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Abstract: Numerous single-image dehazing algorithms have been developed, employing a spectrum
of techniques ranging from intricate physical computations to state-of-the-art deep-learning method-
ologies. However, conventional deep-learning approaches, particularly those based on standard
convolutional neural networks (CNNs), often result in the persistence of residual fog patches when
applied to images featuring high fog concentration or heterogeneous fog distribution. In response to
this challenge, we propose an innovative solution known as the multi-feature fusion image dehazing
network (MFID-Net). This approach employs an end-to-end methodology to directly capture the
mapping relationship between hazy and fog-free images. Central to our approach is the introduction
of a novel multi-feature fusion (MF) module, strategically designed to address channel and pixel
characteristics in regions with uneven or high fog concentrations. Notably, this module achieves
effective haze reduction while minimizing computational resources, thereby mitigating the issue of
residual fog patches. Experimental results underscore the superior performance of our algorithm
compared to similar dehazing methods, as evidenced by higher scores in structural similarity (SSIM),
peak signal-to-noise ratio (PSNR), and computational velocity. Moreover, MFID-Net exhibits signif-
icant advancements in restoring details within expansive monochromatic areas, such as skies and
white walls.

Keywords: deep learning; dehazing; attention mechanism

1. Introduction

Atmospheric conditions such as fog and haze induce light refraction or scattering,
impeding the direct propagation of light. The intersection of distorted rays with reflected
light from observed objects leads to visual degradation in images captured by imaging
devices, including diminished clarity, loss of detail, and color distortion [1,2]. These
challenges not only distort the representation of the real environment but also present
complications for subsequent application processing [3–6]. Therefore, the restoration of
clear images from foggy ones is of paramount importance.

Single-image dehazing algorithms aim to employ specific technical methods to elimi-
nate the influence of atmospheric environmental factors on images captured by imaging
devices. These algorithms seek to maximize color and detail restoration while enhancing
overall clarity. Currently, such algorithms fall into two broad categories: prior-knowledge-
based algorithms [7,8] and deep-learning-based algorithms [9–12].

Prior-knowledge-based image dehazing algorithms leverage mathematical statistics to
infer the common characteristics of hazy images and estimate haze-free images using either
the atmospheric scattering model (ASM) [1] or its variants [13]. For instance, Schechner
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et al. [14] utilized the polarization properties of light to capture polarized components in
two different directions from hazy images, calculating their difference to eliminate scattered
light and haze. However, this approach is limited to scenes with polarizing properties.
The median filter method is applied for transmittance estimation in ASM [15], but it may
obliterate details smaller than the filter’s aperture size, resulting in diminished resolution
and loss of detail in restored images. The dark channel prior (DCP) dehazing algorithm
introduced by He et al. [16] relies on the discovery that outdoor haze-free images have
at least one RGB channel with the lowest pixel values. Nevertheless, DCP may cause
color distortion in large monochromatic areas such as the sky or white walls. Color prior
attenuation (CPA) [17] applies color prior values to each pixel’s color value in hazy images,
attenuating fog accordingly. However, these algorithms heavily depend on specific prior
knowledge that may not be universally applicable, leading to suboptimal dehazing results
in certain scenarios (e.g., nighttime scenes, indoor environments, sky regions).

Deep-learning-based image dehazing algorithms adaptively adjust parameters ac-
cording to input images, avoiding the complexities of modeling and parameter estimation.
These algorithms are generally divided into two types: parameter estimation-based al-
gorithms and direct resolution algorithms. In the former, networks estimate parameters
such as transmittance and atmospheric light, followed by inverse computation using ASM
to obtain haze-free images. For instance, Dehaze-Net [18] employs CNNs to learn the
mapping relationship between hazy images and transmittance. AOD-Net [13] reconstructs
the ASM by combining atmospheric light with transmittance into a single variable to reduce
the loss of image features. DCPDN-Net [19], employing two subnetworks for the sequential
learning of ambient light and transmittance, gradually optimizes different components of
the network. However, DCPDN-Net may introduce image artifacts. The latter type of algo-
rithms directly trains networks with foggy images to seek optimal dehazing parameters.
For example, Yang et al. [20] proposed the concept of perceptual dehazing, which utilizes
a physical model to decouple and reconstruct the hazy image into hidden feature values.
Subsequently, a multiscale adversarial network is employed to restore the haze-free image.
Cycle-Dehaze [21] provides unpaired hazy and clear images, which are fed into a cycle
adversarial network for training. Additionally, it introduces a cycle perceptual consistency
loss function to address network optimization and evaluation. GFN-Net [22] divides its
architecture into feature extraction modules and restoration modules. GCANet [23] was
pioneering in employing smooth dilated convolution to tackle grid artifacts in the image
dehazing process. EDN-GTB [24] takes both the hazy image and dark channel transmission
map as inputs for its U-Net-based model with spatial pyramid pooling modules during the
training phase. AECR-NET [25] incorporates contrast regularization by treating haze-free
images as positive samples while considering hazy images as negative samples, respectively.
AECR-NET approximates restored images towards positive samples while moving away
from negative ones, thereby enhancing the transformation capability of models accordingly.

