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Abstract: The quest for efficient and safe trajectory planning in robotic manipulation poses significant
challenges, particularly in complex obstacle environments where the risk of encountering singularities
and obstacles is high. Addressing this critical issue, our study presents a novel enhancement of the
Fast Marching Tree (FMT) algorithm, ingeniously designed to navigate the complex terrain of Carte-
sian space with an unprecedented level of finesse. At the heart of our approach lies a sophisticated
two-stage path point sampling strategy, ingeniously coupled with a singularity avoidance mechanism
that leverages geometric perception to assess and mitigate the risk of encountering problematic
configurations. This innovative method not only facilitates seamless obstacle navigation but also
adeptly circumvents the perilous zones of singularity, ensuring a smooth and uninterrupted path for
the robotic arm. To further refine the trajectory, we incorporate a quasi-uniform cubic B-spline curve,
optimizing the path for both efficiency and smoothness. Our comprehensive simulation experiments
underscore the superiority of our algorithm, showcasing its ability to consistently achieve shorter,
more efficient paths while steadfastly avoiding obstacles and singularities. The practical applicability
of our method is further corroborated through successful implementation in real-world robotic arm
trajectory planning scenarios, highlighting its potential to revolutionize the field with its robustness
and adaptability.

Keywords: robotic arm trajectory planning; singularity avoidance; FMT path searching algorithm;
singularity metric

1. Introduction

With the increasing use of robotic arms in various industrial applications, robotic arm
trajectory planning has become a crucial topic of research. Trajectory planning for robotic
arms can be performed either in Cartesian space or joint space. Compared to trajectory
planning in joint space, Cartesian space trajectory planning offers more intuitive and
feasible solutions with better motion repeatability [1]. Cartesian space trajectory planning
is particularly useful for applications that require specific end-effector trajectories, such as
welding and operations in confined spaces [2]. However, one of the challenges in Cartesian
space trajectory planning is the presence of singularities, which are not encountered in
trajectory planning in joint space [3].

Several approaches have been developed for obstacle avoidance planning for robotic
arms in Cartesian space. Classic sampling-based methods include Rapidly Exploring Ran-
dom Tree Star (RRT*) and the probabilistic roadmap method (PRM), and many algorithms
have been developed based on these two algorithms. Janson et al. combined the respective
advantages of RRT* and PRM algorithms and proposed a Fast Marching Tree (FMT) [4].
Gammell et al. introduced the Batch Informed Trees (BIT*) algorithm and applied it to
dual-arm robot trajectory planning [5]. Rybus et al. used an improved version of BI-RRT*
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for planning Cartesian trajectories of robotic arms [6]. Chen et al. proposed BI-FMT* and
applied it to trajectory planning for spatial robotic arms [7]. Optimization-based methods
have also been utilized for trajectory planning. For example, Jin et al. used Chaos Particle
Swarm Optimization (CPSO) combined with damping least squares (DLS) and feedback
compensation to avoid singularity [8]. Zhao et al. proposed a dynamic damping least
squares method based on the minimum singular value to adjust Cartesian space trajectories
in singular regions [9]. Riboli et al. used the least squares method and optimized the
trajectory using B-splines [10]. Ju et al. introduced a model-based approach for robotic
arm trajectory planning. They developed a predictive obstacle avoidance model that takes
into account the geometric configuration of the arm. By considering motion state cost,
frontal collision cost, and approach time cost, they formulated a cost function. This method
also accounts for the deformation of the model when approaching singular points [11].
Learning-based approaches have also been explored. Fujii et al. used a novel neural net-
work for gap inference to accelerate the generation of robotic arm motion trajectories [12].
Liu et al. proposed a model-free supervisor executor deep reinforcement learning method
for path planning of UR5 robotic arms [13].

In the above discussion, several methods for obstacle avoidance planning of robotic
arms in Cartesian space were discussed. Among them, the sampling-based method is
simple, intuitive, and easy to understand and implement. Due to the randomness of the
sampling, it also performs well in complex spaces. With a moderate number of sampling
points, the computational complexity is not high. The optimization-based method requires
setting appropriate optimization objectives. It consumes a lot of computation in complex
spaces and is prone to becoming trapped in local optima. The model-based method relies
on mathematical models established based on prior knowledge, and the accuracy of the
modeling has an impact on the results. The learning-based method requires a large amount
of data for training and has poor interpretability. Therefore, the sampling-based method
has the advantages of speed, robustness, and wide applicability. As for the treatment of
singularities in robotic arms, the mentioned methods do not explicitly identify or avoid
singular points. Instead, they handle the singular regions by applying certain treatments to
the Jacobian matrix to ensure smooth passage through the singular points.

