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Abstract: Residual current protection can detect and isolate the grounding (leakage) fault of low-
voltage distribution networks in time, which is an essential technical measure to reduce electric
shocks and fire accidents and improve power supply safety. This paper systematically analyzes the
operating characteristics of low-voltage distribution networks and proposes a distributed residual
current protection method based on closed sections. It utilizes the capabilities of a distribution
IoT platform to provide comprehensive measurement information for the entire substation area.
A method was introduced to divide the low-voltage distribution substation into different protection
closed surfaces, defining the current phasor at the external contact point of the closed surface and
the remaining current of the closed surface. A calculation method for the critical current based on
the remaining current of the closed surface for fault detection was proposed. Case studies have
shown that this method is less affected by the inherent current and can significantly improve the
sensitivity of protection. For TN-C and TN-C-S systems, in the selection of closed surfaces, the
repeated grounding point of the neutral line is excluded from the closed surface. This method
can also overcome the impact of residual current changes when load switching, demonstrating the
flexibility of the new principle.

Keywords: closed section; grounding fault protection; low-voltage distribution network; residual
current protection

1. Introduction

Residual current protection plays a crucial role in earth (leakage) fault detection
and protection technology within low-voltage distribution networks [1,2]. However, it is
susceptible to influences from line distribution capacitance current and load fluctuation
factors [3,4]. The detection of faults by residual current protection primarily relies on
analyzing the power frequency amplitude, phase angle, and phasor changes of the residual
current at the measurement point. The amplitude comparison method criterion is limited by
the presence of inherent residual current during normal operation, leading to a protection
dead zone [5,6].

The current pulse method relies on detecting sudden changes in the residual current
amplitude for fault assessment. However, due to the unpredictable nature of fault current
phase angles, a considerable protection dead zone exists. On the other hand, the phase
and amplitude detection method assesses faults based on changes in the residual current
amplitude and phase angle. Although effective in theory, the complexity of calculations
often leads to protection migration and rejection issues in practical applications, resulting
in less-than-ideal protection outcomes [7]. In contrast, the current separation method
focuses on transient and steady-state characteristics of electric shocks. By isolating the
electric shock current from the residual current and making judgments based on the electric
shock current, this method successfully eliminates the protection dead zone. Current
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separation stands out as a primary research approach for electric shock protection [8–11].
During leakage faults in electrical equipment, the residual current exhibits non-sinusoidal
characteristics, impacting the performance of Residual Current Devices (RCDs) [12,13].
Additionally, the increasing use of diverse power electronic equipment complicates the
harmonic features of the inherent residual current, posing challenges for traditional leakage
protection methods that rely on amplitude, phase angle, or time–frequency characteristics
of residual current [14]. Significant magnitudes of residual current can render general
and intermediate protection mechanisms inoperative, particularly in TN configurations
with repeated grounding, highlighting the need for innovative solutions in electrocution
protection research [15,16].

The inherent residual current in the low-voltage distribution network primarily origi-
nates from concentrated loads at the line’s ends and branches. The earthing point in TN
configurations is typically situated at the user-side measuring box or electrical equipment,
with the loop that amplifies residual current also located at the terminal load. Consequently,
the actual inherent residual current in front of the user-side measuring box is minimal,
allowing for the logical division of the protection range into distinct closed sections. The
inherent residual current in these sections is significantly lower than that measured by
general and intermediate protection devices installed on equipment, presenting an oppor-
tunity to enhance protection sensitivity. However, a challenge arises in selecting the closed
sections. The need to isolate repeated earthing points of TN configurations outside these
sections poses a significant challenge. This isolation is crucial for overcoming the limitation
of installing residual current protection in TN configurations, thereby enhancing the safety
of such configurations. Addressing this challenge is essential for improving the overall
safety and effectiveness of protection measures in low-voltage distribution networks.

Through an in-depth examination of the residual current generation mechanism in
low-voltage distribution networks, this study introduces a novel distributed residual
current protection approach based on the closed-section method. This research delves
into the impact of inherent residual current and the presence of repeated earthing in TN
configurations on residual current protection functionality. An adaptive reach strategy
for closed sections is proposed to enhance the effectiveness of the protection system. The
findings demonstrate that the distributed residual current protection method, utilizing the
closed-section approach, effectively addresses the challenge of detecting and isolating earth
faults reliably. Promising results from demonstration projects underscore the method’s
potential to significantly contribute to mitigating public safety concerns related to electric
shock and electrical fires.