The complexity of the image dehazing task lies in the often uneven distribution of haze
within images. Faced with the uneven concentration of haze, it necessitates algorithms to
pay more attention to areas with higher haze density. Deep-learning algorithms, which rely
solely on traditional convolutional neural networks for dehazing, primarily focus on the
local features of hazy images and neglect the overall haze density across the image [26]. This
bias towards local processing inevitably leads to issues in identifying and dealing with areas
of high haze density within the image. Therefore, effectively recognizing and addressing
areas with an uneven distribution of haze in hazy images poses a significant challenge for
dehazing algorithms [27,28]. Although the introduction of attention mechanisms can to
some extent optimize the algorithm’s capture of global features and afford more processing
to key features, this strategy also has clear limitations [28,29]. Attention mechanisms that
extract features based on fully connected (FC) layers often lead to a significant increase
in the number of model parameters due to the high connectivity of FC layers. This not
only exacerbates the algorithm’s time complexity but also its space complexity. Moreover,
an excessive number of parameters increases the risk of overfitting, leading to insufficient
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generalizability of the algorithm. In the face of these challenges, dehazing algorithms must
balance dehazing effectiveness with reduced demands on computational resources.

Considering that FFA-Net still fails to completely eliminate haze from images, particu-
larly in areas of large, similarly colored blocks where the processed image pixel values are
not sufficiently smooth, and further, that the channel attention mechanism employed by
FFA-Net involves a large number of parameters and significant computational load, we pro-
pose an enhanced dehazing algorithm based on multi-feature fusion (MFID-Net) built upon
the framework of FFA-Net to address these limitations. MFID-Net integrates multi-scale
features and employs a novel lightweight attention mechanism, which not only reduces
the demand for computational resources but also effectively enhances the recognition and
capture of global image features. Furthermore, MFID-Net demonstrates exceptional detail
restoration capabilities in scenarios with large areas of similar color blocks, such as white
walls, skies, and roads. The pixel values in these areas are smoother after restoration,
reducing the occurrence of black blocks and ghosting. Figure 1 clearly demonstrates the
comparative effectiveness of sky scene processing, showcasing the distinct advantage of
MFID-Net in handling such specialized scenarios.

(a) Hazy (b) Clear

(c) FFA-Net (d) MFID-Net

Figure 1. An example of image dehazing when processing sky scenes.

To effectively focus on the global contextual information of hazy images while reducing
the algorithm’s computational resource requirements, we introduce a new lightweight
gated channel attention (LGCA) mechanism. LGCA utilizes regularization components and
learnable parameters instead of traditional FC layers to simulate the interaction between
channels, enabling better capture of global contextual information and extraction of image
features in areas with high haze density. Experimental results demonstrate that LGCA
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achieves significant improvements in dehazing performance for hazy images, while also
reducing dependence on computational resources.

A gating mechanism plays a pivotal role in neural networks by effectively regulating
the flow and selection of information between models, thereby significantly enhancing
algorithmic accuracy and generalization capability [30]. The effectiveness of a gating mech-
anism hinges on its precise control of input–output ratios and its capacity to filter out
irrelevant information while reinforcing important information. This capability enables
the gating mechanism to finely adjust information, empowering the algorithm to adap-
tively select and integrate useful features. With this consideration, we propose a novel
gating mechanism 1 + tanh(x) , designed to control the feature flow between channels
and pixels, adaptively filtering and integrating valuable features to enhance the dehazing
effect of the algorithm. Through this approach, MFID-Net exhibits improved performance
and robustness.

The key contributions of this work are listed below.

• Building upon FFA-Net, we proposed MFID-Net to enhance the algorithm’s capa-
bility in detail recovery, particularly when addressing complex scenes containing
extensive structural color blocks, such as white walls and sky. Table 1 presents a
comparative analysis based on the FFA-Net architecture, which includes modifications
such as replacing its pixel attention (PA) mechanism with the GPA, substituting the
conventional channel attention (CA) mechanism with the LGCA, and integrating these
improvements to develop the MFID-Net. The results indicate that MFID-Net not only
achieves significant improvements in dehazing effects but also effectively reduces the
algorithm’s parameter count.

Table 1. The quantitative comparison results of the impact of the key technologies introduced on
FFA-Net. The arrows signify the value by which the evaluation metrics increase or decrease based on
the FFA-Net baseline.

Algorithms
Indoor Dataset (IST) Outdoor Dataset (OST)

PSNR SSIM PSNR SSIM

FFA 36.13 0.9842 33.38 0.9839
FFA + GPA 36.58 (0.45↑) 0.9845 (0.0003↑) 33.46 (0.08↑) 0.9839

FFA + LGCA 37.21 (1.08↑) 0.9880 (0.0038↑) 33.70 (0.32↑) 0.9841 (0.0003↑)
MFID-Net 37.42 (1.29↑) 0.9890 (0.0048↑) 34.21 (0.83↑) 0.9844 (0.0005↑)

• An innovative multi-feature fusion (MF) module is proposed, focusing on the efficient
integration of channel and pixel features within images. The MF module ingeniously
combines three distinct components to work collaboratively, thereby significantly
enhancing the algorithm’s expressive capability in image processing.

