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Abstract

:

Numerous single-image dehazing algorithms have been developed, employing a spectrum of techniques ranging from intricate physical computations to state-of-the-art deep-learning methodologies. However, conventional deep-learning approaches, particularly those based on standard convolutional neural networks (CNNs), often result in the persistence of residual fog patches when applied to images featuring high fog concentration or heterogeneous fog distribution. In response to this challenge, we propose an innovative solution known as the multi-feature fusion image dehazing network (MFID-Net). This approach employs an end-to-end methodology to directly capture the mapping relationship between hazy and fog-free images. Central to our approach is the introduction of a novel multi-feature fusion (MF) module, strategically designed to address channel and pixel characteristics in regions with uneven or high fog concentrations. Notably, this module achieves effective haze reduction while minimizing computational resources, thereby mitigating the issue of residual fog patches. Experimental results underscore the superior performance of our algorithm compared to similar dehazing methods, as evidenced by higher scores in structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and computational velocity. Moreover, MFID-Net exhibits significant advancements in restoring details within expansive monochromatic areas, such as skies and white walls.
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1. Introduction


Atmospheric conditions such as fog and haze induce light refraction or scattering, impeding the direct propagation of light. The intersection of distorted rays with reflected light from observed objects leads to visual degradation in images captured by imaging devices, including diminished clarity, loss of detail, and color distortion [1,2]. These challenges not only distort the representation of the real environment but also present complications for subsequent application processing [3,4,5,6]. Therefore, the restoration of clear images from foggy ones is of paramount importance.



Single-image dehazing algorithms aim to employ specific technical methods to eliminate the influence of atmospheric environmental factors on images captured by imaging devices. These algorithms seek to maximize color and detail restoration while enhancing overall clarity. Currently, such algorithms fall into two broad categories: prior-knowledge-based algorithms [7,8] and deep-learning-based algorithms [9,10,11,12].



Prior-knowledge-based image dehazing algorithms leverage mathematical statistics to infer the common characteristics of hazy images and estimate haze-free images using either the atmospheric scattering model (ASM) [1] or its variants [13]. For instance, Schechner et al. [14] utilized the polarization properties of light to capture polarized components in two different directions from hazy images, calculating their difference to eliminate scattered light and haze. However, this approach is limited to scenes with polarizing properties. The median filter method is applied for transmittance estimation in ASM [15], but it may obliterate details smaller than the filter’s aperture size, resulting in diminished resolution and loss of detail in restored images. The dark channel prior (DCP) dehazing algorithm introduced by He et al. [16] relies on the discovery that outdoor haze-free images have at least one RGB channel with the lowest pixel values. Nevertheless, DCP may cause color distortion in large monochromatic areas such as the sky or white walls. Color prior attenuation (CPA) [17] applies color prior values to each pixel’s color value in hazy images, attenuating fog accordingly. However, these algorithms heavily depend on specific prior knowledge that may not be universally applicable, leading to suboptimal dehazing results in certain scenarios (e.g., nighttime scenes, indoor environments, sky regions).



Deep-learning-based image dehazing algorithms adaptively adjust parameters according to input images, avoiding the complexities of modeling and parameter estimation. These algorithms are generally divided into two types: parameter estimation-based algorithms and direct resolution algorithms. In the former, networks estimate parameters such as transmittance and atmospheric light, followed by inverse computation using ASM to obtain haze-free images. For instance, Dehaze-Net [18] employs CNNs to learn the mapping relationship between hazy images and transmittance. AOD-Net [13] reconstructs the ASM by combining atmospheric light with transmittance into a single variable to reduce the loss of image features. DCPDN-Net [19], employing two subnetworks for the sequential learning of ambient light and transmittance, gradually optimizes different components of the network. However, DCPDN-Net may introduce image artifacts. The latter type of algorithms directly trains networks with foggy images to seek optimal dehazing parameters. For example, Yang et al. [20] proposed the concept of perceptual dehazing, which utilizes a physical model to decouple and reconstruct the hazy image into hidden feature values. Subsequently, a multiscale adversarial network is employed to restore the haze-free image. Cycle-Dehaze [21] provides unpaired hazy and clear images, which are fed into a cycle adversarial network for training. Additionally, it introduces a cycle perceptual consistency loss function to address network optimization and evaluation. GFN-Net [22] divides its architecture into feature extraction modules and restoration modules. GCANet [23] was pioneering in employing smooth dilated convolution to tackle grid artifacts in the image dehazing process. EDN-GTB [24] takes both the hazy image and dark channel transmission map as inputs for its U-Net-based model with spatial pyramid pooling modules during the training phase. AECR-NET [25] incorporates contrast regularization by treating haze-free images as positive samples while considering hazy images as negative samples, respectively. AECR-NET approximates restored images towards positive samples while moving away from negative ones, thereby enhancing the transformation capability of models accordingly.



