model-level fusion involves merging two features at an intermediate stage in the
model. Afterward, independent models continue to extract the features, and finally, both
types of features are combined for the classification task before the final classification.
Taking the example of Multi-Layer LSTM (ML-LSTM), this approach combines multiple
layers of neural networks with a traditional LSTM (Long Short-Term Memory) model. The
fusion process is as follows: The text features are put into the first LSTM layer (Layer 1),
producing hidden layer states for each neuron. Subsequently, the audio features are
concatenated with the hidden layer states from Layer 1 and put into the second LSTM layer
(Layer 2), generating hidden layer states for each neuron in the second layer. The visual
features are then concatenated with the hidden layer states from Layer 2 and put into the
third LSTM layer (Layer 3), producing hidden layer states for each neuron in the third
layer. Finally, the fused features are input into the fully connected layer (FC) to obtain the
prediction result.
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Decision-level fusion, also known as late fusion, primarily involves using different
network architectures for feature extraction and textual and audio information fusion.
Decision-level fusion models each modality separately, treating different modalities as
mutually independent. The features are extracted for each modality, and the emotion
recognition results for individual modalities are obtained through emotion classifiers.
Subsequently, a decision method is applied to recognize the results of each modality,
ultimately yielding the final emotion classification result. Designing the decision rules for
decision fusion is a challenging task. If the decision rules are too simple, they may not
accurately reflect the correlation between different modalities.

2.3.2. Classification Using the Fusion Method

The simplest way to perform multimodal feature fusion is concatenation, such as
concatenating using CONCAT or stacking operations. Another approach is to employ
attention mechanisms. If a single layer of attention is insufficient, multiple attention
operations can be applied. For example, attention operations can be performed from text to
audio and vice versa. For instance, the query matrix WQ

S from speech is computed using
the key matrix and value matrix from the text WK

T , WV
T , while the key matrix and value

matrix from the speech WK
S , WV

S are used to compute the query matrix from the text WQ
T .

This type of attention mechanism is also known as a cross-modal attention mechanism.
Based on the above analysis, the chosen fusion stage in this paper is model-level fusion,

and the selected fusion method uses cross-modal attention mechanisms. A multimodal
emotion recognition framework has been developed to fuse the features from both speech
and text, and this fusion framework will be introduced in Section 4.

3. TIM-Net and Attention Mechanisms
3.1. The TIM-Net Emotion Recognition Network Model

TIM-Net is capable of learning contextual representations from different temporal
scales. The network structure is illustrated in Figure 5 [35]. Specifically, TIM-Net utilizes
a temporal-aware block to learn the temporal emotion representations initially. It then
integrates supplementary information from both the past and the future to enrich the
contextual representations. Finally, it fuses features from multiple temporal scales with the
aim of better adapting to emotional changes. TIM-Net outperforms the other methods in
terms of its accuracy on each corpus.
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The superior generality and performance exhibited by TIM-Net can be attributed to its
core module, called the temporal-aware block (TAB). This core module captures temporal-
aware representations. Each TAB consists of three sub-blocks and a sigmoid function for
learning the temporal attention map A. The temporal-aware feature F is generated through
element-wise multiplication of the input and A. For the same sub-block of the j-th (TABj),
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an expandable dilated causal convolution (DC Conv) [51] with a dilation rate of 2j−1 is
applied at the beginning of each sub-block. The expandable convolution enlarges and
refines the receptive field, while the causal constraint ensures that future information does
not leak into the past. Batch normalization, activation functions, and spatial dropout follow
the convolution operation. This paper made modifications to the TAB structure, changing
it from a 2-layer structure to a 3-layer one. To reduce the complexity of the model, we
replaced scalable dilated causal convolution with regular convolution and replaced the
spatial pool with a regular pool. The modified structure is illustrated in Figure 6.
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3.2. Attention Mechanism

Attention mechanisms enable neural networks to automatically learn and selectively
focus on important information in the input. Multi-head attention is one implementa-
tion of attention mechanisms, achieved by running the attention mechanism in parallel
multiple times and concatenating the independently computed attention outputs, linearly
transforming them into the desired dimensions. Specifically, the multi-head attention
mechanism projects the input matrix differently, generating several output matrices that
are then concatenated together. Under the multi-head attention mechanism, the input
sequence data are divided into multiple heads, each independently computing and produc-
ing different outputs. These outputs are then concatenated to form the final output. The
output for each head can be expressed as follows, where WQ

i , WK
i , WV

i are the query, key,
and value transformation matrices for the i-th head. In summary, the multi-head attention
mechanism is an effective implementation of attention that can significantly enhance the
model’s performance and generalization ability.