2. Analysis of Inherent Residual Current of Low-Voltage Distribution Networks

Residual current protection in low-voltage distribution networks is typically struc-
tured into three tiers: general protection, intermediate protection, and household protection,
designed to facilitate time differential protection with selective disconnection capabilities.
However, the effectiveness of current residual protection technologies falls short of ex-
pectations, leading to challenges in implementing TN-C and TN-C-S configurations. This
limitation is primarily attributed to the substantial magnitude of the residual current
(referred to as inherent residual current) present during normal network operations.

2.1. Generation of Residual Current from Unbalanced Systems

Residual currents emerge during regular operations due to line imbalances, asymmet-
ric loads, and inadequate insulation at junction points. For instance, in the TT configuration,
the asymmetry in ground conductivity results in the generation of residual currents: irline
along the line and irload and irRg on the load side. This phenomenon is depicted in Figure 1,
where A, B and C represent three-phase power lines, and N is a neutral line.

In the low-voltage distribution station area, there are numerous lines where residual
currents from rear equipment and lines accumulate in the front part. During normal system
operation, the residual current behind household protection typically remains below 20 mA.
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In contrast, the capacitance current to the ground and equipment leakage current to the
ground in medium and general protection can reach several hundred mA under standard
conditions, posing challenges in setting up effective protection with poor sensitivity.
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Figure 1. Schematic of inherent residual current of TT configuration. 
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Figure 1. Schematic of inherent residual current of TT configuration.

The short length of low-voltage distribution lines results in minimal ground capac-
itance and consequently very low residual currents generated on the line. However, the
complexity of load-side equipment and electrical environments leads to significantly higher
amplitudes of leakage current and an increased likelihood of leakage compared to the
line itself. Therefore, the primary source of inherent residual current in low-voltage dis-
tribution networks is the terminal load. While most equipment leakages do not trigger
the action threshold of household protection, the cumulative leakage from multiple loads
results in excessive residual current accumulation in the front section before the user-side
measuring box.

2.2. Generation of Residual Current from N-Phase Line Grounding

In the TN configuration, the neutral line is typically grounded on the load side.
Illustrated in Figure 2 where A, B and C represent three-phase power lines, N is a neutral
line, PE represent protecting earthing line, grounding the PEN line results in an increased
current irRg flow at the location, significantly elevating the inherent residual current at the
upstream protection. Apart from the fault residual current, the neutral current returning
to the power supply side through the repeated grounding point also contributes to an
increase in the normal residual current. The measured normal residual current on the
power supply side can reach several amperes, surpassing the predetermined threshold by
a considerable margin.
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Figure 2. Schematic of inherent residual current of TN-C-S configuration.

Moreover, irRg experiences substantial fluctuations during load switching, rendering
it unfeasible to install a residual current protection device before the grounding point in
such systems. The repeated earthing point in TN configurations is typically situated at the
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terminal pole or entry container, concentrating the inherent residual current loop at the end
of the line (load side).

3. Distributed Residual Current Protection Utilizing Closed-Section Methods
3.1. Protection Principle

The application of graph theory serves to streamline the topological connectivity
within the low-voltage distribution network, facilitating the creation of a minimal closed-
section area on the topology diagram. Within this designated area, all external contact
points are equipped with Line Terminal Units (LTUs) and are incapable of further subdivi-
sion. The residual current at these external contact points is quantifiable, with all currents
at these points adhering to Kirchhoff’s law. This concept is visually represented in Figure 3.
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It is evident that during normal operations, the residual current within the closed
section is limited to the residual current within its designated protection range. However,
following an earth fault (leakage), the residual current increases significantly, with almost
all of it representing the fault branch current. Consequently, the protection settings can be
set at a very low threshold, significantly enhancing sensitivity.

For instance, considering general protection at the transformer outlet, its residual
current comprises the cumulative inherent residual of the entire substation area. In contrast,
for CS0 utilizing data measured at the same location, its residual current is solely attributed
to the inherent residual current on the bus within the substation area. In scenarios involving
the TN configuration with repeated earthing of the neutral point on the load side, a judicious
selection of the closed section can effectively address the challenge of installing residual
current protection. An illustrative example is provided in Figure 4, where A, B and C
represent three-phase power lines, N is a neutral line, PE represent protecting earthing line.

