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Abstract: In this study, we introduce a novel collaborative federated learning (FL) framework,
aiming at enhancing robustness in distributed learning environments, particularly pertinent to IoT
and industrial automation scenarios. At the core of our contribution is the development of an
innovative grouping algorithm for edge clients. This algorithm employs a distinctive ID distribution
function, enabling efficient and secure grouping of both normal and potentially malicious clients.
Our proposed grouping scheme accurately determines the numerical difference between normal
and malicious groups under various network scenarios. Our method addresses the challenge of
model poisoning attacks, ensuring the accuracy of outcomes in a collaborative federated learning
framework. Our numerical experiments demonstrate that our grouping scheme effectively limits
the number of malicious groups. Additionally, our collaborative FL framework has shown resilience
against various levels of poisoning attack abilities and maintained high prediction accuracy across a
range of scenarios, showcasing its robustness against poisoning attacks.

Keywords: federated learning; poisoning attacks; grouping scheme

1. Introduction

Recently, Machine Learning has provided intelligent online automation control in
various fields, especially in IoT and industrial automation. In such environments, there
are many sensors deployed for collecting sensed data. However, the sensed data of these
sensors is often private and need to be protected. Yet, in online collecting of these data sets,
their large volume in transit make them easily vulnerable to hijacking by malicious users,
leading to data leakage, which is unacceptable to both users and the industry managers.
Hence, a new paradigm, the federated learning (FL) framework, is proposed, which is a
secure machine learning framework ensuring privacy protection and providing a flexible
architecture [1]. In such an emerging learning paradigm, the edge client executes a specified
function that is different from the previous one, just transferring its local dataset to the
central server. In the FL framework, the edge client trains its learning model locally
using its own dataset. Then the server collects all the learning model weights from the
edge clients and generates a global learning model based on an FL algorithm. Upon
receiving this global model, the edge client replaces its local learning model with this newly
received one. Then it trains this model again and repeats the aforementioned processes.
This workflow is also called the single-global-model paradigm. This paradigm has been
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suggested to be deployed in several fields, including IoT applications [2–4], industry
applications [5], network applications [6] and so on. While FL offers significant advantages
in distributed environments, it concurrently faces substantial security challenges [7,8],
particularly from malicious clients. Among these, the poisoning attack is a critical threat. In
a poisoning attack, malicious clients intentionally skew the training data or manipulate the
learning process by injecting false information or models, which results in a significantly
compromised global model. Such compromised models can lead to erroneous decisions
or actions, undermining the integrity and reliability of the entire FL system. Recently,
numerous studies have concentrated on developing robust defense mechanisms to detect
and mitigate the effects of these attacks. These include techniques for identifying anomalous
data contributions and enhancing the aggregation algorithms to resist the influence of
malicious updates.

Recently, the authors of [9] proposed an idea for breaking the single-global-model
framework, called a collaborative federated learning (FL) framework. The key idea in this
learning framework is to divide the edge clients into several groups. There are two types
of groups in this framework, the normal group and the malicious group. The latter one
involves the malicious clients. Each group performs the fundamental FL mechanism and
generates its corresponding global model. Each edge client receives all global models from
all the groups and employs them to predict the output prediction via a voting strategy.
Thus, the edge client generates the final output based on the majority consensus of the
global models. In this collaborative FL framework, grouping enables the segregation of
edge clients into manageable subsets. This becomes crucial in large-scale deployments.
By categorizing nodes into groups, isolating potentially malicious clients and minimizing
their impact on the prediction output can be achieved in a collaborative FL framework.
This approach is particularly effective in mitigating the risk of a malicious node influenc-
ing the global learning outcome. It is observed that the accuracy of this voting scheme
varies significantly according to the ratio of the number of the normal groups to that of
malicious ones.