Processing the Jacobian matrix in a certain way can allow the robotic arm to work in
the singular region, such as through methods like damping least squares. However, these
methods have issues with error accumulation and multiple solutions [14]. Therefore, when
it is not necessary to pass through the singular region, it is better to select a reasonable
trajectory that avoids singular points. Liu Y et al. decomposed the Jacobian matrix and
eliminated singular points by determining whether the determinant of the Jacobian matrix
is zero, ensuring that the trajectory solutions obtained through genetic algorithms were
feasible [15]. Lu L et al. used the condition number index as an optimization indicator
and proposed a high-order joint smooth trajectory planning method for singularity avoid-
ance [16]. Beck F et al. proposed an artificial potential field method based on known
singular configurations, incorporating manipulability indicators as optimization criteria
for singularity avoidance [17]. Haviland J et al. proposed a robotic arm control method
that maximizes manipulability indicators [18]. Manavalan J et al. presented a robotic arm
control strategy that autonomously learns task constraints and plans trajectories by maxi-
mizing manipulability indicators [19]. Hao J analyzed the singular configuration of robot
trajectories using dexterity indicators and applied them to robotic arm path planning [20].
Cao B et al. constructed the workspace of a robotic arm using flexibility indicators and
applied it to grasping tasks [21]. To better utilize the geometric shape of the manipulability
ellipsoid, Petrovi ć L et al. used Riemann distance to measure the proximity between a
given configuration and a singular configuration, proposing geometry-aware singularity
avoidance costs [22,23]. These methods primarily utilize optimization-based trajectory
planning approaches for singularity avoidance without combining their optimization ob-
jectives with sample-based path planning methods. Moreover, these methods focus on
improving the motion performance of the robotic arm and rarely discuss the issues of
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obstacle avoidance and singularity avoidance simultaneously. Table 1 shows the methods
used and problems addressed by all the scholars mentioned above.

Table 1. Problems addressed and methods used by different scholars in literature reviews.

Reference Authors Problem Addressed Methods Used

[4] Janson et al. Merging RRT* and PRM for obstacle avoidance planning. FMT*

[5] Gammell. Enhancing FMT* for dual manipulator obstacle avoidance. BIT*

[6] Rybus. Applying bidirectional RRT algorithm to plan collision-free trajectory
of robotic arms. BI-RRT*

[7] Chen et al. Apply bidirectional FMT* to handle spacecraft power failure and
arm deployment. BI-FMT*

[8] Jin et al. Applying CPSO to solve the problem of singular points in the
trajectory of robotic arms. CPSO with DLS

[9] Zhao et al. Adjusting robotic arm trajectories based on minimum singular values. Dynamic DLS

[10] Riboli et al. Trajectory planning of gantry system using B-spline and least
squares method. Least squares with B-splines

[11] Ju et al. Triangular collision planes and cost functions for obstacle
avoidance planning.

Geometric-based predictable
obstacle avoidance

[12] Fujii et al. Real-time trajectory smoothing via shortcutting for manipulators. Learning-based approaches

[13] Liu et al. Model-free deep learning for UR5 robotic arm path planning. Deep reinforcement learning

[15] Liu Y et al. Genetic algorithm with singularity avoidance for
trajectory optimization. AEGA-SA

[16] Lu L et al. Differential vector optimization for smooth, singularity-free
trajectory planning.

High-order joint smooth trajectory
planning method

[17] Beck F et al. Custom potential functions for singular configuration avoidance. Improved artificial potential
field method

[18] Haviland J et al. Learning-based control strategy for robotic arm task constraints. A purely reactive method for
maximizing manipulability

[19] Manavalan J et al. Planning with maximized manipulability without known constraints. Learning-based methods combine
manipulability index

[20] Hao J Addressing singularities with dexterity index and
trajectory replanning.

Optimization methods using
dexterity index

[21] Cao B Optimizing humanoid robot vision and operation through
torso positioning.