• Proposed LGCA, utilizing ℓ1-Norm and ℓ2-Norm methods in lieu of FC layers to
reduce model parameters and alleviate computational resource requirements. Fur-
thermore, LGCA allows the algorithm to concurrently focus on both local and global
information, enhancing feature extraction capabilities.

• A novel gated pixel attention (GPA) module has been introduced, aimed at enhancing
the cooperation and competition among pixel features, thereby significantly improving
the flexibility and adaptability of dehazing algorithms. This innovative GPA module
demonstrated superior dehazing performance in processing foggy images.

The remaining sections of this work are structured as follows. Section 2 provides an
overview of the existing literature in the field of image dehazing. Section 3 elaborates
on the implementation methods and details of the proposed model. Section 4 presents
experimental results and facilitates discussion. Finally, Section 5 offers a concise summary
encompassing this work.
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2. Related Work
2.1. Atmospheric Scattering Model

The atmospheric scattering model (ASM) is used to explain the imaging process of
devices capturing images under atmospheric environments such as fog and haze. This
model simulates the propagation of light through the atmosphere, calculating the extent to
which the brightness value of each pixel in the image is affected by atmospheric scattering,
thus providing a robust theoretical basis for the task of image dehazing. The model was
originally proposed by McCartney et al. [1], and it has been continuously improved in
subsequent research [2,31]. It can be expressed as follows:

I(z) = J(z)t(z) + A(1 − t(z)) (1)

where z is the pixel coordinate values of the image, I(z) is the single foggy image, J(z) is
the haze-free image, A is the global atmosphere light, and t(z) is the transmission rate,
which can be described as follows when light propagates through a homogeneous medium:

t(z) = e−βd(z) (2)

where β is the atmospheric scattering coefficient and d(z) is the distance between the object
and the imaging equipment. In the task of image dehazing, t(z) and A are estimated
from the foggy image using prior knowledge or other methods; by substituting it into
Equation (1), the dehazed image can be restored.

J(z) =
A
(

1 − e−βd(z)
)
− I(z)

e−βd(z)
(3)

2.2. Attention Mechanism

The attention mechanism, a computational model that imitates the pattern of human
attention, primarily addresses the issue of selective attention in information processing. It
allows neural networks to concentrate on essential parts of the information being processed
while neglecting insignificant or irrelevant parts. To date, the attention mechanism has been
widely applied in multiple deep-learning domains such as natural language processing,
computer vision, and speech recognition, including classic structures like SE-Net [28],
ECA-Net [32], CBAM [33], and SAM [34]. Xu et al. [35] were the first to employ the
attention mechanism for the resolution of computer vision problems in 2015, laying a
solid foundation for the mechanism’s development within computer vision. Since then,
the application field of the attention mechanism has continually expanded, making it an
indispensable technology in deep-learning tasks.

In the task of single-image dehazing, the attention mechanism is utilized to compute
the weights of different regions of the hazy image, enabling the network to focus on the
areas most severely affected by haze. Moreover, the attention mechanism assists the net-
work in striking a balance between global and local considerations. Global attention helps
the network focus on overall features to restore the overall clarity of the image. In contrast,
local attention emphasizes the recovery of details in local areas, enhancing the image’s
detailed effects, taking into consideration that both global and local attention can yield
superior dehazing results. GridDehazeNet [36], inspired by SE-Net, introduced a multi-
scale estimation method based on channel attention. This method effectively mitigated the
bottleneck problem traditional multi-scale networks encounter due to information flow
restrictions in the hierarchical structure, providing the network with more flexible informa-
tion exchange and aggregation abilities. Xu et al. [27] proposed a feature fusion attention
network (FFA-Net) in 2020, addressing the issue of uneven haze density in different areas
of hazy images by constructing a feature attention module combining channel and pixel
attention mechanisms. However, FFA-Net does not perform well when processing images
with large areas of color blocks, causing blurry image details and potential double-image
effects. Moreover, the repeated invocation of the feature attention module leads to excessive
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computational resource consumption. Tu et al. [37] were the first to propose a generic
low-level visual U-Net backbone network based on MLP, combined with residual channel
attention for image dehazing. While the attention mechanism played a pivotal role in
enhancing dehazing effects, a balance must still be struck between computational resource
consumption and improvements in dehazing results. Therefore, finding a more efficient
attention mechanism to reduce computational resource demand and improve algorithm
generalizability remains a significant challenge.