Based on the above observation, we here develop our proposed collaborative FL
framework with a robust grouping scheme based on our early work [10]. In our proposed
framework, each edge client initially obtains an ID assigned by the administrator. These
IDs form a specified distribution. In essence, the malicious user fakes an edge client and
sends its local model with a randomly chosen ID. With the feature of this ID distribution,
the grouping administrator can easily distinguish whether an edge client is legitimate or
not. Hence, we can create several specified groups for those potentially malicious clients.
Through this manipulating ID distribution feature design, even if the total number of
groups in this collaborative federated learning is low, the proposed grouping scheme can
continue to ensure a high accuracy even as the number of malicious edge clients increases.

2. Related Works

Nowadays, privacy protection provided by FL is more robust and efficient than
was the case with the traditional ML model, while FL still ensures a similar prediction
accuracy. As stated in a survey study [11], recent security defense instances [12–18] are also
being developed based on the FL framework, including federated learning-based intrusion
detection systems and anomaly detection. In the Internet of Things (IoT) Industry 4.0, the
authors in [14] proposed a collaborative intrusion detection system (IDS) in which there are
filters performing a deep neural network (DNN) and a central server collecting the filters’
DNN parameters to generate a global model. Recently, researchers have started to employ
FL ( federated learning) technology to achieve privacy protection and high accuracy in
Android malware detection and classification. In [19], the authors use federated learning,
combining data from multiple users, to improve malware detection and ensure privacy
preservation. The authors in [20] propose another framework based on a combination
of semi-supervised machine learning and federated learning. Its focus is on maintaining
user privacy and it employs a semi-supervised machine learning technique that reportedly
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improves classification accuracy. The authors in [21] propose LiM, a malware classification
framework that leverages the power of FL to detect and classify malicious apps in a privacy-
respecting manner. The methodology in [22] is distinctive because it integrates federated
learning (FL) with a novel classification model to protect user privacy while effectively
identifying malware. These works employ an FL framework to enable distributed android
clients to collaboratively train a comprehensive Android malware detection or classification
in a privacy-preserving manner. However, if FL faces cybersecurity attacks, all applications
using this framework might also be exposed to several security risks, such as private user
data leakage and reduced accuracy. This study aims to propose a new robust FL framework
resistant to cybersecurity attacks. Our proposed FL framework can ensure that FL can resist
multiple attacks and maintain high accuracy under various network scenarios.

The aim of cybersecurity attacks in the FL framework is to make the global model
unstable and incapable of making accurate predictions. There are typically three main
targets that the attacker might focus on. The first target is the local data set. The second is
the local model maintained by the local edge client. The final one is the central server. The
biased global model, once distributed to all edge clients, leads to incorrect label predictions
for the inputs locally. Specifically, federated learning with an easy FL algorithm, e.g.,
FegAvg, is highly vulnerable to poisoning attacks, even if only one fake client is involved
in the FL framework.

The famous case of the Byzantine problem [23] can cause fatal damage to the quality of
the global model in an FL framework applying a FedAvg scheme. In order to confront such
a poisoning attack, some new FL algorithms are proposed, like Krum [24] and Trimmed-
mean [25]. Filtering possibly malicious model updates is an efficient method to prevent the
global model from being influenced by poisoning attacks. Recently, a novel cybersecurity
defense algorithm [9] for FL frameworks, called FLCert, was proposed. The proposed
key idea divided the edge clients participating in the FL framework into several groups.
According to their grouping methodology, there are two variants of grouping schemes,
FLCert-P and FL Cert-D. In each group, each edge client trains its local model as a usual FL
framework. Instead of sending local model parameters to the central server, the edge clients
send local model parameters to their corresponding group leaders. These group leaders
execute a similar job to that of the central server in a traditional FL framework, generating
the group’s global model with an FL algorithm. As a result, several global models are
generated in such a learning paradigm. Then a voting scheme among all global models is
applied to make the final prediction result for inputs. We call this framework a collaborative
FL framework, which actually provides a new and efficient FL cybersecurity defense
framework against poisoning attacks. However, though experimental result indicate more
groups can ensure higher accuracy for the input, for a small-scale learning architecture
on the other hand, the group number cannot increase indefinitely. Furthermore, there
is a risk that the malicious users might manipulate the voting results because they can
create many malicious edge clients. This significantly increases the likelihood that many
groups will contain at least one malicious client, consequently leading to an increase in the
number of the malicious groups. In this paper, we try to design a new grouping method
that can mitigate the risk associated with this issue. Figure 1 shows the workflow of the
basic collaborative FL framework.
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3. Proposed Collaborative FL Framework