We use both the multi-head attention mechanism and the cross-modal attention mecha-
nism. These two attention mechanisms have different positions and functions in the model.

4. Model Design and Interpretation

Considering the two modal features of text and audio in speech emotion recognition,
based on the TIM-Net network structure, the TAB design is improved and combined with
the use of multi-head attention, and the network framework is constructed, as shown in
Figure 7. The features extracted after passing through Wav2Vec2.0 and RoBERTa have a
dimensionality of 768. The multi-head attention mechanism employs 8 heads, with 2 layers
in the encoder. By increasing the number of heads, the model can capture more contextual
information. The TAB consists of 3 layers, with ReLU used as the activation function
within the TAB. The input dimensionality received by the fully connected layer is 768 × 2
(concatenation of audio and text), with the gelu activation function and AdamW optimizer
used and a learning rate of 5 × 10−5. To prevent overfitting, the dropout is set to 0.1.
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The first part is the feature extraction module. This section primarily focuses on
extracting features from the input data, which include two modalities: audio and text. The
process for extracting the features from audio modality data is as follows: first, encode
the audio using Wav2vec-2.0, and then introduce a multi-head self-attention mechanism
to learn more discriminative speech emotion features. The feature extraction process for
text modality data involves using the BERT model, followed by introducing a multi-head
self-attention mechanism to focus on significant emotional features within the text sequence.

The second part is the Cross-Modal Encoder (CME) attention module. This section
primarily models the cross-modal interactions of the multi-modal features, utilizing a
cross-modal attention mechanism to jointly optimize the feature embeddings for audio and
text. The cross-modal attention mechanism achieves this by learning two sets of semantic
interaction weights separately and readjusting the feature representations of audio and
text. This enables capturing interactive information between the audio and text modalities,
achieving semantic consistency in the multi-modal context.

The third part is the emotion classification module. In this section, the multi-modal
fusion features of audio and text are first concatenated. Then, the TAB module is employed
to learn the temporal dimension features with context dependencies. The features learned
with context dependencies are then put into an FC layer, utilizing a softmax classifier to
obtain a probability matrix. The maximum value in the matrix is taken as the final emotion
recognition result.

The following sections will provide separate introductions to the cross-modal attention
module and the emotion classification module of this model.

4.1. Cross-Modal Attention Module

This paper employs cross-modal attention to focus on the interaction between different
modal data, learning the semantic interaction weights for the speech and text modalities
and readjusting the feature representations.
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Firstly, both speech and text representations are projected into the same space using
1D-CNN, and the representations are as follows:

H{S, T} = Conv1D
(

H{S,T}, k{S,T}

)
∈ Rd (1)

where S represents the speech modality, T represents the text modality, H{S,T} represents
the final emotional feature representations for speech and text obtained from the feature
extraction module, k{S,T} represents the convolution kernel size for modality {S, T}, and d
denotes the dimension of the projected features for speech and text. The speech embeddings
mapped using 1D-CNN are denoted as HS and HT .

We denote the process of transferring information from the speech modality to the text
modality as S → T , and correspondingly, T → S is used to represent the information
transfer from the text modality to the speech modality. To learn the relationship between
speech and text, linear projection is initially employed to transform each feature sequence
into a query matrix Q, a key matrix K, and a value matrix V. The calculation formula is
as follows:

Ql = WQ
l Hl

Kl = WK
l Hl

Vl = WV
l Hl

(2)

where Ql , Kl , Vl ∈ Rd×d represent the query matrix Q, key matrix K, and value matrix V for
the feature sequence of the modality, and WQ

l , WK
l , WV

l ∈ Rd×d represent the corresponding
weight matrices.

Next, the dot product operation is performed on the query matrix and the key matrix
for both speech and text. The softmax function is then applied to scale and normalize the
results row-wise to obtain the attention weights. Finally, the feature sequences are aggre-
gated using the corresponding weights to obtain the interactive information transferred
between the two modalities.