Trajectory planning method
combined with a dexterity map

[22,23] Petrovi ć L et al. Introducing geometric perception singularity index for
trajectory planning.

Geometry-aware Singularity
Avoidance costs

In response to the aforementioned issues, this paper integrates the geometry-aware
singularity avoidance cost with the FMT* algorithm to generate a path plan for obstacle and
singularity avoidance in the Cartesian space of the robotic arm. To ensure a more suitable
quantity and distribution of sampling points in space, a two-stage sampling point genera-
tion strategy is proposed. To avoid interference between obstacles and the robotic arm’s
joints, a geometric envelope method is used for collision detection. To achieve smoother
generated paths, a quasi-uniform cubic B-spline curve is employed for path optimization.
These improvements enable the proposed algorithm to simultaneously achieve good per-
formance and acceptable computational complexity. Through simulation experiments and
real-world robotic arm verification, the proposed algorithm demonstrates shorter path
lengths and stable obstacle avoidance capabilities compared to other methods. These
experimental results showcase the superiority and potential of the proposed algorithm in
robotic arm obstacle avoidance planning.

2. Methods

The trajectory planning and singularity avoidance algorithm for robotic arm obstacle
avoidance based on an improved FMT is shown in Figure 1. The system receives inputs
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of obstacle information in Cartesian space, along with the start and end coordinates of
the robotic arm end effector. First, path points are sampled in the robotic arm workspace
environment. After initial sampling, initial path generation, and secondary sampling, the
sampling phase ends. The next phase is the path expansion phase, where the path points
obtained from secondary sampling are connected. Starting from the root node, which is
the start point of the robotic arm end effector, an improved cost function that includes
singularity avoidance is used to expand the nodes. At each expansion, the path point with
the minimum cost within the connection radius is searched. When there are no unconnected
path points in the space, the path optimization phase is entered. Each complete path is
checked for collisions to prevent collisions between the robotic arm links. Then, the cost of
collision-free paths is calculated, and the path with the minimum cost is obtained. Finally,
the trajectory is smoothed using B-spline curves to achieve a smoother motion.
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Figure 1. The workflow of improving the FMT algorithm is shown in the figure, where the blue dots
represent the starting point of the robotic arm path planning, and the red dots represent the endpoint
of the path planning.

The improved FMT algorithm is presented as shown in Algorithm 1. The inputs to the
algorithm are the sampling space X f ree, path search starting point Xinit, path search goal
point xgoal , number of sample points n, initial path expansion radius R1, and secondary
path expansion radius R2. Initially, the standard FMT is used to generate a feasible path set
π. Subsequently, the feasible path set is utilized to obtain a secondary sampling path point
collection V. Afterward, the collection is used for secondary path expansion to obtain a
candidate path set Π. Finally, the paths in the set are filtered and smoothed to obtain the
optimal path.

Algorithm 1 Improved FMT*

Data: Xfree, Xinit, Xgoal, n, R1, R2
Result: BestPath

1: π←STANDARD FMT*(Xfree, xinit, xgoal, n, R1)
2: V←SECONDARY SAMPLING(Xfree, π, n, width)
3: II←SECONDARY EXPANSION(V, xinit, xgoal, R2)
4: BestPath← PATH OPTIMIZATION(Π )

2.1. Principles of the FMT* Algorithm

The FMT algorithm searches for the optimal path by constructing a search tree. Firstly,
a certain number of path points are randomly sampled from the global exploration area.
Three sets are created to classify the path points: the Vunvisited set consists of path points
that have not been added to the tree, the Vopen set consists of path points that have been
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connected to the tree and need to be expanded, and the Vclose set consists of path points
that have been added to the tree and cannot be expanded.

One iteration of the algorithm is depicted in Figure 2. After the initial point xinit is
expanded in the first round, it is moved from the Vopen set to the Vclose set. In the subsequent
steps, a point z is selected from the Vopen set. Within its connection radius, candidate path
points (e.g., point x) are identified. All points in the Vopen set that fall within the connection
radius of the candidate path point x are then connected. The algorithm calculates the
cost of each candidate connection and selects the minimum cost collision-free path. The
newly added point is then classified into the Vopen, Vclose, or Vunvisited set, and the iteration
is completed.
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FMT* enhances the limitations of RRT* and PRM* by combining their features. Like
RRT*, FMT* utilizes a search tree for path exploration. However, instead of simply sampling
and connecting a path point to the nearest node, FMT* incorporates a cost calculation
process to ensure higher-quality paths. In contrast, both FMT* and PRM* involve sampling
a certain number of paths in space. However, PRM* requires constructing a complete
path graph and searching for the optimal path within it, which demands substantial
computational resources.