In this work, a new grouping method in a collaborative FL framework is proposed
based on an ID-distribution feature. We firstly introduce our study architecture and our
adversary model. Next, we explain our proposed grouping scheme in our collaborative
FL framework.

3.1. Network Architecture

In our network architecture, there are many sensors and the edge client collects the
sensed data within the sensing range. Edge clients include both normal and malicious ones.
nn and nm denote their respective numbers. All clients are divided into groups according
to the grouping scheme. Total groups, N, contain Nn and Nm subgroups. Nn represents
normal groups while Nm represents malicious ones. In each group, all local clients conform
to the operations of FL. In order to execute the federated learning mechanism within each
group, a group leader should be selected to be in charge of executing the FL algorithm. In
our work, each group leader adopts the base FL algorithm, FedAvg, to generate its global
model. A central server executes ID assignment and the grouping scheme.

3.2. Adversary Model

In our study, the capacity of one adversary is defined as follows.

1. The adversary is not allowed to join the initial registration process but is able to forge
a malicious model with a randomly selected ID. Hence, the adversary can deviate
the global model of a specified group in an unexpected direction. Once this event
occurs, we also can say this group is compromised by the adversary. We call this
compromised group the malicious one.

2. Inside each group, the adversary can overhear the messages in transit between the
clients and local group leader and remove them.

3. The adversary cannot decrypt the encrypted messages in transit between the clients and
the central server in time. Hence, the privacy of clients’ IDs will not be jeopardized.

3.3. Basic Workflow

Figure 2 illustrates our basic workflow in a collaborative FL framework. Initially, the
central server accepts the registration of all edge clients through the secure channel. All
legitimate edge clients receive their ID assignment from the server. No ID information will
be stored anywhere except for each edge client storing their own ID. Then, the server awaits
the edge clients’ grouping requests. Upon receiving the grouping requests, the server
collects the participating clients’ ID and divides them into corresponding groups through a
grouping scheme. Although malicious users do not join the initial registration, they can
forge a client’s profile with a randomly chosen ID. In order to avoid ID leakage, each edge
client has to encrypt a message with the public key sent by the server before sending out ID
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information. Hence, the server can decrypt ID messages and execute the grouping scheme.
Based on our adversary model, the adversary can overhear this encrypted message but
cannot decrypt it in time. According to the grouping scheme, the groups are created and
the edge client with the largest ID number is selected as the group leader in a given group.
Then, all groups execute the FL mechanism. In each group, each edge client receives the
initial model from the group leader and trains this local learning model with the local
dataset. According to the principle of FL, all edge clients send their trained model to the
corresponding group leader which aggregates all local models to generate a global model
using a base FL algorithm. By now, all group leaders have their corresponding global
models. Next, all group models are sent out to all participating clients. All participating
clients can make output predictions through the received global models, and the output
predicted by the majority of global models is considered the final output. This is the essence
of the voting mechanism. Of course, these global models include normal and malicious
ones. Through our proposed collaborative FL framework, the edge client is capable of
making accurate output predictions even in the presence of numerous malicious clients.
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The following subsections describe the working steps in the whole workflow.