The complexity of the image dehazing task lies in the often uneven distribution of haze within images. Faced with the uneven concentration of haze, it necessitates algorithms to pay more attention to areas with higher haze density. Deep-learning algorithms, which rely solely on traditional convolutional neural networks for dehazing, primarily focus on the local features of hazy images and neglect the overall haze density across the image [26]. This bias towards local processing inevitably leads to issues in identifying and dealing with areas of high haze density within the image. Therefore, effectively recognizing and addressing areas with an uneven distribution of haze in hazy images poses a significant challenge for dehazing algorithms [27,28]. Although the introduction of attention mechanisms can to some extent optimize the algorithm’s capture of global features and afford more processing to key features, this strategy also has clear limitations [28,29]. Attention mechanisms that extract features based on fully connected (FC) layers often lead to a significant increase in the number of model parameters due to the high connectivity of FC layers. This not only exacerbates the algorithm’s time complexity but also its space complexity. Moreover, an excessive number of parameters increases the risk of overfitting, leading to insufficient generalizability of the algorithm. In the face of these challenges, dehazing algorithms must balance dehazing effectiveness with reduced demands on computational resources.



Considering that FFA-Net still fails to completely eliminate haze from images, particularly in areas of large, similarly colored blocks where the processed image pixel values are not sufficiently smooth, and further, that the channel attention mechanism employed by FFA-Net involves a large number of parameters and significant computational load, we propose an enhanced dehazing algorithm based on multi-feature fusion (MFID-Net) built upon the framework of FFA-Net to address these limitations. MFID-Net integrates multi-scale features and employs a novel lightweight attention mechanism, which not only reduces the demand for computational resources but also effectively enhances the recognition and capture of global image features. Furthermore, MFID-Net demonstrates exceptional detail restoration capabilities in scenarios with large areas of similar color blocks, such as white walls, skies, and roads. The pixel values in these areas are smoother after restoration, reducing the occurrence of black blocks and ghosting. Figure 1 clearly demonstrates the comparative effectiveness of sky scene processing, showcasing the distinct advantage of MFID-Net in handling such specialized scenarios.



To effectively focus on the global contextual information of hazy images while reducing the algorithm’s computational resource requirements, we introduce a new lightweight gated channel attention (LGCA) mechanism. LGCA utilizes regularization components and learnable parameters instead of traditional FC layers to simulate the interaction between channels, enabling better capture of global contextual information and extraction of image features in areas with high haze density. Experimental results demonstrate that LGCA achieves significant improvements in dehazing performance for hazy images, while also reducing dependence on computational resources.



A gating mechanism plays a pivotal role in neural networks by effectively regulating the flow and selection of information between models, thereby significantly enhancing algorithmic accuracy and generalization capability [30]. The effectiveness of a gating mechanism hinges on its precise control of input–output ratios and its capacity to filter out irrelevant information while reinforcing important information. This capability enables the gating mechanism to finely adjust information, empowering the algorithm to adaptively select and integrate useful features. With this consideration, we propose a novel gating mechanism   1 + t a n h ( x )  , designed to control the feature flow between channels and pixels, adaptively filtering and integrating valuable features to enhance the dehazing effect of the algorithm. Through this approach, MFID-Net exhibits improved performance and robustness.



The key contributions of this work are listed below.



	
Building upon FFA-Net, we proposed MFID-Net to enhance the algorithm’s capability in detail recovery, particularly when addressing complex scenes containing extensive structural color blocks, such as white walls and sky. Table 1 presents a comparative analysis based on the FFA-Net architecture, which includes modifications such as replacing its pixel attention (PA) mechanism with the GPA, substituting the conventional channel attention (CA) mechanism with the LGCA, and integrating these improvements to develop the MFID-Net. The results indicate that MFID-Net not only achieves significant improvements in dehazing effects but also effectively reduces the algorithm’s parameter count.



	
An innovative multi-feature fusion (MF) module is proposed, focusing on the efficient integration of channel and pixel features within images. The MF module ingeniously combines three distinct components to work collaboratively, thereby significantly enhancing the algorithm’s expressive capability in image processing.



	
Proposed LGCA, utilizing   ℓ 1  -Norm and   ℓ 2  -Norm methods in lieu of FC layers to reduce model parameters and alleviate computational resource requirements. Furthermore, LGCA allows the algorithm to concurrently focus on both local and global information, enhancing feature extraction capabilities.



	
A novel gated pixel attention (GPA) module has been introduced, aimed at enhancing the cooperation and competition among pixel features, thereby significantly improving the flexibility and adaptability of dehazing algorithms. This innovative GPA module demonstrated superior dehazing performance in processing foggy images.






The remaining sections of this work are structured as follows. Section 2 provides an overview of the existing literature in the field of image dehazing. Section 3 elaborates on the implementation methods and details of the proposed model. Section 4 presents experimental results and facilitates discussion. Finally, Section 5 offers a concise summary encompassing this work.