3. Multi-Feature Fusion Image Dehazing Network

Deep-learning models are essentially comprised of a complex set of nonlinear func-
tions, with the core objective being the gradual optimization of model parameters to
minimize the value of the loss function. The task of image dehazing is formalized as an
optimization problem of a nonlinear function F. Through the analysis of a vast array of
data samples, a set of optimal parameters is sought. These parameters are capable of
effectively transforming hazy images X ∈ RH×W×C into their corresponding clear images
Y ∈ RH×W×C, where C is the number of channels in the image and H and W denote the
height and width of the image, respectively. This problem is modeled in the following form
in this paper:

θ∗ = argmin_θL(F(X; θ), Y) (4)

where θ∗ is the set of parameters that minimize the loss function, F(X; θ) is the predicted
output of the haze-free image by the function F when given the parameter set θ, and L is
the loss function, utilized to quantify the difference between the predicted haze-free image
and the actual haze-free image.

Based on the FFA-Net architecture, we propose the multi-feature fusion image dehaz-
ing network (MFID-Net) as the prediction function F to approximate the clear image Y with
high fidelity; the differences between FFA-Net and MFID-Net are illustrates in Figure 2. In
Figure 3, MFID-Net takes the X ∈ RH×W×C as input and extracts shallow features through
a convolution operation layer. Subsequently, these features are fed into three consecutive
Group Blocks for further feature extraction. Depth fusion across different levels is achieved
through residual connections, resulting in the feature map g(X), a process detailed in
Equation (5). Specifically, each Group Block is composed of 15 multi-feature fusion (MF)
modules and a convolutional layer, with residual connections also employed within the
Group Block to enhance the transmission and fusion of features. Next, lightweight gated
channel attention (LGCA) and gated pixel attention (GPA) are utilized to re-calibrate the
features at the channel and pixel levels to enhance the dehazing effect. Finally, the pre-
dicted haze-free image F(X) ∈ RH×W×C is generated through two convolution operations,
a process that can be represented by Equation (6).

g(X) = Concat(g1(Conv(X)), g2(g1(Conv(X))), g3(g2(g1(Conv(X))))) (5)

F(X) = Conv(Conv(GPA(LGCA(g(X))))) + X (6)

where Conv is a convolution operation that is characterized by a kernel size of 3 and a
stride of 1. gi is the Group Block that maintains a constant channel size during computation,
i = 1, 2, 3. LGCA and GPA represent the lightweight gated channel attention mechanism
and gated pixel attention mechanism proposed in MFID-Net, respectively, which are
components of the MF module.
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Figure 2. The differences between FFA-Net and MFID-Net.
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Figure 3. Structure of multi-feature fusion image dehazing network.

3.1. Multi-Feature Fusion Module

We propose the multi-feature fusion (MF) module, designed for efficient extraction and
fusion of image channel and pixel features, resolving the problem of residual fog patches
in cases of high or uneven fog concentration. As shown in Figure 4, MF comprises three
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parts: a shallow feature extraction layer, LGCA, and GPA. The shallow feature extraction
layer is responsible for learning the basic features of the image, such as edges, textures,
etc. LGCA identifies and enhances channel features of significance. GPA, learning from
the relationships among pixels and based on the importance of each pixel, performs fine-
grained image adjustments, avoiding excessive smoothing or enhancement of local features.
These three components work in conjunction, collectively improving the module’s feature
extraction and fusion capabilities. Experimental results show that the algorithm performs
better when convolutions are placed after the attention mechanisms.

GCT GPA

Figure 4. Structure of ultmi-feature fusion module.

3.2. Lightweight Gated Channel Attention

The FFA-Net [27] utilizes SE-Net [28] as the channel attention mechanism to capture
the interrelationship among feature channels. However, this design introduces two issues.
First, SE-Net relies on two FC layers to handle channel embeddings, which imposes
significant demands on computational resources. Secondly, due to the complexity of the
parameters in the FC layers, understanding and analyzing the inter channel interactions
among different layers becomes exceedingly challenging. FC layers implicitly learn the
channel relationships, leading to neuron output behaviors that are difficult to interpret. To
address these problems, we propose a lightweight, interpretable, and efficient attention
mechanism LGCA.

Figure 5 illustrates the detailed structure of LGCA, which comprises three components:
a global context embedding layer, a channel normalization layer, and a gated adaptive
layer. Initially, a parameterless ℓ1 + ℓ2-norm is employed by the global context embedding
layer to aggregate global context information. To adjust the proportions of ℓ1-norm and
ℓ2-norm regularization and to endow the LGCA with learning capabilities, a global context
embedding parameter α is introduced, which is capable of embedding global context
information and adjusting the weights of individual channels before channel normalization.
Subsequently, the stability and generalizability of the algorithm are ensured by the channel
normalization layer. Finally, based on the output of the channel normalization layer, the
gated adaptive layer adjusts the input channel features using gated weights γ and bias
β, and competition and cooperation among features are promoted through a gated “tanh”
activation function. It has been demonstrated by experiments that the image dehazing
effect is enhanced by LGCA while utilizing a reduced number of parameters.
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Global Context Embedding 

Channel Normalization 

Gated Adaptive 

Figure 5. Structure of lightweight gated channel attention mechanism.