3.4. ID Assignment

Initially, all legitimate edge clients should register with the server and receive IDs
from the server. The malicious user can assign a randomly chosen ID to the malicious
edge clients. Then, it also can join the subsequent grouping procedure. Therefore, in
order to prevent the malicious users from invading our collaborative FL framework, the ID
assignment rule is key. Because the central server does not store ID information, it cannot
tell the difference between normal and malicious ones. A specified ID-distribution feature
can resolve this dilemma. In our ID assignment, ID is an integer which is selected from
the number of a specified distribution. Here, a normal distribution is utilized. Hence, we
generate ID from the normal distribution. Basically, the server stores the ID distribution
features instead of the IDs themselves. Hence, the IDs of legitimate users and malicious
users are readily differentiated from the attributes of the ID distribution. The server only
retains information about this ID distribution feature, which helps prevent the leakage of
clients’ ID information. The range of the ID number depends on the bit size storing this ID
number. A longer bit length is generally preferred for security reasons. To the best of our
knowledge, this ID assignment with the specified ID distribution feature in a collaborative
FL framework is proposed here for the first time. Here, we denote the normal distribution,
as N(λ, σ), where λ is the mean and σ is the standard deviation. To avoid the selection of
non-positive ID numbers, we set λ to be at least 4σ, typically preferring it to be more than
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6σ. To easily distinguish if an ID is malicious or not, we also favor a narrow range of ID
distribution, meaning σ should be as small as possible. Therefore, with a long bit length and
a narrow range for legitimate ID distribution, the likelihood that one ID that the malicious
user selects randomly collides with a legitimate ID is expected to be very low. Later, we
will discuss this further when computing the number of normal and malicious groups.

3.5. Proposed Grouping Scheme
3.5.1. Distinguishing between Edge Clients

After ID assignment, the server performs the grouping scheme. First, the server
collects the ID information of all participating clients and divides them into groups based
on the grouping scheme. In the end of this grouping process, there are N groups in
total, which are composed of normal and malicious ones, respectively Nn and Nm. A
malicious group indicates that there is at least one malicious client in it while a normal one
contains no malicious clients. There are kn and km edge clients in normal and malicious
groups, respectively. the aim of our grouping scheme is to classify all edge clients into
normal groups or malicious ones. The number of normal groups is higher than that of
malicious ones. In order to execute the grouping scheme, the first step is to distinguish
malicious clients from all participating clients. Then the server executes the grouping
scheme for both types of clients separately. The next paragraph explains our proposed
distinguishing principle.

The distinguishing principle: If client’s ID falls in the range of λ± 4σ, this client is
regarded as a normal client.

According to the definition of normal distribution, 99.99% of samples fall in this range,
λ ± 4σ. Hence, the grouping administrator can easily tell one client’s type on the basis
of two parameters, λ, 4σ. Later, we discuss the impact of a false positive rate on our
grouping scheme.

3.5.2. The Number of Normal and Malicious Groups

After classifying all participating clients into two categories, normal and malicious
ones, the server begins to execute the grouping scheme for both client categories. However,
according to the rules of the voting game, the player with the most votes wins the game.
Hence, the grouping scheme should consider some constraints. First, we should ensure
that the number of normal groups is larger than the number of malicious ones. Hence, the
following equations should hold while grouping clients. Equation (1) represents the sum of
clients in both categories being equal to the total number of clients. Equation (2) expresses
the constraints we stated above.

kmNm + knNn = n (1)

Nm < N/2, Nm + Nn = N (2)

Although the above constraints mainly ensure Nn > Nm, misclassification between
two categories of edge clients may occur. This could potentially result in some normal
groups being misclassified as malicious ones. Unless the above issues is resolved, the result
of the grouping scheme may not be reliable. So, before grouping participating edge clients,
we should pre-compute an adequate number of normal and malicious groups. In order
to pre-compute the number of normal and malicious groups, we consider the impact of a
false positive rate of classifying edge clients and the impact of prediction accuracy of global
models on our grouping scheme, respectively. We can then finally obtain the minimum
number of normal groups required, and the maximum number of malicious groups that
can be tolerated.