2. Related Work


2.1. Atmospheric Scattering Model


The atmospheric scattering model (ASM) is used to explain the imaging process of devices capturing images under atmospheric environments such as fog and haze. This model simulates the propagation of light through the atmosphere, calculating the extent to which the brightness value of each pixel in the image is affected by atmospheric scattering, thus providing a robust theoretical basis for the task of image dehazing. The model was originally proposed by McCartney et al. [1], and it has been continuously improved in subsequent research [2,31]. It can be expressed as follows:


  I ( z ) = J ( z ) t ( z ) + A ( 1 − t ( z ) )  



(1)




where z is the pixel coordinate values of the image,   I ( z )   is the single foggy image,   J ( z )   is the haze-free image, A is the global atmosphere light, and   t ( z )   is the transmission rate, which can be described as follows when light propagates through a homogeneous medium:


  t  ( z )  =  e  − β d ( z )    



(2)




where  β  is the atmospheric scattering coefficient and   d ( z )   is the distance between the object and the imaging equipment. In the task of image dehazing,   t ( z )   and A are estimated from the foggy image using prior knowledge or other methods; by substituting it into Equation (1), the dehazed image can be restored.


  J  ( z )  =   A  1 −  e  − β d ( z )    − I  ( z )    e  − β d ( z )     



(3)








2.2. Attention Mechanism


The attention mechanism, a computational model that imitates the pattern of human attention, primarily addresses the issue of selective attention in information processing. It allows neural networks to concentrate on essential parts of the information being processed while neglecting insignificant or irrelevant parts. To date, the attention mechanism has been widely applied in multiple deep-learning domains such as natural language processing, computer vision, and speech recognition, including classic structures like SE-Net [28], ECA-Net [32], CBAM [33], and SAM [34]. Xu et al. [35] were the first to employ the attention mechanism for the resolution of computer vision problems in 2015, laying a solid foundation for the mechanism’s development within computer vision. Since then, the application field of the attention mechanism has continually expanded, making it an indispensable technology in deep-learning tasks.



In the task of single-image dehazing, the attention mechanism is utilized to compute the weights of different regions of the hazy image, enabling the network to focus on the areas most severely affected by haze. Moreover, the attention mechanism assists the network in striking a balance between global and local considerations. Global attention helps the network focus on overall features to restore the overall clarity of the image. In contrast, local attention emphasizes the recovery of details in local areas, enhancing the image’s detailed effects, taking into consideration that both global and local attention can yield superior dehazing results. GridDehazeNet [36], inspired by SE-Net, introduced a multi-scale estimation method based on channel attention. This method effectively mitigated the bottleneck problem traditional multi-scale networks encounter due to information flow restrictions in the hierarchical structure, providing the network with more flexible information exchange and aggregation abilities. Xu et al. [27] proposed a feature fusion attention network (FFA-Net) in 2020, addressing the issue of uneven haze density in different areas of hazy images by constructing a feature attention module combining channel and pixel attention mechanisms. However, FFA-Net does not perform well when processing images with large areas of color blocks, causing blurry image details and potential double-image effects. Moreover, the repeated invocation of the feature attention module leads to excessive computational resource consumption. Tu et al. [37] were the first to propose a generic low-level visual U-Net backbone network based on MLP, combined with residual channel attention for image dehazing. While the attention mechanism played a pivotal role in enhancing dehazing effects, a balance must still be struck between computational resource consumption and improvements in dehazing results. Therefore, finding a more efficient attention mechanism to reduce computational resource demand and improve algorithm generalizability remains a significant challenge.





3. Multi-Feature Fusion Image Dehazing Network


Deep-learning models are essentially comprised of a complex set of nonlinear functions, with the core objective being the gradual optimization of model parameters to minimize the value of the loss function. The task of image dehazing is formalized as an optimization problem of a nonlinear function F. Through the analysis of a vast array of data samples, a set of optimal parameters is sought. These parameters are capable of effectively transforming hazy images   X ∈  R  H × W × C     into their corresponding clear images   Y ∈  R  H × W × C    , where C is the number of channels in the image and H and W denote the height and width of the image, respectively. This problem is modeled in the following form in this paper:


   θ *  = a r g m i n _ θ L  ( F  ( X ; θ )  , Y )   



(4)




where   θ *   is the set of parameters that minimize the loss function,   F ( X ; θ )   is the predicted output of the haze-free image by the function F when given the parameter set  θ , and L is the loss function, utilized to quantify the difference between the predicted haze-free image and the actual haze-free image.



Based on the FFA-Net architecture, we propose the multi-feature fusion image dehazing network (MFID-Net) as the prediction function F to approximate the clear image Y with high fidelity; the differences between FFA-Net and MFID-Net are illustrates in Figure 2. In Figure 3, MFID-Net takes the   X ∈  R  H × W × C     as input and extracts shallow features through a convolution operation layer. Subsequently, these features are fed into three consecutive Group Blocks for further feature extraction. Depth fusion across different levels is achieved through residual connections, resulting in the feature map   g ( X )  , a process detailed in Equation (5). Specifically, each Group Block is composed of 15 multi-feature fusion (MF) modules and a convolutional layer, with residual connections also employed within the Group Block to enhance the transmission and fusion of features. Next, lightweight gated channel attention (LGCA) and gated pixel attention (GPA) are utilized to re-calibrate the features at the channel and pixel levels to enhance the dehazing effect. Finally, the predicted haze-free image   F  ( X )  ∈  R  H × W × C     is generated through two convolution operations, a process that can be represented by Equation (6).


     g  ( X )  = C o n c a t (  g 1   ( C o n v  ( X )  )  ,  g 2   (  g 1   ( C o n v  ( X )  )  )  ,  g 3   (  g 2   (  g 1   ( C o n v  ( X )  )  )  )  )     



(5)






  F ( X ) = C o n v ( C o n v ( G P A ( L G C A ( g ( X ) ) ) ) ) + X  



(6)




where   C o n v   is a convolution operation that is characterized by a kernel size of 3 and a stride of 1.   g i   is the Group Block that maintains a constant channel size during computation,   i = 1 , 2 , 3  .   L G C A   and   G P A   represent the lightweight gated channel attention mechanism and gated pixel attention mechanism proposed in MFID-Net, respectively, which are components of the MF module.