The external connection point of the closed section is set before the repeated earthing
point of the TN-C-S configuration. The residual current of the closed section composed of
the residual current measured by the two points P1, P2, and P3 can be calculated as

∆
.
IP =

.
IrP1 +

.
IrP2 +

.
IrP3 (5)
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In Equation (5), during normal operation, ∆
.
IP does not include the current through

the grounding point of the N line and the residual current generated by the load. Repeated
earthing does not affect the sensitivity of the distributed residual current protection and
can achieve reliable earth (leakage) fault protection.

3.2. Protective Criterion Design

Referring to the method of differential protection setting [3–8], Equation (6) gives a
distributed residual current protection criterion.{

Id > KIres
Id > Iset

(6)

In the formula, K is the ratio braking coefficient; Id and Ires are the operating current
and braking current, respectively; Iset is the minimum operating current. The first criterion
is the action criterion; the second is the protection initiation criterion.

The expressions for Id and Ires are as follows:
Id = |

N
∑

i=1

.
Ii|

Ires =
N
∑

i=1
|

.
Ii|

(7)

.
Ii represents the residual current phasor measured by the device at the external contact

point of the closed section, this paper sets the direction of the current flowing into the
closed section as positive and the outflow as negative.

Iset is usually selected in two ways:
(1) It must exceed the maximum unbalanced current when externally grounded. We

obtain the following:
Iset = KrelKnpKerKst Ikmax (8)

Krel is the reliability coefficient, which is taken as 1.2~1.3; Knp is the aperiodic com-
ponent coefficient, which is taken as 1; Ker is the 10% error coefficient of the current
transformer; Kst is the coefficient of the same type of transformer, and it is taken as 0.5 when
the current transformer is of the same type; Ikmax is the maximum short-circuit current
flowing through the current transformer when it is externally grounded.

(2) It must exceed the maximum inherent residual current in the closed section. We
obtain the following:

Iset = Krel Irmax (9)

Krel is the reliability coefficient taken as 1.2~1.3; Irmax is the maximum residual current
during normal operation in the closed-section protection.

The design of the distributed residual current protection criterion is described in
matrix form. First, the number of LTUs in the protection and the number of closed sections



Appl. Sci. 2024, 14, 3256 6 of 17

are determined. It is assumed that there are N LTUs and M closed sections in the protection.
A relationship matrix R is defined to represent the relationship between the closed-section
CS and LTU, and it is expressed as

R =


r11 r12 · · · r1N
r21 r12 · · · r2N

...
... · · ·

...
rM1 rM2 · · · rMN

 (10)

In the matrix, the number of rows is equal to the number of closed sections, the number
of columns is equal to the number of LTUs, and rij (i = 1, 2, . . ., N; j = 1, 2, . . ., M) represents
the relationship of each LTU in the closed section; rij has three states:

rij = 1
rij = 0
rij = −1

(11)

rij = 1 means that the LTU is associated with the closed section, that is, the LTU is
the external contact point of the closed section, and the current is for the inflow; rij = 0
means that the LTU is not associated with the closed section; rij = −1 means that the LTU is
associated with the closed section, and the current is for the outflow.

The residual current matrix measured by each LTU is defined as
.
IrLTU, and the element

in it, which is the residual current phasor measured by each LTU, is recorded as
.
Irn (n = 1,

2, . . ., N), which can be expressed as
.
IrLTU =

[ .
Ir1 · · ·

.
IrN

]T
(12)

The residual current matrix of the closed section is recorded as ∆
.
ICSm (m = 1, 2, . . .,

M), which is given by

∆
.
ICSm =

[
∆

.
ICS1 · · · ∆

.
ICSM

]T
(13)

According to the definition of the relationship matrix, the matrix R,
.
Im1, ∆

.
Im1 satisfies

the following:
∆

.
ICSm = R

.
IrLTU (14)

Taking the absolute value (modulus value) of the elements in the matrix ∆
.
ICSm as the

current action matrix, denoted as ∆
.
ICSd, it is expressed as

∆ICSd =
[∣∣∣∆ .

ICS1

∣∣∣ · · ·
∣∣∣∆ .