The Impact of a False Positive Rate of Classifying Edge Clients

According to our design, a valid ID is selected from a normal distribution with
mean λ and standard deviation σ. We also assume that a malicious user may forge many
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malicious clients with randomly selected IDs. The grouping administrator distinguishes all
participating clients based on the distinguishing principle. Hence, a malicious client with
an ID falling in this range, λ ± 4σ, is misjudged as a normal one, which is called a false
positive case. Now, we try to compute the probability of this event. First, we assume that
D denotes the total number of all IDs. According to our ID assignment, D is significantly
larger than 4σ. Equation (3) expresses the probability of a malicious client’s ID falling in
this range. C(n, m) represents all combinations while selecting n numbers from a set of
m numbers.

Pm =
C(8σ, 1)C(D − 8σ, nm − 1)

C(D, nm)
(3)

Because D >> 8σ, nm, we can simplify these equations for the ease of analysis.

Pm =
8σnm

D
(4)

We can also obtain the upper bound of the number of malicious clients under a given
Pm. This upper bound gives the design rule for our collaborative FL framework.

nm =
DPm

8σ
(5)

For instance, if the number of malicious clients is less than 2097, the bit length of D is
32 bits and σ = 256, then we can ensure that our FL architecture can resist poisoned attacks
with Pm lower than 0.001. Hence, the probability that the number of the malicious clients’
IDs exceeding 1 is close to 0. Hence, we assume the probability of having one malicious
client misclassified into the normal group is low enough to ignore if we have well-designed
parameters, D and σ.

The Impact of Prediction Accuracy of Global Models

Here, we try to show the impact of the prediction accuracy of the global model in a
group on our proposed grouping scheme. In essence, regardless of the FL mechanisms,
each global model in a group has its prediction accuracy for the input. Here, pn denotes
the prediction accuracy of the global model in a normal group while pm denotes it in a
malicious group. In a collaborative FL framework, the voting result decides the prediction
output. Therefore, ensuring the correctness of the voting result is the main object of
this collaborative FL framework. In order to achieve the object of this collaborative FL
framework, the number of positive answers should be larger than that of negative ones. A
positive answer means the true answer for the input test and a negative one means a false
answer. Therefore, the expected number of positive answers is shown in Equation (6), and
the expected number of negative answers follows accordingly.

Npe = pnNn + pmNm (6)

Nne = N − Npe (7)

Moreover, we expect that Npe > Nne, and we assume that Nn = N/2 + No
′

and
Nm = N/2 − No

′
, where No

′
is the offset between the numbers of normal and malicious

groups. Accordingly, we can deduce the minimum value for No
′
.

No
′ ≥ N(1 − pn − pm)

2(pn − pm)
(8)

Usually, the malicious global models are useless for predicting the correct output
results, which means these models predict outputs incorrectly. Hence, we set pm to 0. Then,

No
′ ≥ N(1 − pn)

2pn
(9)
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However, to ensure that the number of normal groups is much larger than that of
malicious groups, we stipulate that the number of normal groups should be 4No

′
more than

the number of malicious ones. So, we set No = 2No
′
. Nn is at least Nn = N/2 + No and Nm is

at most N/2 − No. Hence, in our grouping scheme, we can obtain the minimum of Nn and
the maximum of Nm in advance. In summary, we discover that a false positive rate of the
edge clients can usually be ignored and prediction accuracy of the global model dominates
the design of the number of normal and malicious groups.

3.5.3. Grouping Edge Clients

Next, we explain the process of the grouping scheme for all participating clients. In this
study, we let the total groups be determined in advance, e.g., N. However, since different
group categories have different values of ‘k’, this variation can easily attract the attention of
attackers. In order to prevent the adversary from discovering the grouping rule, ks in both
group types are as similar as possible.

Hence, all groups use the same k. Before computing k, we should classify edge clients
via the distinguishing principle from which we have nn_est and nm_est. In the context of the
discussion about a false positive rate of classifying edge clients, nn_est and nm_est are almost
equal to nn and nm. Thus, we can compute k, Nn and Nm in two cases as follows.