3.1. Multi-Feature Fusion Module


We propose the multi-feature fusion (MF) module, designed for efficient extraction and fusion of image channel and pixel features, resolving the problem of residual fog patches in cases of high or uneven fog concentration. As shown in Figure 4, MF comprises three parts: a shallow feature extraction layer, LGCA, and GPA. The shallow feature extraction layer is responsible for learning the basic features of the image, such as edges, textures, etc. LGCA identifies and enhances channel features of significance. GPA, learning from the relationships among pixels and based on the importance of each pixel, performs fine-grained image adjustments, avoiding excessive smoothing or enhancement of local features. These three components work in conjunction, collectively improving the module’s feature extraction and fusion capabilities. Experimental results show that the algorithm performs better when convolutions are placed after the attention mechanisms.




3.2. Lightweight Gated Channel Attention


The FFA-Net [27] utilizes SE-Net [28] as the channel attention mechanism to capture the interrelationship among feature channels. However, this design introduces two issues. First, SE-Net relies on two FC layers to handle channel embeddings, which imposes significant demands on computational resources. Secondly, due to the complexity of the parameters in the FC layers, understanding and analyzing the inter channel interactions among different layers becomes exceedingly challenging. FC layers implicitly learn the channel relationships, leading to neuron output behaviors that are difficult to interpret. To address these problems, we propose a lightweight, interpretable, and efficient attention mechanism LGCA.



Figure 5 illustrates the detailed structure of LGCA, which comprises three components: a global context embedding layer, a channel normalization layer, and a gated adaptive layer. Initially, a parameterless    ℓ 1  +  ℓ 2   -norm is employed by the global context embedding layer to aggregate global context information. To adjust the proportions of   ℓ 1  -norm and   ℓ 2  -norm regularization and to endow the LGCA with learning capabilities, a global context embedding parameter  α  is introduced, which is capable of embedding global context information and adjusting the weights of individual channels before channel normalization. Subsequently, the stability and generalizability of the algorithm are ensured by the channel normalization layer. Finally, based on the output of the channel normalization layer, the gated adaptive layer adjusts the input channel features using gated weights  γ  and bias  β , and competition and cooperation among features are promoted through a gated “  t a n h  ” activation function. It has been demonstrated by experiments that the image dehazing effect is enhanced by LGCA while utilizing a reduced number of parameters.


   χ ^  =  F ^   ( χ | α , γ , β )  , α , γ , β ∈   N  C   



(7)




where   χ ∈   N   C * H * W     is a feature map, where H and W are the height and width of the feature map and C is the channel of the map. Let   χ = [  χ 1  ,  χ 2  , . . . ,  χ C  ]  , and   χ c   is a corresponding feature for each channel in  χ , where    χ c  =   [  X  c   i , j   ]   H × W   ∈   N   H × W     and   c =  1 , 2 , . . . , C   . The final output result   χ ^   is determined collectively by the trainable parameters  α ,  γ , and  β , where   α =   α 1  ,  α 2  , . . . ,  α C    ,   γ =   γ 1  ,  γ 2  , . . . ,  γ C    , and   β =   β 1  ,  β 2  , . . . ,  β C    . It is worth noting that the parameter complexity of LGCA is   O ( C )  , significantly less than the   O (  C 2  )   of SE-Net.



Global Context Embedding Layer: The performance of an algorithm is often constrained by the quality and quantity of the dataset. The aggregation of global context information can provide a broader and more comprehensive data background, thereby improving the precision of understanding input data. Importantly, the integration of global context information can help mitigate the influence of local features on algorithm performance, thereby enhancing the model’s robustness and generalizability. Alex et al. pointed out that a regularization function can establish connections among neurons [38,39]. In this regard,   ℓ 1  -norm is capable of reducing irrelevant feature parameters that have minimal or no impact on the task to zero, exploiting the sparsity of the network to achieve rapid feature selection.   ℓ 2  -norm, conversely, assigns higher weights to critical features and lower weights to secondary features, thereby preventing model overfitting. Based on these principles, LGCA has designed a global information embedding layer, the implementation of which is detailed in Equations (8)–(10).


   ℓ 1  =  |   ∑  i = 1  H     ∑  j = 1  W    χ  c   i , j   |   



(8)






   ℓ 2  =      ∑  i = 1  H    ∑  j = 1  W      χ  c   i , j    2    + ϵ   1 2    



(9)






   S c  =  α c   ℓ 1  +  ( 1 −  α c  )   ℓ 2   



(10)




where   ℓ 1   is the absolute value of the channel features of each pixel coordinate in the image and   ℓ 2   is the square root of the sum of squares of the channel values of the image pixel coordinates. Moreover, a constant  ϵ  is set to prevent the derivative from being zero.