χ̂ = F̂(χ|α, γ, β), α, γ, β ∈ NC (7)

where χ ∈ NC∗H∗W is a feature map, where H and W are the height and width of the feature
map and C is the channel of the map. Let χ = [χ1, χ2, ..., χC], and χc is a corresponding
feature for each channel in χ, where χc = [Xi,j

c ]H×W ∈ NH×W and c = {1, 2, ..., C}. The
final output result χ̂ is determined collectively by the trainable parameters α, γ, and β,
where α = [α1, α2, ..., αC], γ = [γ1, γ2, ..., γC], and β = [β1, β2, ..., βC]. It is worth noting that
the parameter complexity of LGCA is O(C), significantly less than the O(C2) of SE-Net.

Global Context Embedding Layer: The performance of an algorithm is often con-
strained by the quality and quantity of the dataset. The aggregation of global context
information can provide a broader and more comprehensive data background, thereby
improving the precision of understanding input data. Importantly, the integration of global
context information can help mitigate the influence of local features on algorithm perfor-
mance, thereby enhancing the model’s robustness and generalizability. Alex et al. pointed
out that a regularization function can establish connections among neurons [38,39]. In this
regard, ℓ1-norm is capable of reducing irrelevant feature parameters that have minimal or
no impact on the task to zero, exploiting the sparsity of the network to achieve rapid feature
selection. ℓ2-norm, conversely, assigns higher weights to critical features and lower weights
to secondary features, thereby preventing model overfitting. Based on these principles,
LGCA has designed a global information embedding layer, the implementation of which is
detailed in Equations (8)–(10).

ℓ1 = |∑H
i=1∑W

j=1χ
i,j
c | (8)

ℓ2 =

{
∑H

i=1 ∑W
j=1

(
χ

i,j
c

)2
+ ϵ

} 1
2

(9)

Sc = αcℓ1 + (1 − αc)ℓ2 (10)

where ℓ1 is the absolute value of the channel features of each pixel coordinate in the image
and ℓ2 is the square root of the sum of squares of the channel values of the image pixel
coordinates. Moreover, a constant ϵ is set to prevent the derivative from being zero.

Channel Normalization Layer: Normalization layers are employed to accentuate
channels with high feedback values and suppress those with lower feedback values, thus
achieving a dynamic adjustment of features [40–42]. LGCA utilizes ℓ1 + ℓ2-norm formu-
lations to normalize the channels, optimizing the weight distribution among them. The
formula for channel normalization is as follows:

S∗
c =

√
cSc

||Sc||2
=

√
cSc

[(∑c
c=1S2

c + ε)]
1
2

(11)
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where S = [S1, S2, ..., Sc]; to avoid excessively small values of Sc when c is too large,
we introduces a constant

√
C, and a small constant ε is introduced to prevent abnormal

algorithm performance when the denominator is zero. Notably, the channel normalization
method proposed in this study (O(C)) involves much less computation than FC (O(C2)).

Gated Adaptive Layer: The gating mechanism is capable of enhancing the overall
performance of the algorithm by inducing competition and cooperation among channel
features [43]. Concurrently, the gating mechanism is instrumental in preventing the po-
tential loss of features within deep networks, augmenting the algorithm’s flexibility and
robustness and enabling adaptability to various task requirements. The LGCA augments
each original channel feature χ̂ by integrating a gating mechanism, thereby not only in-
creasing the algorithm’s flexibility but also ensuring the integrity of the original feature χ̂.
The specific definition of the gated adaptive layer is as follows:

χ̂c = χ̂[1 + tanh(γcS∗
c + βc)] (12)

The operation of the gating mechanism allows the network to dynamically adjust.
When a channel’s gating weight is positively activated, the channel is encouraged to
compete with other channels. Conversely, if the gating weight is negatively activated, it
encourages the channel to cooperate with other channels. That is, when both weights γ and
biases β are zero, the original features are passed to the next layer without modification.

3.3. Gated Pixel Attention

The pixel attention mechanism adjusts the weight of each pixel in the image, thereby
directing the algorithm’s focus towards areas with higher fog density. MFID-Net incor-
porates a gated pixel attention mechanism (GPA) to foster cooperation and competition
among pixel features, enhancing the efficiency of defogging. The specific structure is
depicted in Figure 6. Initially, the GPA sequentially conducts convolution, pooling, and
convolution operations on the feature map χ̂ to preliminarily extract features. Subsequently,
the degree of activation for the gating mechanism is controlled utilizing weight parameters
δ = [δ1, δ2, ..., δC] and biases µ = [µ1, µ2, ..., µC]. During the activation process, the GPA
employs the tanh function to modulate pixel-level features. Ultimately, the features pro-
cessed by the activation function are subjected to multiplication operations and residual
connections with the original feature map χ̂, resulting in the feature map X∗, as manifested
in Equation (13).

X∗
c = χ̂c(1 + tanh(δc(Conv(Pool(Conv(χ̂c)))) + µc)) (13)

where in the shallow layers of the algorithm, δc is set to be less than zero, indicating that
they can promote collaboration between pixel features, which aids in more comprehen-
sively capturing and utilizing image information. Conversely, in the deeper layers of the
algorithm, δc is set to be greater than zero, leading to competition between pixel positions,
which helps to highlight key features and suppress unnecessary information. Empirical
evidence demonstrates that GPA optimizes the defogging effect of MFID-Net.