1. Cross-Modal Transfer S → T

The information from the speech modality is transferred to the text modality using
a cross-modal attention mechanism with h heads. Unlike the original multi-head self-
attention mechanism where Q = K = V, with the cross-modal attention mechanism, the
query matrix is QS, and the key matrix and value matrix are KT and VT , respectively. This
mechanism facilitates the transfer of speech information to the text modality, enabling
learning the text feature representations as guided by the speech information. The similarity
is computed by taking the dot product of the query matrix QS from the speech and the key
matrix KT from the text. The So f tmax function is applied to scale and normalize the results,
followed by multiplying them with the value matrix VT to obtain the attention weights.
The specific formula is as follows:

AttS→T
(

HS, HT
)
= softmax

(
QSKT

T√
dk

)
VT (3)

Then, the results from h heads are concatenated and mapped. The specific process is
as follows:

MS→T
(

HS, HT
)
= Concat(AttS→T(1), . . . , AttS→T(i), . . . , AttS→T(h))W (4)

where AttS→T(i) represents the i-th (where i ∈ [1, h]) cross-modal attention weight.
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Finally, residual connection and layer normalization are applied to the single-modal
speech features HS mapped using 1D-CNN and the interactive multi-modal features MS→T .
The specific formula is as follows:

CMS→T = LayerNorm
(

HS + MS→T
(

HS, HT
))

(5)

where CMS→T is the cross-modal output representation from the speech-to-text modality,
containing not only complementary information from both modalities but also the original
speech emotion features, effectively reducing the information loss.

2. Cross-Modal Transfer T → S

The process of transferring information from the text modality to the speech modality
is similar to the process of transferring it from the speech modality to the text modality. All
the computation formulas are as follows:

AttT→S
(

HS, HT
)
= softmax

(
QTKT

S√
dk

)
VS

MT→S
(

HS, HT
)
= Concat(AttT→S(1), . . . , AttT→S(i), . . . , AttT→S(h))W

CMT→S = LayerNorm
(

HS + MT→S
(

HS, HT
)) (6)

4.2. The Emotion Classification Module

In the emotion classification module, the TAB sub-block is employed to focus on the
multi-modal fused feature representation after the cross-modal information interaction.
Initially, the two cross-modal fused features are concatenated to obtain the ultimate rep-
resentation of the multi-modal fused emotion features, denoted as E f usion and expressed
as follows:

E f usion = [CMS→T , CMT→S] (7)

Subsequently, the fused features are put into the TAB3 sub-block, which is designed
to capture the contextual relationships between the features, thereby capturing temporal-
aware representations. The resulting multi-modal features are denoted as P. These multi-
modal features P are then fed into a fully connected layer, where linear transformations are
applied to learn the correlations between features and map them to the output space. A
softmax classifier is utilized to obtain the multi-modal emotion recognition results based
on both speech and text.

5. Experimental Verification
5.1. Experimental Simulation Parameters

The experimental environment for this study is shown in Table 1.

Table 1. Experimental environment.

Name Specific Configuration

Operating System Windows 11
Processor NVIDIA GeForce RTX 4060 Ti (NVIDIA, Santa Clara, CA, USA)
Memory 16 GB

OS Bit 64-bit
Programming Language Python 3.8

IDE PyCharm 2023.1.2
Dataset IEMOCAP and MELD

Deep Learning Framework PyTorch 2.1.0
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5.2. Experimental Data
5.2.1. Interactive Emotional Dyadic Motion Capture (IEMOCAP) [36]

This study was primarily conducted on the publicly available dataset IEMOCAP. It
was created by the SAIL (Signal Analysis and Interpretation Laboratory) at the University
of Southern California and is a multimodal database widely used in emotion recognition.
The dataset comprises approximately 12 h of audiovisual data, including videos, speech,
facial motion capture, and text. It consists of five sessions recorded with ten different actors,
with each session featuring recordings of two speakers, one male and one female.

The dataset is labeled into four main emotion categories (Figure 8): anger (1102),
sadness (1083), neutral (1708), and happiness (1636). To ensure fair comparisons when
evaluating our model on the IEMOCAP dataset, we employed a five-fold cross-validation
method, where one session was held out as the test set for each training iteration. The
training–test split for each iteration is illustrated in Figure 9. It can be observed that the
data distribution for each cross-validation is relatively uniform.
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5.2.2. Multimodal EmotionLines Dataset (MELD) [37]