During the process of connecting path points, the FMT* algorithm relies on a loss
function to evaluate the quality of the path and selects the path point with the minimum
loss to expand the search tree. This process adopts the idea of dynamic programming and
follows the following state transition equation:

c(x) = min{c(y) + Cost(y, x)} where ∥y− x∥ < rn (1)

In Equation (1), y ∈ Vopend, where y is a point that has been connected on the search
tree, x ∈ Vunvisited, where x is a candidate path point within a radius rn of y. c(x) represents
the lowest cost from the point x to the root node, and c(y) represents the cost from node
y to the root node. Cost(y, x) is the cost from node y to node x, and the standard FMT*
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algorithm uses the Euclidean distance from a node to the root node as the cost function for
path expansion.

The pseudocode for the standard FMT* is listed in Algorithm 2. The initialization
phase of the standard FMT* starts by resetting the flag (lines 2–3), followed by generating a
set of points using random sampling in the sampling space X f ree (line 4). Subsequently, a
search tree T is initialized with the start point and the set of points (line 5). Set Xinit as the
initial frontier point z (line 6). During the path expansion phase of the standard FMT*, if the
conditions for continuing path expansion are met, the Expand function is used to iteratively
generate the search tree in the search space, with the initial expansion connection radius set
to R1, and only using path length as its loss function. If enough feasible paths are found,
the path search is deemed successful, and the search tree T and the path set π are returned
as results; otherwise, an empty set is returned and the program terminates (lines 7–15).

Algorithm 2 Standard Fast Marching Tree (FMT*)

1: function STANDARD FMT*(Xfree, xinit, xgoal, n, R1)
2: success = FALSE
3: stop_expansion = FALSE
4: S←xinit ∪ xgoal ∪ PSEUDO RANDOM SAMPLING(Xfree, n)
5: T←INITIALIZE(S, xinit)
6: z→xinit
7: while (stop_expansion = FALSE and success = FALSE) do
8: {T, z, success, stop_expansion}←EXPAND(Xfree, xinit, xgoal, R1)
9: if (success = TRUE) then
10: π←PATH(xinit, xgoal, T)
11: else
12: π→Ø
13: end if
14: end while
15: return π, T
16: end function

2.2. Improved Path Point Sampling Strategy

Although FMT* has made improvements compared to RRT* and PRM*, there are
still opportunities for optimization in certain aspects. For example, FMT* uses a random
sampling of path points in the sampling space, resulting in paths that are heavily influenced
by randomness. Additionally, the fixed connection radius leads to lower path search
efficiency. To address these issues, this paper proposes an improved path point sampling
strategy that is performed in two stages.

2.2.1. Initial Sampling

The original FMT* algorithm utilizes pseudo-random sampling to sample a certain
number of path points in the search space. Sobol sampling, on the other hand, is a determin-
istic low-discrepancy sampling method. Compared to random sampling, Sobol sampling
can better fill the search space, reducing overlapping and redundant samples, as shown
in Figure 3. Therefore, Sobol sampling finds wide applications in numerical integration,
signal processing, computer graphics, and other fields.

The Sobol sequence can be represented as the product of the Van der Corput sequence
and the Sobol-generating matrix C. For a Sobol sequence Xn with n numbers, it can be
expressed as follows:

Xn = [(φ2, C(0)), (φ2, C(1)) . . . , (φ2, C(n))] (2)

where
φb, C(i) = (b−1 . . . ,b−M)[C(a0(i) . . . , aM−1(i))

T ] (3)

In the Equation (2), φb represents the Van der Corput sequence in base b. The variable
i represents the i-th number in the Van der Corput sequence (i = 0, 1, 2. . .n). In Equation (3),
aM(i) represents the value of the M-th digit of the i-th number in the Van der Corput