ICSM

∣∣∣]T
(15)

The braking relationship matrix is defined as Rres. Rres is the absolute value of the
elements in the relationship matrix R, which can be expressed as

Rres =


|r 11| |r 12| · · · |r 1N |
|r 21| |r 12| · · · |r 2N |

...
... · · ·

...
|r M1| |r M2| · · · |r MN

∣∣

 (16)

According to the definition of the braking relation matrix, the braking current matrix
is expressed as

ICSres = Rres

∣∣∣ .
ICSm

∣∣∣ (17)

Defining the protection minimum operating current matrix as ICSset, the elements in it
are recorded as ICSsetm (m = 1, 2,. . ., M) and ICSsetm can be expressed as
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ICSset =
[
ICSset1 · · · ICSsetM

]T (18)

The elements in Equation (18) are set according to Equations (9) and (10). Each row in
the above matrix represents a closed section, and (15), (17), (18) are put into (6), and the
matrix representing whether the operating current exceeds the limit can be obtained, which
is defined as D. The limit matrix D is expressed as

D = [D1 · · · Di · · · DM] (19)

The element Di (i = 1, 2, . . ., M) in the matrix has two states according to whether the
closed-section action current exceeds the limit:{

Di = 1
Di = 0

(20)

Di = 1 indicates that the operating current exceeds the limit; Di = 0 means the operating
current does not exceed the limit.

Under normal operation, the elements in the limit-crossing matrix D are all 0. After
the residual current of the closed section exceeds the limit, the corresponding element
becomes 1.

3.3. Blocking and Tripping of Protection

The surplus residual current within the closed section may not always stem from a
ground fault within that specific section. Abnormalities in the residual current CT at the
external contact point of the closed section or malfunctions in the protection device can lead
to anomalous data measurements, consequently resulting in excess residual current within
the section. To mitigate the risk of protection system malfunctions, a protective blocking
matrix denoted as B is defined, with the corresponding expression outlined as follows.

B =

B11 . . . 0
...

. . .
...

0 · · · BMM

 (21)

The protection blocking matrix B is an M-dimensional diagonal matrix, and its diago-
nal elements Bii (i = 1, 2, . . ., M) have two states.{

Bii = 1
Bii = 0

(22)

Bii = 1 means that all external contact point devices in the closed section operate
normally; Bii = 0 means that the device on one or more external contact points in the closed
section is detected as abnormal, and the protection should be blocked.

Define the protection trip matrix as T, and the expression is as follows.

T = [T1 · · · Ti · · · TM] (23)

Ti (i = 1, 2, . . ., M) in the matrix has two states according to whether the protection acts
or not. {

Ti = 1
Ti = 0

(24)

Ti = 1 means that in the corresponding closed-section protection, the switch trips;
Ti = 0 means that the switch does not trip. The relationship between T, D, and B is
as follows:

T = DB (25)



Appl. Sci. 2024, 14, 3256 8 of 17

3.4. Adaptive Expansion of Closed Sections

In instances where the residual current protection device malfunctions or is inactive,
the closed section associated with the device no longer adheres to Kirchhoff’s law, leading
to the blocking of the corresponding closed-section protection. Consequently, adjustments
must be made to the closed protective section to either safeguard the initial closed-section
range or minimize the unprotected area. The schematic illustrating the self-adaptive
expansion of the closed section is depicted in Figure 5.
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(1) Expansion of Closed Sections: In cases where one or more protection devices within
the closed section upstream of a line exhibit abnormalities, the closed-section protection
can be enlarged to encompass the original closed section within the protection scope. As
illustrated in Figure 5, if the upstream measurement or protection device for line L21
malfunctions, rendering the current ir21 unmeasurable, the residual current measurement
at the rear of the line remains intact. To address this, the closed section CS2 extends its
protection range by incorporating line L21 and merging it into a new CS2. This adjustment
maintains the system’s actual protected area as unchanged.

(2) Unexpandable Closed Sections: When the protection device at the boundary (end
of the line) in the power distribution system malfunctions, preventing residual current
measurement at other points, and hindering continued protection, the original closed
section must be reduced. However, efforts should be made to minimize the unprotected
area. For instance, if the measurement device behind line L31 malfunctions, rendering the
line unprotected, line L31 is excluded from the protection range of the initial closed section
CS3 and designated as a new closed-section protection CS3.

4. Simulation Analysis
4.1. Selection of Simulation Model and Parameters

The earth fault simulation model of the low-voltage distribution network is depicted
in Figure 6. The system comprises a 10 kV/0.4 kV distribution station area with five
outgoing cables, and the transformer is connected in a ∆/Y configuration. The grounding
resistance of the neutral point system on the low-voltage side is set at 4 Ω [9]. Altering
the wiring configuration on the load side results in a variation in the grounding system
employed. The residual current protection devices are set in positions A, B and C to
structure a closed section.
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Figure 6. Schematic of ground fault in low-voltage distribution network.