Gating Feature Extraction

Figure 6. Structure of gated pixel attention mechanism.



Appl. Sci. 2024, 14, 3243 11 of 20

3.4. Loss Function

In the field of image dehazing, commonly used loss functions primarily include L1,
L2, and structural similarity index (SSIM) loss functions. Zhao et al. [44] posited that
different loss functions might engender distinct issues in varying application contexts.
While relying on the L2 loss function can achieve certain dehazing effects, it may lead
to rasterization distortion in the restored images, negatively impacting the overall image
quality. Employing the L1 loss function may result in relatively higher peak signal-to-noise
ratio (PSNR) values for images, but this does not necessarily indicate that it is the optimal
approach. Although using the L1 loss function enhances the PSNR values of images, it
does not imply that it is the best choice. This is because the L1 loss function does not
take into account the variances in human visual perception of images, which may lead to
significant visual discrepancies between the restored images and the original authentic
images. In contrast, the SSIM loss function, which integrates structural similarity and
luminance information, better reflects human visual perception of image quality.

To achieve the dual objectives of optimizing visual quality and accuracy in image
dehazing, this chapter adopts a hybrid loss function—MS-SSIM + L1 loss [44]—as specified
in Equation (14). This mixed loss function ingeniously combines multi-scale structural
similarity (MS-SSIM) with L1 loss, reducing prediction error while maintaining image struc-
tural details. The MS-SSIM component is employed to assess and optimize the structural
similarity of images across different scales, while the L1 component focuses on minimizing
the absolute error at the pixel level, thereby enhancing the accuracy of the restored images.

LMS−SSIM+ℓ1 = ρ · LMS−SSIM + (1 − ρ) · GσM
G
· Lℓ1 (14)

where ρ is a constant employed to balance the proportions of two loss functions. The
experimental results of Zhao et al. [44] indicate that the optimal dehazing effect can be
achieved when ρ = 0.84, and G represents the parameters of the Gaussian distribution.
LMS−SSIM and Lℓ1 represent the MS-SSIM and L1 loss functions, respectively, with their
specific formulas provided in [44]. By training with this loss function, MFID-Net is able to
produce more realistic and clearer dehazed images.

4. Experiment and Result Analysis
4.1. Experimental Environment

In order to comprehensively evaluate the performance and effects of the algorithm, it
is necessary to use datasets for training, testing, and validation. The commonly used image
dehazing datasets include NYU2 [45], D-HAZY [46], and RESIDE [47]. We chose RESIDE
for training, testing, comparison, and ablation experiments. This dataset consists of five
subsets, including multiple synthetic and real foggy images. We selected 13,990 indoor
and 13,990 outdoor images from it to ensure that the algorithm could handle images under
various scenarios. To further validate the effect of the algorithm, we also selected 500 indoor
and 500 outdoor images from the SOTS subset of the RESIDE dataset as the validation set.
To evaluate the performance of the algorithm in real applications, we chose the real dataset
from RESIDE for validation.

To ensure the fairness of the experimental results, all algorithms were trained in the
PYTORCH framework and on two GTX 1080ti graphics cards. During the training process,
we used the Adam optimizer for 100 epochs of training, with 5000 samples trained per
epoch. The initial learning rate was set to 0.0001, and the learning rate was adjusted using
the cosine annealing strategy until the learning rate dropped to zero. Finally, we chose the
best-performing result during training as the final result of the experiment.

4.2. Evaluation Metrics

The evaluation of dehazing algorithms is commonly divided into subjective and
objective assessments. Subjective assessment is primarily based on human visual perception
to judge factors such as image clarity, color fidelity, and contrast. This method of evaluation
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is intuitive and easily understood, yet it possesses a certain degree of subjectivity due to
the influence of personal preferences and observation conditions. Objective assessment,
on the other hand, is conducted through quantifiable metrics such as peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM), which quantify the dehazing
effects and provide a replicable, standardized evaluation outcome.

Currently, PSNR and SSIM are widely accepted and employed as benchmarks for
evaluation, allowing for the convenient comparison of the effectiveness between different
dehazing algorithms. Consequently, we select PSNR and SSIM as the evaluation metrics
for dehazing effectiveness. Specifically, SSIM measures the structural similarity between
images, taking into account variations in brightness, contrast, and structure. By focusing on
visual perception quality, SSIM is able to reflect the subjective experience of image quality
more accurately, in Equation (15). PSNR, being a pixel-level metric based on error, is used
to measure the similarity between the original and the processed images, proving highly
effective in assessing image distortion, in Equation (16).

SSIM(x, y) =
(2µxµy + c1)(σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(15)

where x and y are the two images being compared, µx and µy are the mean grayscale values
of the images, and c1 and c2 are constants used to prevent division by zero.