Channel Normalization Layer: Normalization layers are employed to accentuate channels with high feedback values and suppress those with lower feedback values, thus achieving a dynamic adjustment of features [40,41,42]. LGCA utilizes    ℓ 1  +  ℓ 2   -norm formulations to normalize the channels, optimizing the weight distribution among them. The formula for channel normalization is as follows:


   S  c  *  =    c   S c       S c    2   =    c   S c     (   ∑  c = 1  c    S  c  2  + ε )   1 2     



(11)




where   S = [  S 1  ,  S 2  , . . . ,  S c  ]  ; to avoid excessively small values of   S c   when c is too large, we introduces a constant   C  , and a small constant  ε  is introduced to prevent abnormal algorithm performance when the denominator is zero. Notably, the channel normalization method proposed in this study (  O ( C )  ) involves much less computation than FC (  O (  C 2  )  ).



Gated Adaptive Layer: The gating mechanism is capable of enhancing the overall performance of the algorithm by inducing competition and cooperation among channel features [43]. Concurrently, the gating mechanism is instrumental in preventing the potential loss of features within deep networks, augmenting the algorithm’s flexibility and robustness and enabling adaptability to various task requirements. The LGCA augments each original channel feature   χ ^   by integrating a gating mechanism, thereby not only increasing the algorithm’s flexibility but also ensuring the integrity of the original feature   χ ^  . The specific definition of the gated adaptive layer is as follows:


    χ c  ^  =  χ ^   [ 1 + t a n h  (  γ c   S c *  +  β c  )  ]   



(12)







The operation of the gating mechanism allows the network to dynamically adjust. When a channel’s gating weight is positively activated, the channel is encouraged to compete with other channels. Conversely, if the gating weight is negatively activated, it encourages the channel to cooperate with other channels. That is, when both weights  γ  and biases  β  are zero, the original features are passed to the next layer without modification.




3.3. Gated Pixel Attention


The pixel attention mechanism adjusts the weight of each pixel in the image, thereby directing the algorithm’s focus towards areas with higher fog density. MFID-Net incorporates a gated pixel attention mechanism (GPA) to foster cooperation and competition among pixel features, enhancing the efficiency of defogging. The specific structure is depicted in Figure 6. Initially, the GPA sequentially conducts convolution, pooling, and convolution operations on the feature map   χ ^   to preliminarily extract features. Subsequently, the degree of activation for the gating mechanism is controlled utilizing weight parameters   δ = [  δ 1  ,  δ 2  , . . . ,  δ C  ]   and biases   μ = [  μ 1  ,  μ 2  , . . . ,  μ C  ]  . During the activation process, the GPA employs the   t a n h   function to modulate pixel-level features. Ultimately, the features processed by the activation function are subjected to multiplication operations and residual connections with the original feature map   χ ^  , resulting in the feature map   X *  , as manifested in Equation (13).


   X  c  *  =   χ c  ^   ( 1 + t a n h  (  δ c   ( C o n v  ( P o o l  ( C o n v  (   χ c  ^  )  )  )  )  +  μ c  )  )   



(13)




where in the shallow layers of the algorithm,   δ c   is set to be less than zero, indicating that they can promote collaboration between pixel features, which aids in more comprehensively capturing and utilizing image information. Conversely, in the deeper layers of the algorithm,   δ c   is set to be greater than zero, leading to competition between pixel positions, which helps to highlight key features and suppress unnecessary information. Empirical evidence demonstrates that GPA optimizes the defogging effect of MFID-Net.




3.4. Loss Function


In the field of image dehazing, commonly used loss functions primarily include L1, L2, and structural similarity index (SSIM) loss functions. Zhao et al. [44] posited that different loss functions might engender distinct issues in varying application contexts. While relying on the L2 loss function can achieve certain dehazing effects, it may lead to rasterization distortion in the restored images, negatively impacting the overall image quality. Employing the L1 loss function may result in relatively higher peak signal-to-noise ratio (PSNR) values for images, but this does not necessarily indicate that it is the optimal approach. Although using the L1 loss function enhances the PSNR values of images, it does not imply that it is the best choice. This is because the L1 loss function does not take into account the variances in human visual perception of images, which may lead to significant visual discrepancies between the restored images and the original authentic images. In contrast, the SSIM loss function, which integrates structural similarity and luminance information, better reflects human visual perception of image quality.



To achieve the dual objectives of optimizing visual quality and accuracy in image dehazing, this chapter adopts a hybrid loss function—MS-SSIM + L1 loss [44]—as specified in Equation (14). This mixed loss function ingeniously combines multi-scale structural similarity (MS-SSIM) with L1 loss, reducing prediction error while maintaining image structural details. The MS-SSIM component is employed to assess and optimize the structural similarity of images across different scales, while the L1 component focuses on minimizing the absolute error at the pixel level, thereby enhancing the accuracy of the restored images.