The simulation model includes five outgoing lines, with line 1 serving as a test sim-
ulation line spanning 500 m. Distributed along the line are five branches, each evenly
spaced and varying in length from 50 to 100 m. Branch 3 features two secondary branches
within it. The parameters of the lines and transformer are shown in Table 1. Operating at
approximately 70% of the load, the total system load corresponds to 70% of the transformer
capacity [9]. Line 1 bears a load of 200 kVA, evenly distributed across its branches, with each
branch carrying 40 kVA and the secondary branch supporting 20 kVA. The power factor
across the system is maintained at 0.95. Lines 2–5 collectively carry a load of 170 kVA, with
the same power factor as line 1. The simulation parameters in ATP-EMTP are configured
with a step size of 10 us and a sampling frequency of 10 kHz/s.

Table 1. The parameters of main equipment.

Equipment Types Parameters

Transformer 10 kV/0.4 kV

Configuration: ∆/Y
Capacity: 1250 kVA

No-load loss: 1.36 kW
No-load current percentage: 0.27%

Short-circuit loss: 12 kW
Short-circuit voltage percentage: 4.5%

Power line YJV-0.6/1 kV
Conductor cross-section: 16 mm

Direct current resistance: <1.15 ohm/km
Carrying capacity: 100 A

4.2. Analysis of Simulation Results
4.2.1. TT Configuration Ground Fault Analysis

Within the simulation model, an earth fault is induced at the termination of phase A
on line 1, with a fault resistance of 1 kΩ. To facilitate a comprehensive comparison, the
inherent residual current of line 1 is standardized at 200 mA, uniformly distributed along
both the line and the load. The residual current levels at the beginning, middle, and end of
the line during the occurrence of the earth fault are meticulously recorded. The outcomes
of this analysis are visually presented in Figure 7.

From Figure 7, it is evident that the inherent residual current decreases as it nears the
end of the line, with the residual current close to 200 mA at the head end and minimal
mutation of the residual current post fault. Traditional residual current protection methods
such as amplitude comparison and protection techniques relying on amplitude and phase
discrimination based on the residual current amplitude prove to be largely ineffective. This
observation underscores the challenges of activating intermediate and general protection
upstream of the site and the issue of low sensitivity. Notably, closer to the end position,
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where the inherent residual current is lower, the mutation in the residual current amplitude
due to a fault becomes more pronounced, showcasing improved performance with the
existing protection methods.
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Figure 7. Residual current distribution along the line during terminal leakage fault: (a) residual
current waveform at the head end of line 1 in the TT configuration after the fault; (b) residual current
waveform in the middle of line 1 in the TT configuration after the fault; (c) residual current waveform
at the end of line 1 in the TT configuration after the fault.

An earth fault is introduced in the middle phase of line 1 with a grounding resistance
of 1 kΩ. The closed section for residual current, as depicted in Figure 6, is established with
terminals at positions A, B, and C, and the corresponding waveform data are presented in
Figure 8.

Upon comparing subfigures (a) and (b), it becomes apparent that the residual current
within the closed section remains minimal in the absence of faults. Following a fault oc-
currence, the fault current is more accurately reflected, effectively mitigating the impact
of the inherent residual current and relying solely on the upstream monitoring point. It is
evident that the single-point residual current protection method lacks sensitivity compared
to closed-section residual current protection, as the amplitude current experiences insignifi-
cant changes pre and post fault. Notably, the residual current amplitude after the fault in
Figure 8a is measured as 255 mA, while in Figure 8b, it reaches 296 mA. By combining the
inherent residual current with the fault current, a partial cancellation occurs, reducing the
fault current amplitude. This aligns with the earlier observation that the phase angle of
the fault current is arbitrary. Consequently, the closed-section residual current protection
demonstrates higher reliability and resistance to transitional variations.
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Figure 8. Residual current waveforms upstream of the earth fault closure section and its interior:
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4.2.2. TN Configuration Ground Fault Analysis

The three-phase symmetry and asymmetry are set on the load side of the TN configu-
ration of the simulation model. The fault is set in the middle phase of line 1, and the fault
resistance is 1 kΩ. The magnitude of the residual current at the outlet of the line and its
increase with the load asymmetry are recorded and compared. In the case of a symmetrical
load, the three-phase current, neutral line current, and residual current waveform at point
A in the middle of outgoing feeder one and the residual current of the closed section are
shown in Figure 9. In (a), the three-phase currents are equal, and it can be seen that the
load of line 1 is symmetrical. However, it can be seen in (b) that even in the case of a
symmetrical load, there is still a current of 1 A on the neutral line, which is caused by the
asymmetry of line parameters and power supply (three-phase power supply), the line is a
symmetrical four-wire system in physical parameters, but the mutual impedance between
the lines is not the same, so the current will also be generated on the neutral line under the
condition of the symmetrical operation of the load. It can be seen from (c) that the load is
symmetrical, and the residual current will also be generated when the impedance to the
ground is symmetrical, which is the reason why the TN-C configuration cannot install the
residual current.