MELD evolved from the EmotionLines dataset and is a multimodal emotional dialogue
dataset. It consists of organized dialogue from the popular American TV series Friends,
comprising 1433 instances of dialogue with a total of 13,708 utterances. Each utterance
in the dialogue is annotated with one of seven emotion labels: anger, disgust, fear, joy,
surprise, sadness, or neutral. Additionally, each utterance in MELD is annotated as positive,
negative, or neutral. The distribution of the training/test and validation data samples in
MELD is shown in Figure 10.
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5.3. Experimental Analysis
5.3.1. Evaluation Metrics

To evaluate the performance of the model, we use weighted average recall (WAR) and
unweighted average recall (UAR) as the evaluation metrics. UAR averages the recall for
each class without considering the number of samples per class. WAR, on the other hand,
considers the number of samples for each class and calculates a weighted average recall.
The difference between UAR and WAR lies in whether they consider the weights of the
class sample sizes. UAR treats each class equally, while WAR assigns different weights
based on the sample sizes of classes. The formulas for calculating UAR and WAR are
as follows:

Recall =
TP

TP + FN
(8)

UAR =
1
N

N

∑
i=1

Recalli (9)

WAR =
N

∑
i=1

(
Recalli × Class Sizei

Total Sample Size

)
(10)

where TP represents True Positives; TN represents True Negatives; FP represents False
Positives; FN represents False Negatives; N is the number of classes; Class Sizei is the
sample size of the i-th class; and Total Sample Size is the total sample size across all classes.
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5.3.2. Mul-TAB Result Analysis

This section analyzes the accuracy, robustness, hyperparameters, TAB3, and multi-
head attention mechanism of Mul-TAB.

1. Accuracy Analysis

In this study, we proposed a speech emotion recognition model based on the improved
TIM-Net network and multimodal fusion and conducted experiments on the IEMOCAP
and MELD datasets. The test accuracy of our model is shown in the comparative line charts
in Figures 11 and 12. On the IEMOCAP dataset, our model achieved a testing accuracy, as
shown in Figure 11, reflected in the best WAR reaching 83.9% and the best UAR reaching
82.0%. For MELD, the best testing accuracy was 63.6%, and the training loss was 0.359,
as illustrated in Figure 12. The corresponding confusion matrices for the experiments are
shown in Figure 13a on the IEMOCAP dataset, our model performed best in recognizing
the “anger” emotion category, with an accuracy of 90.5%, while the recognition accuracy of
the “neutral” emotion category was the lowest at 73.5%. Figure 13b for MELD, our model
performed best in recognizing the “neutral” emotion category, with an accuracy of 89.9%,
while the recognition accuracy of the “disgust” emotion category was the lowest at 8.82%.
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2. Robustness Analysis

During training, we used 80% of the dataset as the training set and 20% as the test
set. As the IEMOCAP dataset is divided into five sessions, we performed five-fold cross-
validation by leaving one session out as the test set in each training iteration. Through
multiple experiments, it can be observed that our model exhibits strong robustness. A
comparative line chart of the model’s test accuracy is depicted in Figure 14.
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3. Hyperparameter Analysis

Given that we used RoBERTa and Wav2Vec2.0 for the feature extraction, the feature
dimension was 768. After multiple rounds of training and testing, it was observed that
the optimal configuration is a batch size of 2, 100 epochs, a learning rate of 5 × 10−5,
three layers in the TAB sub-block, and two layers in the multi-head attention mechanism.
Using a single GPU, each training and inference iteration takes approximately 4–5 min.
The entire training process, with five iterations and 100 epochs, requires approximately
5×100×5

60×24 ≈ 1.7 days. The Mul-TAB model has a total of 143 million parameters.

4. TAB3 Analysis

The emotion classification module of the model was modified by removing the TAB
sub-block, and the resulting emotion classification results are shown in Figure 15. The
best achieved WAR is 82.9%. This indicates that the TAB sub-block, which is capable
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of capturing the contextual relationships in the features and obtaining temporal-aware
representations, contributes to the improvement of the model’s performance.
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5. Multi-Head Attention Mechanism Analysis

The feature extraction module of the model was modified by removing the multi-
head attention mechanism. In this setup, only Wav2Vec2.0 feature extraction is performed
for speech data, and only BERT feature extraction is performed for text data, while the
subsequent steps remain unchanged. The resulting emotion classification results are shown
in Figure 16, with the best achieved WAR being 82.3%. This indicates that the multi-head
attention mechanism helps in learning more discriminative features for both speech and
text, thereby enhancing the model’s performance.
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When comparing the algorithms with and without the TAB module, which lacks the
multi-head attention mechanism, with the final algorithm, we obtain the results shown
in Table 2. Analysis of Figure 17 reveals that individual use of the TAB module and the
multi-head attention mechanism is not as effective as their combined usage.
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Table 2. Results of ablation experiments. The table has been converted into a bar chart, as shown in
Figure 17.