   L  M S − S S I M +  ℓ 1    = ρ ·  L  M S − S S I M   +  ( 1 − ρ )  ·  G  σ  G  M   ·  L  ℓ 1    



(14)




where  ρ  is a constant employed to balance the proportions of two loss functions. The experimental results of Zhao et al. [44] indicate that the optimal dehazing effect can be achieved when   ρ = 0.84  , and G represents the parameters of the Gaussian distribution.   L  M S − S S I M    and   L  ℓ 1    represent the MS-SSIM and L1 loss functions, respectively, with their specific formulas provided in [44]. By training with this loss function, MFID-Net is able to produce more realistic and clearer dehazed images.





4. Experiment and Result Analysis


4.1. Experimental Environment


In order to comprehensively evaluate the performance and effects of the algorithm, it is necessary to use datasets for training, testing, and validation. The commonly used image dehazing datasets include NYU2 [45], D-HAZY [46], and RESIDE [47]. We chose RESIDE for training, testing, comparison, and ablation experiments. This dataset consists of five subsets, including multiple synthetic and real foggy images. We selected 13,990 indoor and 13,990 outdoor images from it to ensure that the algorithm could handle images under various scenarios. To further validate the effect of the algorithm, we also selected 500 indoor and 500 outdoor images from the SOTS subset of the RESIDE dataset as the validation set. To evaluate the performance of the algorithm in real applications, we chose the real dataset from RESIDE for validation.



To ensure the fairness of the experimental results, all algorithms were trained in the PYTORCH framework and on two GTX 1080ti graphics cards. During the training process, we used the Adam optimizer for 100 epochs of training, with 5000 samples trained per epoch. The initial learning rate was set to 0.0001, and the learning rate was adjusted using the cosine annealing strategy until the learning rate dropped to zero. Finally, we chose the best-performing result during training as the final result of the experiment.




4.2. Evaluation Metrics


The evaluation of dehazing algorithms is commonly divided into subjective and objective assessments. Subjective assessment is primarily based on human visual perception to judge factors such as image clarity, color fidelity, and contrast. This method of evaluation is intuitive and easily understood, yet it possesses a certain degree of subjectivity due to the influence of personal preferences and observation conditions. Objective assessment, on the other hand, is conducted through quantifiable metrics such as peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), which quantify the dehazing effects and provide a replicable, standardized evaluation outcome.



Currently, PSNR and SSIM are widely accepted and employed as benchmarks for evaluation, allowing for the convenient comparison of the effectiveness between different dehazing algorithms. Consequently, we select PSNR and SSIM as the evaluation metrics for dehazing effectiveness. Specifically, SSIM measures the structural similarity between images, taking into account variations in brightness, contrast, and structure. By focusing on visual perception quality, SSIM is able to reflect the subjective experience of image quality more accurately, in Equation (15). PSNR, being a pixel-level metric based on error, is used to measure the similarity between the original and the processed images, proving highly effective in assessing image distortion, in Equation (16).


  S S I M  ( x , y )  =    ( 2  μ x   μ y  +  c 1  )   (  σ  x y   +  c 2  )     (  μ  x  2  +  μ  y  2  +  c 1  )   (  σ  x  2  +  σ  y  2  +  c 2  )     



(15)




where x and y are the two images being compared,   μ x   and   μ y   are the mean grayscale values of the images, and   c 1   and   c 2   are constants used to prevent division by zero.


  P S N R = 10 ∗ l o  g 10   (   M A  X 2    M S E   )   



(16)







  M A X   is the maximum color value of the image and   M S E   is mean squared error, which is defined as follows:


  M S E =  1  m n      ∑  i = 1  n    ∑  j = 1  m      | | X  ( i , j )   −   Y  ( i , j )  | |  2   



(17)




where   m ∗ n   is the pixel values of the image.



Concurrently, in order to comprehensively assess the performance of the LGCA algorithm, not only was the effectiveness of the algorithm itself considered, but also two critical indicators; namely, the number of parameters (Params) and computational cost (FLOPs) were specifically introduced for an in-depth analysis.




4.3. Results on RESIDE Dataset


In this section, our proposed algorithm MFID-Net is compared with classical single-image dehazing algorithms (DCP, AOD-Net, GCA-Net, GridDehazeNet, FFA-Net) to evaluate their dehazing effects on indoor datasets (IST) and outdoor datasets (OST). Table 2 presents a quantitative comparison of SSIM, PSNR, and rate of improvement-time on IST and OST. It is evident that MFID-Net achieved the best results in terms of both SSIM and PSNR indicators. Moreover, compared to GridDehazeNet and FFA-Net, which are based on multiple stacked attention mechanisms, MFID-Net also demonstrates superiority in computational speed. Figure 7 demonstrates the convergence properties of MFID-Net on the IST and OST datasets, validating the algorithm’s stability throughout the training process and unequivocally illustrating its ability to successfully and robustly converge to the anticipated optimal solution.