The load symmetry of branch 3 is changed. The three-phase current at point A, the
current flowing through the neutral line, and the residual current at point A are shown in
Figure 10. After the phase A current increases, the amplitude of the current flowing on
the neutral line increases to nearly 30 mA, and the inherent residual current amplitude
at point A also increases to nearly 500 mA. Therefore, the inherent residual current in the
TN-C configuration changes with the load symmetry, and the traditional method cannot
achieve protection.

The calculated residual current of the closed section under the two faults is shown in
Figures 9 and 10, respectively, and the waveform is shown in Figure 11, where (a) is the
residual current of the closed protective section when the load is symmetrical, and (b) is the
load asymmetry. The closed-section residual current at this time shows phase asymmetry.
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Figure 9. Cont.
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Figure 9. Earth fault under symmetrical load in TN configuration: (a) three-phase current waveform
at point A; (b) neutral current at point A; (c) residual current at point A.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−200

0

200

A
m

pl
itu

de
 (m

A
)

Time (s)  
(a) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−40

−20

0

20

40

Time (s)

A
m

pl
itu

de
 (m

A)

 
(b) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1000

−500

0

500

1000

Time (s)

A
m

pl
itu

de
 (m

A)

(c) 

Figure 10. Earth fault under asymmetrical load in TN configuration: (a) three-phase current wave-
form at point Al; (b) neutral current at point A; (c) residual current at point A. 

The calculated residual current of the closed section under the two faults is shown in 
Figures 9 and 10, respectively, and the waveform is shown in Figure 11, where (a) is the 
residual current of the closed protective section when the load is symmetrical, and (b) is 
the load asymmetry. The closed-section residual current at this time shows phase asym-
metry. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−400

−200

0

200

400

A
m

pl
itu

de
 (m

A
)

Time (s)
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−400

−200

0

200

400

A
m

pl
itu

de
 (m

A
)

Time (s)  
(a) (b) 

Figure 11. The closed−section residual current of TN−C configuration: (a) the case where the load is 
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It can be seen from Figure 11 that the load symmetry of the two faults is inconsistent.
The inherent residual current of the system is also different because the repeated earthing
point on the load side is excluded from the closed section when constructing the closed
section. The residual current of the closed section is almost only related to the transition
resistance when the earth fault occurs in the closed section. The transition resistances
corresponding to the two faults in the figure are both 1 kΩ, so the calculated residual current
of the closed section is the same. The residual current has obvious variation characteristics,
not affected by the residual current before the fault. It can be proved that the closed-section
residual current protection method can also achieve effective earth fault protection for the
TN-C configuration in the low-voltage distribution network, which provides a reference
solution for the current TN-C configuration problem not to be equipped with the residual
current protection function.

5. Analysis of Experimental Data

The methodology for selecting the single-phase earth fault line device was imple-
mented in a laboratory simulation test of leakage faults within a low-voltage distribution
network at a university in Shandong Province. The transformer-related parameters are the
same as those of the data in Section 4.1, shown in Table 1. The circuit structure setup for
the test is depicted in Figure 12, where a simulated low-voltage line with a single branch
is utilized, and a fault is induced upstream of the branch. Residual current values are
measured at points 1, 2, and 3, followed by the construction of the residual current within
the closed section. A comparative analysis is then conducted to assess the differences in
residual current protection at measuring point 1.
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Figure 12. Schematic of the test case.

The simulation encompasses the TT, TN-C, and TN-C-S configurations, distinguishing
between grounded and ungrounded neutral points on the load side. Grounding is achieved
through a grounding pin with a resistance to ground below 100 Ω, meeting the necessary
criteria. The presence of repeated earthing points contributes to an escalation in inherent
residual current levels. For experimental purposes, in the simulation of the TN-C and TN-
C-S configurations, only the neutral point of branch 1 on the load side is grounded, while
branch 2 remains ungrounded. This selective grounding approach does not compromise
the efficacy of the algorithm verification process.