Case 1: in this case, nn_est ≥ nm_est, k is equal to ⌈n/N⌉ and all clients are assigned to
their corresponding group. However, kN is usually higher than n, which means that the
actual total number of groups is less than N. For the sake of ensuring total number of groups
almost equals to N, some assigned normal edge clients should be assigned repeatedly into
another normal group. The number of these repeatedly assigned normal edge clients is
kN − n. Hence, the total number of normal edge clients needed to be assigned into groups
is equal to kN − n + nn_est. Therefore, Nn is equal to ⌈(kN − n + nn_est)/k⌉ and Nm is equal
to ⌈nm_est/k⌉. Some assigned malicious edge clients are assigned repeatedly until Nm are
filled with malicious edge clients. In summary, based on our discussion above, we can
obtain the following equation.

Nn = max(
N
2
+ No, ⌈(kN − n + nn_est)/k⌉) (10)

If Nn is N/2 + No, Nm should be N/2 − No. And if Nn is ⌈(kN − n + nn_est)/k⌉, Nm is
⌈nm_est/k⌉. In the latter case, the maximum of Nn + Nm may be equal to N + 1.

Case 2: in this case, nn_est < nm_est, we directly set Nn to N/2 + No and Nm to N/2 − No.
Then k is computed via k = ⌈nm/Nm_est⌉. The total number of malicious edge clients, kNm,
are assigned to malicious groups, where some malicious clients may be assigned repeatedly.
Some normal edge clients are also assigned to normal groups repeatedly until all Nn are
filled with normal edge clients.

Basically, we only consider k to be larger than 2. In our grouping scheme, only the
malicious client just be assigned to malicious groups. Based on this rule, the malicious
clients cannot influence normal groups. The following shows the pseudo code of our
grouping scheme (Algorithm 1).
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Algorithm 1 Grouping scheme

Input: C, N, λ, 4σ, pn, pm
Output: Groups, Nn, and Nm,
Initialization: Cn, Cm, No

/* Classifying the edge clients and Counting the number of nn_est, nm_est*/
For Ci in C do

If the Ci’s IDs, Idn_i, is in the range of λ ± 4σ Then
Ci is classified into the set of Cn

Else
Ci is classified into the set of Cm

End if
End for
Obtain nn_est, nm_est through the distinguishing principle
/* Computing k, Nn, and Nm */
If nn_est ≥ nm_est Then

k is equal to ⌈n/N⌉
Nn = max( N

2 + No, ⌈(kN − n + nn_est)/k⌉)
No =

N(1−pn−pm)
(pn−pm)

If Nn = N/2 + No
Nm = N/2 − No

If Nn = ⌈(kN − n + nn_est)/k⌉
Nm = ⌈nm_est/k⌉

Else if nn_est < nm_est Then
Nn = N/2 + No, Nm = N/2 − No
k = ⌈nm/Nm_est⌉

End if
/*Grouping all clients*/
While at least one of the normal groups is not filled with normal clients

For Ci in C do
If Ci ∋ Cn Then

Ci → Nn_j, until this group is filled
Then continue assigning Ci to next group, until all groups are filled with normal edge clients

Else if Ci ∋ Cm Then
Ci → Nm_j, until this group is filled
Then continue assigning Ci to next group, until all groups are filled with malicious edge clients

End if
End for

End while

3.6. Dynamic Joining of Nodes

In our framework, new nodes that join the network post the initial setup phase will
undergo a similar registration and ID assignment process as the initial nodes. These late
entrants are assigned IDs by the central server, which are then used to integrate them
into the existing collaborative FL framework. After ID assignment, these new nodes
are categorized into groups based on the ID-distribution feature. This step is crucial as it
ensures that the late entrants are appropriately integrated into existing normal or potentially
malicious groups, depending on their assigned ID characteristics. If the existing group is
full, the server creates a new group and the first member joining this group is regarded
as the leader node. Once integrated into the groups, these late-joining nodes participate
in the FL process just like the initial nodes. They contribute to their group’s local model
training, and consequently, to the global model development. Hence, our approach is also
both feasible and scalable in large-scale environments. Both the central server’s role in ID
assignment and the dynamic nature of the grouping algorithm allow for flexible adaptation
to the changing network topology. This ensures the framework’s applicability in real-world,
dynamic IoT and MUM-T scenarios.
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4. Numerical Experiments

In this section, we conduct four numerical experiments to demonstrate that our
grouping scheme effectively resists poisoning attacks in various scenarios. We summarize
the purposes of these experiments as follows:

• The first numerical experiment demonstrates that our collaborative FL framework
ensures the number of malicious groups remains less than that of normal ones, even if
the number of malicious groups increases.