Figure 8 and Figure 9 provide a visual comparison of MFID-Net with other techniques on IST and OST. Although DCP removed most of the haze, the color saturation of its restored images was too high, leading to noticeable distortions. AOD-Net only eliminated superficial fog; the amount of remaining fog residue increased with rising haze concentration. GCA-Net still left a small amount of fog residue in areas with high fog concentration. Despite significant improvements in dehazing by GridDehazeNet and FFA-Net, they could still be enhanced in terms of image detail restoration, and problems like color block loss were common. In contrast to these algorithms, MFID-Net showed excellent performance in removing image haze and restoring image details and color. The images restored by MFID-Net were closer to the original images.



To further validate the superiority of MFID-Net in dehazing large areas of color blocks such as roads and sky, we selected parts of the outdoor dataset for comparison. The dehazing comparison is shown in Figure 10. It is clearly seen that DCP, when handling areas like the sky and road, tends to generate high-saturation images, and sometimes produces black blocks when dealing with large white areas. The images produced by AOD-Net have low contrast in the background. When GCA, GridDehazeNet, and FFA-Net deal with large color block areas such as sky and roads, their restoration of image details is not ideal, often resulting in problems like black blocks and ghosting. In contrast, MFID-Net, when handling large color block areas, is superior to the aforementioned methods in terms of restoring image color and preserving image details. More importantly, it also reduces the occurrence of undesirable phenomena such as black blocks and ghosting.



In the real world, foggy images usually have an uneven distribution of fog density, which adds complexity to the dehazing task of algorithms in real environments. Traditional single-image dehazing algorithms, when dealing with this issue, often lead to problems such as color deviation, loss of detail, and poor edge handling in the recovered images. Moreover, some deep-learning-based dehazing algorithms demonstrate insufficient generalization capability when dealing with real foggy images. Figure 11 shows the visual comparison of dehazing results on real outdoor foggy images between classical image dehazing algorithms and MFID-Net. It can be clearly seen that the results of the DCP algorithm are overly saturated in color overall, which easily leads to information loss in the image. AOD’s performance is not satisfactory when dealing with dehazing tasks in distant areas. As for GCA-Net, GridDehazeNet, and FFA-Net, their dehazing effects are not pronounced, only capable of removing surface fog, with FFA-Net even possibly leading to loss of image detail information. In contrast, the algorithm proposed in this paper, when dealing with these real foggy images, can not only effectively remove most of the fog but can also maintain a good preservation of image details and color authenticity.



Finally, Table 3 presents a comparison between LGCA and other attention mechanisms in terms of the number of parameters and computational cost. Through this comparison, it can be demonstrated that LGCA possesses characteristics of being lightweight.




4.4. Ablation Analysis


To further demonstrate the advantages of MFID-Net, a detailed ablation study was conducted in this section, where the various major components of the network were separately analyzed. These components include LGCA and GPA. To ensure the fairness of the experimental results, only one network component was added or modified in each ablation experiment.



To verify the effectiveness of LGCT in image dehazing tasks, we replaced the SE-Net channel attention mechanism used in FFA-Net with LGCT. In Table 4 and Figure 12, the results show that the model using LGCT performs better in image dehazing tasks, not only improving the values of SSIM and PSNR evaluation indicators but also reducing the number of network parameters. In Figure 12, it is evident that LGCT has successfully reduced the phenomena of halo and dark block generation when recovering large-area color blocks in images.



Furthermore, an ablation study was conducted on the global information embedding layer in LGCT, examining the effects under three different scenarios: using   ℓ 1  -Norm,   ℓ 2  -Norm, and    ℓ 1  +  ℓ 2   -Norm, respectively. The experimental results indicate that when    ℓ 1  +  ℓ 2   -Norm is employed to aggregate global contextual information, the model performs best in image dehazing tasks. The related experimental results are shown in Table 5 and Figure 13.



These experimental results further substantiate that MFID-Net is capable of achieving an SSIM of 37.42 and a PSNR of 0.9890, significantly higher than other methods. Simultaneously, it proves that each component involved in MFID-Net has played an essential role.





5. Conclusions


To address the limitations of traditional convolutional neural networks (CNNs) and attention mechanisms based on fully connected layers in feature extraction, this paper introduces a novel attention-based multi-feature fusion dehazing algorithm named MFID-Net. The core of the MFID-Net algorithm lies in proposing an innovative multi-feature fusion module (FM), specifically designed to handle areas in images with high haze concentration and significantly enhance the restoration capability for large areas of similar color blocks. The FM module integrates a lightweight gated channel attention mechanism (LGCA) and a gated pixel attention mechanism (GPA), enhancing the overall performance of the algorithm. LGCA replaces the traditional fully connected layers by combining L1- and L2-norms, not only effectively capturing global contextual information but also substantially reducing the demand for computational resources. Meanwhile, GPA optimizes the flow of feature information, reinforcing crucial information while suppressing irrelevant information, further improving the dehazing effects. This innovative FM module is not only structurally concise and highly adaptable but also easily integrated into various image dehazing frameworks. Validation through comparative experiments and ablation studies shows the significant performance improvements of MFID-Net: on the RESIDE indoor dataset, the SSIM reached 37.42 and the PSNR increased to 0.9890; on the RESIDE outdoor dataset, the SSIM reached 34.21 and the PSNR improved to 0.9844.