Appl. Sci. 2024, 14, 3241 7 of 22

sequence in base b. The Sobol-generating matrix C is calculated based on the generating
polynomial and the direction numbers. For Sobol sampling in different dimensions, the
generating matrix C is different. For example, a 2-dimensional Sobol sampling requires
a 2 × k generating matrix, where k represents the number of direction numbers. The
calculation of the generating matrix is complex and will not be further discussed here.
Joe S. et al. have found the highest-dimensional Sobol-generating matrix of dimension
21,201, which can be referenced for interested readers [24,25]. In practical applications,
pre-calculated generating matrices are used, eliminating the need for complex calculations
and resulting in higher sampling efficiency.
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Using Sobol sampling in the search space for initial sampling, followed by setting
a larger connection radius rn, the original FMT* algorithm is used to generate the initial
feasible path. Sobol sampling ensures a more uniform distribution of sampling points,
while using a larger connection radius allows for faster expansion of the feasible paths. As
a result, collision-free paths from the start to the goal can be quickly generated.

2.2.2. Secondary Sampling

After completing the initial sampling, a certain number of feasible paths are obtained.
These paths serve as reference paths for the secondary sampling. The initial sampling
points are cleared, and then secondary sampling is performed within a certain range of
the reference paths, as shown in Figure 4. The process of secondary sampling can be
represented by pseudocode.

The pseudocode for secondary path point sampling is shown in Algorithm 3. The
process starts by segmenting and sorting the path set, followed by clearing other path
points in the sampling space (lines 2–5). The width of all path segments is then expanded
(line 7), and the secondary sampling space is defined as the intersection of the path space
and sampling space (line 8). Sobol sampling is conducted in the secondary sampling space
(line 9). For each sample, it is necessary to determine whether the sampling point falls
within an obstacle; if it does, the point is deleted; otherwise, it is retained and added to the
point set V. Finally, set V is returned as the result of secondary sampling (lines 10–17).
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Algorithm 3 Secondary Sampling

1: function SECONDARY SAMPLING(Xfree, π, n, width)
2: path←INITAL PATH SEGMENTATION(π)//Segmenting the path formed by standard FMT*
3: path_num←PATH SORT(π) //sort the path segments and return the total number
4: CLEAR(Xfree) //clearing initial sampling points
5: i = 0
6: while (i < path_num) do
7: XPath←RESIZE PATH WIDTH(width)//resize the width of the initial sampling paths
8: XPath ∩ Xfree = XSample
9: Secondary_Point←SOBOL SAMPLING(XSample, point_num)
10: if OUTSIDE OBSTACLE(SecondaryPoint) == TRUE then
11: DELETE(SecondaryPoint)
12: else
13: V←APPEND(SecondaryPoint)
14: end if
15: i = i + 1
16: end while
17: return V
18: end function
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From Figure 4, it can be seen that the secondary sampling path points are distributed
around the initial feasible path, which effectively improves the quality of path searching.

2.3. Path Connection

The proposal adopts a two-stage approach for path point sampling and path con-
nection. In the initial sampling stage, Sobol sampling is used throughout the sampling
space. After the initial sampling, the Euclidean distance is used as the cost for the initial
path connection. In the secondary sampling stage, the sampling is performed around the
paths connected in the initial stage, and the secondary path connection uses both Euclidean
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distance and a geometric perceptual singularity metric as costs. Different connection radii
are set for the two stages of path connection.

The pseudocode for the secondary path expansion is presented in Algorithm 4. The
algorithm begins with the initialization phase, where all points in set V except Xinit are
placed into the unvisited set Vunvisited (line 2), Xinit is placed into Vopen (line 3), and Vclose
is initialized as an empty set (line 4). The initial frontier point z is set to Xinit (line 5),
and points within the connection radius R2 of the frontier point z are noted as Nz (line 6).
While the current frontier point z is not the goal point xgoal , for a point x in Nz, the set Nx
represents the points within the connection radius R2 (lines 7–9). The points in Nx that
belong to Vopen are noted as Ny (line 10), and then the point ymin in Ny with the minimum
cost to expand is found (line 11). If the attempted connection path between ymin and x is
collision-free (line 12), the connection between ymin and x is added to the tree T (line 13),
and the cumulative cost c(x) is updated based on the minimum cost from ymin to x (line 16).
If node x successfully connects, it is moved to the open list Vopen, while node y is moved
into Vclose (lines 19–20). If Vopen is empty, indicating there are no more points available
for expansion, the stop_expansion flag is returned (line 22). Finally, the frontier point z is
changed in preparation for the next expansion (line 23). After completing all loops, the
path set Π, search tree T, and the success flag are returned.