PSNR = 10 ∗ log10(
MAX2

MSE
) (16)

MAX is the maximum color value of the image and MSE is mean squared error, which
is defined as follows:

MSE =
1

mn ∑n
i=1 ∑m

j=1||X(i, j)− Y(i, j)||2 (17)

where m ∗ n is the pixel values of the image.
Concurrently, in order to comprehensively assess the performance of the LGCA algo-

rithm, not only was the effectiveness of the algorithm itself considered, but also two critical
indicators; namely, the number of parameters (Params) and computational cost (FLOPs)
were specifically introduced for an in-depth analysis.

4.3. Results on RESIDE Dataset

In this section, our proposed algorithm MFID-Net is compared with classical single-
image dehazing algorithms (DCP, AOD-Net, GCA-Net, GridDehazeNet, FFA-Net) to
evaluate their dehazing effects on indoor datasets (IST) and outdoor datasets (OST). Table 2
presents a quantitative comparison of SSIM, PSNR, and rate of improvement-time on IST
and OST. It is evident that MFID-Net achieved the best results in terms of both SSIM and
PSNR indicators. Moreover, compared to GridDehazeNet and FFA-Net, which are based
on multiple stacked attention mechanisms, MFID-Net also demonstrates superiority in
computational speed. Figure 7 demonstrates the convergence properties of MFID-Net
on the IST and OST datasets, validating the algorithm’s stability throughout the training
process and unequivocally illustrating its ability to successfully and robustly converge to
the anticipated optimal solution.
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Table 2. Quantitative comparisons for different methods. The Rate of improvement-time indicates
the average speed improvement in processing an image of the same size compared to DCP.

DateSet Evaluation DCP AOD-Net GCA-Net GridDehazeNet FFA-Net MFID-Net

IST PSNR 16.86 19.26 30.23 32.16 36.13 37.42
SSIM 0.8601 0.8414 0.9501 0.9836 0.9842 0.9890

OST PSNR 19.37 20.17 29.76 30.86 33.38 34.21
SSIM 0.8431 0.8769 0.9498 0.9752 0.9839 0.9844

Rate of improvement-time 1 97.31% 97.39% 91.03% 94.94% 96.68%

Figure 7. The convergence characteristics of MFID-Net on the IST and OST datasets.

Figures 8 and 9 provide a visual comparison of MFID-Net with other techniques on
IST and OST. Although DCP removed most of the haze, the color saturation of its restored
images was too high, leading to noticeable distortions. AOD-Net only eliminated superficial
fog; the amount of remaining fog residue increased with rising haze concentration. GCA-
Net still left a small amount of fog residue in areas with high fog concentration. Despite
significant improvements in dehazing by GridDehazeNet and FFA-Net, they could still
be enhanced in terms of image detail restoration, and problems like color block loss were
common. In contrast to these algorithms, MFID-Net showed excellent performance in
removing image haze and restoring image details and color. The images restored by
MFID-Net were closer to the original images.
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Figure 8. Indoor results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDehazeNet,
(f) FFA-Net, (g) MFID-Net, (h) Clear.

Figure 9. Outdoor results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDehazeNet,
(f) FFA-Net, (g) MFID-Net, (h) Clear.

To further validate the superiority of MFID-Net in dehazing large areas of color blocks
such as roads and sky, we selected parts of the outdoor dataset for comparison. The
dehazing comparison is shown in Figure 10. It is clearly seen that DCP, when handling
areas like the sky and road, tends to generate high-saturation images, and sometimes
produces black blocks when dealing with large white areas. The images produced by
AOD-Net have low contrast in the background. When GCA, GridDehazeNet, and FFA-Net
deal with large color block areas such as sky and roads, their restoration of image details is
not ideal, often resulting in problems like black blocks and ghosting. In contrast, MFID-Net,
when handling large color block areas, is superior to the aforementioned methods in terms
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of restoring image color and preserving image details. More importantly, it also reduces
the occurrence of undesirable phenomena such as black blocks and ghosting.

Figure 10. Large area color block results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDe-
hazeNet, (f) FFA-Net, (g) MFID-Net, (h) Clear.

In the real world, foggy images usually have an uneven distribution of fog density,
which adds complexity to the dehazing task of algorithms in real environments. Traditional
single-image dehazing algorithms, when dealing with this issue, often lead to problems
such as color deviation, loss of detail, and poor edge handling in the recovered images.
Moreover, some deep-learning-based dehazing algorithms demonstrate insufficient gen-
eralization capability when dealing with real foggy images. Figure 11 shows the visual
comparison of dehazing results on real outdoor foggy images between classical image
dehazing algorithms and MFID-Net. It can be clearly seen that the results of the DCP
algorithm are overly saturated in color overall, which easily leads to information loss in
the image. AOD’s performance is not satisfactory when dealing with dehazing tasks in
distant areas. As for GCA-Net, GridDehazeNet, and FFA-Net, their dehazing effects are not
pronounced, only capable of removing surface fog, with FFA-Net even possibly leading to
loss of image detail information. In contrast, the algorithm proposed in this paper, when
dealing with these real foggy images, can not only effectively remove most of the fog but
can also maintain a good preservation of image details and color authenticity.