Despite the superior performance of MFID-Net in comparison to classical dehazing methods as evaluated by SSIM and PSNR, several limitations require careful consideration. Notably, the stability of the algorithm necessitates further enhancement, the training speed warrants acceleration, and the optimization of dehazing performance on real images continues to be a primary area of focus. Consequently, our forthcoming research endeavors will be dedicated to a comprehensive optimization of this model, aiming to expand the breadth of research within the domain of image dehazing tasks.
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Figure 1. An example of image dehazing when processing sky scenes. 
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Figure 2. The differences between FFA-Net and MFID-Net. 
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Figure 3. Structure of multi-feature fusion image dehazing network. 
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Figure 4. Structure of ultmi-feature fusion module. 
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Figure 5. Structure of lightweight gated channel attention mechanism. 
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Figure 6. Structure of gated pixel attention mechanism. 
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Figure 7. The convergence characteristics of MFID-Net on the IST and OST datasets. 
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Figure 8. Indoor results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDehazeNet, (f) FFA-Net, (g) MFID-Net, (h) Clear. 
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Figure 9. Outdoor results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDehazeNet, (f) FFA-Net, (g) MFID-Net, (h) Clear. 
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Figure 10. Large area color block results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDehazeNet, (f) FFA-Net, (g) MFID-Net, (h) Clear. 
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Figure 11. Real hazy image results. (a) Hazy, (b) DCP, (c) AOD-Net, (d) GCA-Net, (e) GridDehazeNet, (f) FFA-Net, (g) MFID-Net. 
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Figure 12. Comparison chart of results from ablation experiments on different module combinations conducted on IST. 
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Figure 13. Comparison of dehazing effects from ablation experiments on LGCT conducted on IST. (a)   ℓ 1   +   ℓ 2  -Norm, (b)   ℓ 2  -Norm, (c)   ℓ 1  -Norm. 
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Table 1. The quantitative comparison results of the impact of the key technologies introduced on FFA-Net. The arrows signify the value by which the evaluation metrics increase or decrease based on the FFA-Net baseline.
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Algorithms

	
Indoor Dataset (IST)

	
Outdoor Dataset (OST)




	
PSNR

	
SSIM

	
PSNR

	
SSIM






	
FFA

	
36.13

	
0.9842

	
33.38

	
0.9839




	
FFA + GPA

	
36.58 (0.45↑)

	
0.9845 (0.0003↑)

	
33.46 (0.08↑)

	
0.9839




	
FFA + LGCA

	
37.21 (1.08↑)

	
0.9880 (0.0038↑)

	
33.70 (0.32↑)

	
0.9841 (0.0003  ↑ )  




	
MFID-Net

	
37.42 (1.29↑)

	
0.9890 (0.0048↑)

	
34.21 (0.83↑)

	
0.9844 (0.0005  ↑ )  











 





Table 2. Quantitative comparisons for different methods. The Rate of improvement-time indicates the average speed improvement in processing an image of the same size compared to DCP.
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DateSet

	
Evaluation

	
DCP

	
AOD-Net

	
GCA-Net

	
GridDehazeNet

	
FFA-Net

	
MFID-Net






	
IST

	
PSNR

	
16.86

	
19.26

	
30.23

	
32.16

	
36.13

	
37.42




	
SSIM

	
0.8601

	
0.8414

	
0.9501

	
0.9836

	
0.9842

	
0.9890




	
OST

	
PSNR

	
19.37

	
20.17

	
29.76

	
30.86

	
33.38

	
34.21




	
SSIM

	
0.8431

	
0.8769

	
0.9498

	
0.9752

	
0.9839

	
0.9844




	
Rate of improvement-time

	
1

	
97.31%

	
97.39%

	
91.03%

	
94.94%

	
96.68%











 





Table 3. The comparison results of LGCA with other attention mechanisms in terms of parameter quantity and computational effort.
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	Evaluation
	SENet
	PA
	CA
	GPA
	LGCA
	CBAM
	SENet + PA
	SENet + GPA
	LGCA + PA
	LGCA + GPA





	Params
	512
	657
	776
	657
	192
	610
	1169
	1169
	849
	849



	FLOPs
	1024
	1314
	1552
	1314
	384
	1220
	3250
	3506
	1442
	1442










 





Table 4. Comparisons on SOTS indoor testset for different configurations.
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	SENet
	✔
	
	✔
	



	LGCA
	
	✔
	
	✔



	PA
	✔
	✔
	
	



	GPA
	
	
	✔
	✔



	SSIM
	36.13
	37.21
	36.58
	37.42



	PSNR
	0.9842
	0.9852
	0.9845
	0.9890



	Parameter(MB)
	14.20
	14.03
	14.20
	14.07










 





Table 5. Comparisons on SOTS indoor testset for LGCT.
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	   ℓ 1   -norm
	✔
	
	



	  ℓ 2  -norm
	
	✔
	



	   ℓ 1  +  ℓ 2   -norm
	
	
	✔



	SSIM
	36.95
	37.11
	37.42



	PSNR
	0.9862
	0.9830
	0.9890
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