5.1. Earth Fault Testing in TT Configuration

The ground fault test results are illustrated in Figure 13, showcasing the recorded
waveform of the fault process in its entirety (a) and a magnified view (b). Channel 1
displays the residual current waveform of measurement point 1, while channels two and
three exhibit the residual current waveforms of measurement points 2 and 3. During the
test, a current transformer (with the load being resistance) is employed to measure the
residual current, with the unit of measurement in millivolts (mV).
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Figure 13. High impedance and unstable ground fault recorder: (a) recorded waveform; (b) partial view.

The initiation of the fault is indicated in Figure 13a, revealing that post fault, there is
minimal change in the residual current amplitude at measurement point 1. Subsequently,
upon the introduction of saltwater at the fault location, arc fault characteristics manifest,
as depicted in Figure 13b. Notably, the residual current at measurement point 1 exhibits a
distinct current arc-extinguishing (zero breaks) feature at the zero-crossing point. Figure 14
illustrates the computation of the residual current within the closed section established by
the three measurement points.
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In Figure 14, in the absence of faults, the residual current amplitude remains below
10 mA. However, following the fault occurrence, the fault residual current surges to 126 mA,
representing a noticeable increase. The discernible change in the residual current amplitude
post fault highlights the reliable detection of earth faults based on the residual current
value within the closed section.

5.2. Ground Fault Testing in TN Configuration

The ground fault test in the TN configuration involved grounding the neutral point
of branch 1, eliminating the grounding capacitor responsible for residual current in the
A-phase, and removing the B-phase load in branch 1 to induce three-phase load imbalance.
The fault point was positioned on damp ground to record the residual current at measure-
ment points 1, 2, and 3, along with the current flowing through the ground wire of branch 1
post fault.

Figure 15 reveals the dynamic nature of the fault impedance fluctuations throughout
the fault process. Notably, the current amplitudes in channel 2 and channel 4 are identical,
indicating that the inherent residual current on branch 1 primarily originates from the
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current at the grounding point. This observation substantiates the source of inherent
residual current in the TN-C and TN-C-S configurations, elucidating the challenges in
installing residual current protection. In Figure 15b, a magnified view of (a) depicts a
scenario where the primary fault resistance gradually changes, underscoring the limitations
of existing protection methods when dealing with minimal current levels.
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Figure 16 illustrates the residual current within the closed section established by
measurement points 1, 2, and 3, as depicted in Figure 15. This aligns with the observations
from the TT configuration test. Prior to the fault occurrence, the residual current within the
closed section remains minimal, enabling it to effectively reflect the fault current post fault.
Consequently, the residual current protection method remains unaffected by the inherent
residual current of the system and can be successfully implemented in both the TN-C and
TN-C-S configurations.

The experiments above demonstrate the sensitivity of the proposed distributed resid-
ual current protection method based on closed sections. In practical applications, it is
necessary to clarify the network topology of the low-voltage distribution network, con-
struct closed sections by multiple LTUs, obtain the current matrix and detect possible
grounding (leakage) faults according to the set threshold. However, further discussion is
needed on how to adaptively adjust the threshold when considering complex scenarios
such as an unknown network topology or choice of LTU installation location.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 18 
 

Figure 16 illustrates the residual current within the closed section established by 
measurement points 1, 2, and 3, as depicted in Figure 15. This aligns with the observations 
from the TT configuration test. Prior to the fault occurrence, the residual current within 
the closed section remains minimal, enabling it to effectively reflect the fault current post 
fault. Consequently, the residual current protection method remains unaffected by the 
inherent residual current of the system and can be successfully implemented in both the 
TN-C and TN-C-S configurations. 

0 10 20 30 40 50 60 70 80 90 100
−4000

−2000

0

2000

4000
10.5 10.55 10.6 10.65

−2000

0

2000

A
m

pl
itu

de
 (m

A
)

Time (s)

44 44.1 44.2 44.3
−2000

0

2000

 
Figure 16. Residual current waveform of closed section. 

The experiments above demonstrate the sensitivity of the proposed distributed re-
sidual current protection method based on closed sections. In practical applications, it is 
necessary to clarify the network topology of the low-voltage distribution network, con-
struct closed sections by multiple LTUs, obtain the current matrix and detect possible 
grounding (leakage) faults according to the set threshold. However, further discussion is 
needed on how to adaptively adjust the threshold when considering complex scenarios 
such as an unknown network topology or choice of LTU installation location. 