Figure 11. Real hazy image results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDehazeNet,
(f) FFA-Net, (g) MFID-Net.

Finally, Table 3 presents a comparison between LGCA and other attention mechanisms
in terms of the number of parameters and computational cost. Through this comparison, it
can be demonstrated that LGCA possesses characteristics of being lightweight.



Appl. Sci. 2024, 14, 3243 16 of 20

Table 3. The comparison results of LGCA with other attention mechanisms in terms of parameter
quantity and computational effort.

Evaluation SENet PA CA GPA LGCA CBAM SENet + PA SENet + GPA LGCA + PA LGCA + GPA

Params 512 657 776 657 192 610 1169 1169 849 849
FLOPs 1024 1314 1552 1314 384 1220 3250 3506 1442 1442

4.4. Ablation Analysis

To further demonstrate the advantages of MFID-Net, a detailed ablation study was
conducted in this section, where the various major components of the network were
separately analyzed. These components include LGCA and GPA. To ensure the fairness
of the experimental results, only one network component was added or modified in each
ablation experiment.

To verify the effectiveness of LGCT in image dehazing tasks, we replaced the SE-Net
channel attention mechanism used in FFA-Net with LGCT. In Table 4 and Figure 12, the
results show that the model using LGCT performs better in image dehazing tasks, not
only improving the values of SSIM and PSNR evaluation indicators but also reducing the
number of network parameters. In Figure 12, it is evident that LGCT has successfully
reduced the phenomena of halo and dark block generation when recovering large-area
color blocks in images.

Table 4. Comparisons on SOTS indoor testset for different configurations.

SENet " "

LGCA " "

PA " "

GPA " "

SSIM 36.13 37.21 36.58 37.42
PSNR 0.9842 0.9852 0.9845 0.9890

Parameter(MB) 14.20 14.03 14.20 14.07

(a) Hazy (b) SENet + PA (c) SENet + GPA (d) LGCA + PA (e) LGCA + GPA (f) Clear

Figure 12. Comparison chart of results from ablation experiments on different module combinations
conducted on IST.

Furthermore, an ablation study was conducted on the global information embedding
layer in LGCT, examining the effects under three different scenarios: using ℓ1-Norm,
ℓ2-Norm, and ℓ1 + ℓ2-Norm, respectively. The experimental results indicate that when
ℓ1 + ℓ2-Norm is employed to aggregate global contextual information, the model performs
best in image dehazing tasks. The related experimental results are shown in Table 5 and
Figure 13.
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Figure 13. Comparison of dehazing effects from ablation experiments on LGCT conducted on IST.
(a) ℓ1 + ℓ2-Norm, (b) ℓ2-Norm, (c) ℓ1-Norm.

Table 5. Comparisons on SOTS indoor testset for LGCT.

ℓ1-norm "

ℓ2-norm "

ℓ1 + ℓ2-norm "

SSIM 36.95 37.11 37.42
PSNR 0.9862 0.9830 0.9890

These experimental results further substantiate that MFID-Net is capable of achieving
an SSIM of 37.42 and a PSNR of 0.9890, significantly higher than other methods. Simultane-
ously, it proves that each component involved in MFID-Net has played an essential role.

5. Conclusions

To address the limitations of traditional convolutional neural networks (CNNs) and
attention mechanisms based on fully connected layers in feature extraction, this paper
introduces a novel attention-based multi-feature fusion dehazing algorithm named MFID-
Net. The core of the MFID-Net algorithm lies in proposing an innovative multi-feature
fusion module (FM), specifically designed to handle areas in images with high haze con-
centration and significantly enhance the restoration capability for large areas of similar
color blocks. The FM module integrates a lightweight gated channel attention mechanism
(LGCA) and a gated pixel attention mechanism (GPA), enhancing the overall performance
of the algorithm. LGCA replaces the traditional fully connected layers by combining L1-
and L2-norms, not only effectively capturing global contextual information but also sub-
stantially reducing the demand for computational resources. Meanwhile, GPA optimizes
the flow of feature information, reinforcing crucial information while suppressing irrelevant
information, further improving the dehazing effects. This innovative FM module is not
only structurally concise and highly adaptable but also easily integrated into various image
dehazing frameworks. Validation through comparative experiments and ablation studies
shows the significant performance improvements of MFID-Net: on the RESIDE indoor
dataset, the SSIM reached 37.42 and the PSNR increased to 0.9890; on the RESIDE outdoor
dataset, the SSIM reached 34.21 and the PSNR improved to 0.9844.

Despite the superior performance of MFID-Net in comparison to classical dehazing
methods as evaluated by SSIM and PSNR, several limitations require careful consideration.
Notably, the stability of the algorithm necessitates further enhancement, the training speed
warrants acceleration, and the optimization of dehazing performance on real images
continues to be a primary area of focus. Consequently, our forthcoming research endeavors
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will be dedicated to a comprehensive optimization of this model, aiming to expand the
breadth of research within the domain of image dehazing tasks.
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