Algorithm 4 Secondary Expansion

1: function SECONDARY EXPANSION(V, xinit, xgoal, R2)
2: Vunvisited←V\{xinit}
3: Vopen←{xinit}
4: Vdosed←Ø
5: z←xinit
6: Nz←Near(V\{z}, z, R2)
7: while (z ̸= xgoal) do
8: for x ∈ Nz do
9: Nx←Near(V\{x})
10: Ny←Nx ∩ Vopen
11: ymin←argminy∈Ny {c(y) + Cost(y, x)}
12: if CollisionFree(ymin, x) then
13: T←T ∪ {(ymin, x)}
14: Vopen,new←Vopen,new ∪ {x}
15: Vunvisited←Vunvisited\{x}
16: c(x) = c(ymin) + cost(ymin, x) + sigcost(x)
17: end if
18: end for
19: Vopen←{Vopen ∪ Vopen,new}\{z}
20: Vclosed←Vclosed ∪ {z}
21: if Vopen = Ø then
22: return stop_expansion
23: end if
24: z←argminy∈Vopen {z}
25: end while
26 : return Π, T, success
27: end function

2.3.1. Two-Stage Connection Parameter Settings

In the path connection process of FMT, the connection radius rn is a constant that re-
mains unchanged throughout, which limits the flexibility of path exploration. For instance,
when the distance between the start and goal points is large, a small connection radius
would require a significant number of iterations. Conversely, if the distance between the
start and goal points is small, using a larger connection radius would result in overly linear
optimal paths. Figure 5 depicts the search tree and optimal paths generated by FMT with
different connection radii.
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To enhance the flexibility and efficiency of path expansion, different connection radii
are set for each stage using Equation (4):

rn =
λVspace

Nsample
(4)

Nsample represents the number of sampled points, Vspace represents the volume of the
sampling space, and λ represents the connection coefficient. After the initial sampling, in
order to find more feasible paths from the start to the goal point within a smaller number
of iterations, λ is set to 5. This allows for larger connection step sizes in the search tree,
resulting in fewer iterations needed to find feasible paths. After the secondary sampling, a
set of path points is formed around the feasible paths. To explore more path points in the
search tree, λ is set to 2.5. This restricts the search range for each step, leading to increased
iterations, but it also brings diversity to the path search.

2.3.2. Avoiding Singularities Cost

The original FMT* algorithm only considers the Euclidean distance as the cost for
path expansion, resulting in the generation of the shortest path. However, for trajectory
planning of robotic arms in Cartesian space, avoiding singularities is an important consid-
eration. Therefore, the singularity index can be incorporated into the cost function of the
FMT* algorithm.

Defining the joint space Q and the operational space X (in Cartesian space), the
following relationship holds:

f : Q→ X (5)

By using the forward kinematics matrix f , the joint space Q of the robotic arm can be
mapped to the operational space X.

J(q) =
∂ f
∂q

(6)
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The Jacobian matrix J(q) is the partial derivative of the forward kinematics matrix f
concerning the joint angle vector q, determined by the configuration of the robot’s joints.
The singularity of the robotic arm can be determined by the determinant of the Jacobian
matrix. If the determinant of the Jacobian matrix is zero, i.e., J(q) = 0, it indicates that the
robotic arm is in a singular configuration.

According to the theory of singular value decomposition of matrices, the Jacobian
matrix of any joint configuration can be decomposed into singular values.

J(q) = U ∑ V (7)

where

Σ =


σ1 0 . . . 0 0
0 σ2 . . . 0 0
...

...
...

...
0 0 . . . σm 0

 (8)

U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices, Σ is a diagonal matrix with
singular values of the Jacobian matrix J(q) as its elements, and σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0.

While the Jacobian determinant can qualitatively determine singularity, many singu-
larity indices use the singular values of the Jacobian matrix to quantitatively measure the
distance between the robotic arm and the singular configuration.