6. Conclusions 
In summary, this study presents a novel distributed residual current protection 

method based on closed sections, which addresses the inherent challenges in low-voltage 
distribution networks. Through a comprehensive analysis and extensive simulations cou-
pled with field tests, we have demonstrated that our proposed method significantly en-
hances the sensitivity and reliability of fault detection in these networks. By calculating 
the phasor sum of residual currents at each external contact point within a closed section, 
we mitigate the impact of inherent residual current and ensure high protection sensitivity 
independent of the device’s location. 

Our approach not only improves the accuracy of fault localization but also offers a 
more flexible and adaptable solution compared to traditional protection methods. The 
successful implementation of multiple RCDs across sub-circuits, as opposed to a single 
general RCD at the entry point, highlights the potential for increased safety and efficiency 
in power distribution systems. Furthermore, the method’s applicability to both TN-C and 
TN-C-S systems, as evidenced by the simulation and field experiments, underscores its 
versatility and adaptability to various network configurations. 

Author Contributions: Conceptualization, X.Z., Y.L. and H.Z.; methodology, X.Z.; software, X.Z.; 
validation, X.Z., Y.L. and H.Z.; formal analysis, Y.L. and H.Z.; investigation, X.Z.; resources, Y.L.; 
data curation, X.Z.; writing—original draft preparation, X.Z.; writing—review and editing, Z.H. and 
H.Z.; visualization, X.Z.; supervision, H.Z.; project administration, Y.L.; funding acquisition, H.Z. 
All authors have read and agreed to the published version of the manuscript. 

Figure 16. Residual current waveform of closed section.

6. Conclusions

In summary, this study presents a novel distributed residual current protection method
based on closed sections, which addresses the inherent challenges in low-voltage distribu-
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tion networks. Through a comprehensive analysis and extensive simulations coupled with
field tests, we have demonstrated that our proposed method significantly enhances the
sensitivity and reliability of fault detection in these networks. By calculating the phasor
sum of residual currents at each external contact point within a closed section, we mitigate
the impact of inherent residual current and ensure high protection sensitivity independent
of the device’s location.

Our approach not only improves the accuracy of fault localization but also offers a
more flexible and adaptable solution compared to traditional protection methods. The
successful implementation of multiple RCDs across sub-circuits, as opposed to a single
general RCD at the entry point, highlights the potential for increased safety and efficiency
in power distribution systems. Furthermore, the method’s applicability to both TN-C and
TN-C-S systems, as evidenced by the simulation and field experiments, underscores its
versatility and adaptability to various network configurations.

Author Contributions: Conceptualization, X.Z., Y.L. and H.Z.; methodology, X.Z.; software, X.Z.;
validation, X.Z., Y.L. and H.Z.; formal analysis, Y.L. and H.Z.; investigation, X.Z.; resources, Y.L.;
data curation, X.Z.; writing—original draft preparation, X.Z.; writing—review and editing, Z.H. and
H.Z.; visualization, X.Z.; supervision, H.Z.; project administration, Y.L.; funding acquisition, H.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation Smart Grid Joint
Fund Integrated Project grant number U22B6008.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to generating in our lab.

Conflicts of Interest: Author Yuanlong Liu was employed by the State Grid Shandong Electric Power
Company. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Nomenclature

irline Residual current along the line.
irload Residual current on the load side.
irRg Residual current of the shell on the load side.
∆

.
ICSi Residual current within the closed section i.

.
Irij Residual current flowing into the closed section i.
.
I
′
rij Residual current flowing out of the closed section i.

Id Operating current.
Ires Braking current.
Iset Minimum operating current.
K Ratio braking coefficient.
.
Ii Residual current phasor measured at the external contact point of the closed section.
Krel Reliability coefficient.
Knp Aperiodic component coefficient.
Ker 10% error coefficient of the current transformer.
Kst Coefficient of the same type of transformer.
Ikmax Maximum short-circuit current flowing through the current transformer.
Irmax Maximum residual current during normal operation in the closed-section protection.
R Relationship matrix between the closed-section CS and LTU.
rij Relationship of each LTU in the closed section.
.
IrLTU Residual current matrix measured by each LTU.
.
Irn Residual current phasor measured by each LTU.
∆

.
ICSm Residual current matrix of the closed section.

∆
.
ICSd Current action matrix.

Rres Absolute value of the elements in the relationship matrix R.
ICSres Braking current matrix.
ICSset Protection minimum operating current matrix.
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ICSsetm Elements in ICSsetm.
D Limit matrix.
Di Elements in D.
B Protection blocking matrix.
Bii Diagonal elements in B.
T Protection trip matrix.
Ti Elements in T.
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