Model
IEMOCAP MELD

1_WA (%) 2_WA (%) 3_WA (%) 4_WA (%) 5_WA (%) UA (%)

Mul-TAB 78.9 83.9 75.1 79.7 76.2 63.9
Without TAB 78.2 82.9 75.1 79.5 77.9 60.2

Without multi-head
attention 78.6 82.3 76.2 78.1 77.6 59.4
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5.3.3. Comparison and Analysis with Other Experiments

In this paper, we proposed a speech emotion recognition model based on the improved
TIM-Net network and multimodal fusion, which was experimentally validated on the
IEMOCAP and MELD datasets. To evaluate our approach, we compared it with other
models. The results show that our method performs well regarding WAR and UAR.
The comparative results are presented in Tables 3 and 4, where “CV” stands for cross-
validation, “5-fold” indicates five-fold cross-validation, and “10-fold” indicates ten-fold
cross-validation. (Note: The UAR and WAR for MMER in the table are results reproduced
using only the pure IEMOCAP dataset after removing the enhanced speech and text data
added by the authors of the MMER paper).

Table 3. Comparative results with other models on IEMOCAP dataset. In the modal column, S
represents speech, T represents text, and V represents vision.

Models CV Type Modality
Metrics

UAR (%) WAR (%)

MHA + DRN [52] - {S} 67.40 -
CNN + Bi-GRU [53] - {S} 71.72 70.39
MSCNN-SPU [54] 10-fold {S, T} 78.20 77.40

LightSER [55] 10-fold {S} 70.76 70.23
Article [56] 5-fold {S, T} - 76.31

TIM-Net [35] 10-fold {S} 72.50 71.65
MMER [57] 5-fold {S, T} 78.69 80.18

Mul-TAB (ours) 5-fold {S, T} 81.92 83.85
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Table 4. Comparative results with other models on MELD.

Models Modality UAR (%)

MTAF [58] {S, T} 48.12
BLSTM + IA-MMTF [59] {S, T} 54.79

M2R2 [60] {S, T, V} 55.83
MMGCN [61] {S, T, V} 58.65
DAG-ERC [62] {S} 61.04

CTNet [63] {S, T} 62.0
Mul-TAB (ours) {S, T} 63.6

6. Conclusions

This experiment investigated a deep-learning-based multimodal emotion recognition
approach. The proposed multimodal fusion method based on TIM-Net and a multi-head
attention mechanism demonstrates significant advantages in speech emotion recognition
tasks, effectively improving the accuracy of emotion classification. This paper extensively
discussed the methods for fusing multimodal features, elucidates and analyzes the TIM-
Net model, and proposes enhancements. Finally, it combined the multimodal features
to accomplish emotion recognition. Through analyzing and discussing the experimental
results, we gain further insights into the contributions of different modal features. These
research findings have important guiding significance and application value for future
studies and applications in speech emotion recognition.

The model we propose also has shortcomings, such as identifying emotions by captur-
ing the context of the conversation and applying common sense reasoning to understand
the emotional changes in the conversation between the listener and the speaker. Future
research directions include further optimizing the multimodal feature extraction and fusion
methods to enhance the collaboration between different feature modalities. Additionally,
an in-depth exploration of the design and implementation details of the TIM-Net model is
necessary to optimize the model’s structure and parameters further. Exploring more effec-
tive training methods and optimization strategies to improve the model’s generalization
ability, studying cross-domain and cross-language speech emotion recognition issues, and
combining common sense reasoning are also required.
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LLD Low-Level Descriptor
MFCCs Mel-Frequency Cepstral Coefficients
CNN Convolutional Neural Network
RNN Recurrent Neural Network
BiLSTM Bidirectional Long Short-Term Memory
TF-IDF Term Frequency–Inverse Document Frequency
Glove Global Vectors for Word Representation
Elmo Embeddings from Language Models
BERT Bidirectional Encoder Representation from Transformers
MLM Masked Language Model
NSP Next Sentence Prediction
LSTM Long Short-Term Memory
ML-LSTM Multi-Layer LSTM
FC Fully connected
DC Conv Dilated causal convolution
CME Cross-Modal Encoder
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