• The second experiment verifies that the overall prediction accuracy of our collaborative
FL framework maintains a high value compared to FLcert-P, despite an increase in the
number of malicious groups.

• The third experiment further proves that our collaborative FL framework performs
well, regardless of the prediction accuracies of the malicious groups’ global models.

• The final experiment confirms that our proposed collaborative FL framework main-
tains high prediction accuracy even if the prediction accuracies of some normal groups’
global models are low.

The details of the experiment platform are listed in Table 1.

Table 1. Experiment platform.

Items Specifications

Operation system Windows 10 (Microsoft, Redmond, DC, USA)

Programming language C++

CPU 11th Gen Intel(R) Core(TM) i9-11900F @ 2.50 GHz (Intel,
Santa Clara, CA, USA)

Memory 32 G

Graphics card Nvidia Geforce RTX 2060 (NVIDIA, Santa Clara, CA, USA)

4.1. Numerical Experiment 1

In the first numerical experiment, we set N to 50, n to 200, pn to about 0.91 and pm to
0. Hence, No is equal 5. Basically, this scenario represents a small-scale factory containing
a few edge clients. We want to show our scheme can ensure that the number of normal
groups must be larger than that of malicious groups in this scenario. Table 2 shows our
analysis results.

Table 2. Numerical analysis.

nm
Nm FLcert-P (Worst Case) Proposed Scheme

30 30 8

40 40 10

50 50 13

60 50 15

70 50 18

90 50 20

110 50 20

150 50 20

In this numerical experiment, FLcert-P randomly samples k clients to form a group
based on its grouping rule, while our proposed grouping scheme aims to cluster all mali-
cious clients into specific malicious groups. In FLCert-P, Nk/n is equal to 1, which means
that all clients should be assigned to one group at most. To investigate a change in the
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number of malicious groups in a collaborative FL framework using FLCer-P and our group-
ing scheme, this numerical experiment computes the number of malicious groups as the
number of malicious edge clients increases. First, we present the number of malicious
groups in FLcert-P under the worst case in which all malicious clients are assigned to
completely different groups. Then, in our grouping scheme, the malicious clients are
assigned to the malicious groups as much as possible. So, in contrast, our grouping scheme
strives to assign malicious clients to malicious groups as much as possible. As observed
from Table 2, our grouping scheme ensures that the number of malicious groups increases
only up to N/2 − No even as nm continues to grow. Consequently, our proposed grouping
scheme ensures that the number of normal groups will always exceed that of malicious
groups. This indicates that our collaborative FL framework is likely to achieve higher
predict accuracy compared to FLcert-P. The subsequent experiment is designed to prove
this result.

4.2. Numerical Experiment 2

Next, in this experiment, we assume that pm is nearly equal to zero. This implies that if
an FL algorithm in a group is compromised by poisoning attacks, the prediction accuracy of
its global model will become low, which leads to predicting outputs incorrectly. A notable
example of such a federated algorithm is FedAvg, which is vulnerable to poisoning attacks.
As a result, the prediction accuracy of a global model derived from FedAvg can drop to 0
even with a single attack. For a normal group, the prediction accuracy of its global model
is set to pn. In this experiment, we aim to demonstrate the output prediction accuracies of
the overall collaborative FL framework for both Flcert-P and our grouping scheme, as the
number of malicious edge clients increases.

To facilitate comparison with Flcert-P, we adopt accuracy as the evaluation metric.
This metric represents the fraction of inputs correctly classified by the FL algorithm when m
malicious clients are involved. We set N to 100, n to 300, and pn to a random range between
0.92~0.95. According to the first experiment, it was revealed that the number of normal
groups must exceed that of malicious ones in our framework. For Flcert-P, since (n

k
)

is too
large, we sample N groups according to our grouping rule, with each group containing k
clients sampled uniformly at random from the n clients. As shown in Figure 3, the accuracy
of our collaborative FL surpasses that of Flcert-P. When the number of malicious edge
clients approaches 55, the prediction accuracy of Flcert-P decreases dramatically and is
close to 0 while nm approaches 75.
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4.3. Numerical Experiment 3

In this experiment, we evaluate the impact of the attack ability of poisoning attacks
on the accuracy of a collaborative FL framework. Here, we use pm to represent the attack
ability, as the poisoning attack’s primary aim is to decrease the prediction accuracy of
the malicious groups. This numerical experiment assesses the resilience of our proposed
collaborative FL framework under various values for pm. In this experiment, we set N to
100, n to 300, and pn to a randomly selected range between 0.92~0.95.

We consider three scenarios: pm = 0, 0.4, and 0.6. As illustrated in Figure 4, our
proposed collaborative FL framework performs well across various pm values even when
many malicious edge clients are present in the network. As for FLcert-P, its accuracy is
highly dependent on the FL algorithm’s ability to resist poisoning attacks. Therefore, if an
FL algorithm effectively counters poisoning attacks, maintaining a high pm, then FLcert-P is
likely to perform well. However, developing such an ideal FL algorithm requires significant
effort and still remains a future goal.
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4.4. Numerical Experiment 4

Basically, for an FL framework, the global model may not achieve sufficiently high
prediction accuracy for edge clients. In our study, we use the parameter pn to express
the prediction accuracy of one normal group. Now, in this experiment, we want to show
that our proposed collaborative FL framework can still deliver high enough prediction
accuracy even if certain normal groups’ global models have low prediction accuracies. That
is because our grouping scheme can use No to compensate for the lack of high accuracy of a
global model. Hence, we set pn to approximately 0.75~0.95 for all normal global models and
pm to 0 for malicious global models. In this experiment, we also set N to 100, and n to 300.
The results, as depicted in Figure 5, indicate that our proposed collaborative FL framework
retains high performance. Conversely, Flcert-P is shown to not tackle this situation well, as
is unfortunately often found to be the case in a collaborative FL framework.
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5. Conclusions

In this study, we developed a novel grouping scheme in a collaborative FL framework
for defending against poisoning attacks. Our scheme, leveraging ID-distribution features,
effectively manages the categories of participating groups and counters poisoning attacks.
We established a boundary for the maximum number of malicious groups, ensuring they
are outnumbered by normal groups. This strategic approach with a voting game princi-
ple, enhances the accuracy and reliability of the FL process. Through several numerical
experiments, our framework demonstrated robust resistance to model poisoning attacks,
consistently maintaining high accuracy across varying scenarios. The results affirm that
our method effectively ensures a higher number of normal groups, thus enhancing the
overall prediction accuracy and robustness of the FL framework against security threats.
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Abbreviations

Symbols Definitions
C The set of the edge clients
Cn_i The ith normal edge client
Ci The ith edge client
Cm_j The jth malicious client
N The total number of groups
Nm The number of malicious groups
Nm_j The jth malicious group
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Nn The number of normal groups
Nn_j The jth normal group
n The number of total clients
nn The number of normal clients
nm The number of malicious clients
nf The number of malicious clients whose IDs fall in valid range
kn The number of client members in a normal group
km The number of client members in a malicious group
k The number of client member in a group
Npe The expected number of positive answers
Nne The expected number of negative answers
pn The prediction accuracy of the global model in a normal group
pm The prediction accuracy of the global model in a malicious group
No The number offset between normal and malicious groups
λ The mean of normal distribution
σ The standard deviation of normal distribution
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