The condition number K(J) is defined as the ratio between the maximum singular
value σ1 and the minimum singular value σm of the Jacobian matrix J(q). The dexterity
index D(J) is derived from the condition number index and is related to the minimum
condition number of the intermediate joint angles qi(i = 2, 3, 4, 5). The manipulability index
W(J) is the determinant of the product of the Jacobian matrix and its transpose. When the
manipulability index W(J) = 0, the robotic arm is in a singular region, and the larger the
value of W(J), the further the distance from the singularity region.

The aforementioned singularity indices are all related to the manipulability ellipsoid.
The manipulability ellipsoid can be described by the singular value matrix, and the principal
axes of the manipulability ellipsoid are determined by the singular values σi of the Jacobian
matrix. Figure 6 shows the manipulability ellipsoid of a two-link robotic arm under
different joint configurations.
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From Figure 6, it can be observed that as the two-link robotic arm moves closer to
the singularity point, the area of the manipulability ellipsoid becomes smaller and flatter
in shape. Conversely, when the arm moves further away from the singularity point, the
area of the manipulability ellipsoid becomes larger and approaches a more spherical shape.
The shape of the manipulability ellipsoid is related to the singular values of the Jacobian
matrix; thus, the singularity of the robotic arm can also be determined using the shape of
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the manipulability ellipsoid. Recently, geometrically aware singularity indices have been
proposed [22,23].

For a trajectory in joint space, the geometrically aware singularity cost can be repre-
sented using Equation (9):

C[q(t)] =
n

∑
i=0

d
(

k, J(qi)JT(qi)
)2

=
n

∑
i=0

∥∥∥log
(

k−
1
4 J(qi)JT(qi)

)∥∥∥2

F

(9)

C[q(t)] represents the singularity cost function of the trajectory q(t). qi (i = 0, 1 . . . n)
represents each planning point on the trajectory. J(qi) represents the Jacobian matrix at
the planning point qi. d(A, B) represents the Riemann distance between matrices A and
B. ∥. . .∥F represents the Frobenius norm. k is a diagonal matrix with elements σk as given
values, satisfying the following equation:

k =

σk
2 0 0

0
. . . 0

0 0 σk
2

 where σk ≥ σmax (10)

Equation (9) uses the square of the manipulability index multiplied by a scaling factor
and takes the square of the Frobenius norm as the cost. The essence of this equation is
to use the Riemann distance between the matrix k and the matrix J(qi)JT(qi) as the cost.
The matrix k represents the ideal case where all singular values of the Jacobian matrix of
the robotic arm are greater than the maximum value σmax. In this case, the manipulability
ellipsoid is in its most ideal shape. On the other hand, the matrix J(qi)JT(qi) represents
the manipulability ellipsoid at the planning point qi. Therefore, the higher the Riemann
distance between the manipulability ellipsoid at qi and the ideal manipulability ellipsoid,
the higher the singularity cost.

For trajectory planning in Cartesian space, the trajectory can be transformed to joint
space using inverse kinematics f−1:

q(t) = f−1(x(t)) (11)

Thus, the equation for the geometrically aware singularity cost in Cartesian space is
given by Equation (12):

C[x(t)] =
n

∑
i=0

d
(

k, J
(

f−1(xi)
)

JT
(

f−1(xi)
))2

=
n

∑
i=0

∥∥∥log
(

k−
1
4 J
(

f−1(xi)
)

JT
(

f−1(xi)
))∥∥∥2

F

(12)

where x(t) represents the end effector trajectory in Cartesian space, and xi represents the
i-th end effector pose on the trajectory. When |J| = 0, it is not possible to compute the
inverse kinematics solution, so C[x(t)] is set to infinity.

Finally, the singularity index mentioned above is incorporated into the cost function of
FMT* path planning, forming a new cost function c(x)∗ with singularity avoidance, defined
as Equation (13):

c(x)∗ = min{c(y) + Cost(y, x) + sig cos t(x)} (13)

where
sig cos t(x) =

∥∥∥log
(

k−
1
4 J
(

f−1(xx)
)

JT
(

f−1(xx)
))∥∥∥2

F
(14)

xx represents the end effector pose of the robotic arm at path point x. Compared to
the original cost function, which only used the Euclidean distance from the path point x to
the root node as the cost, the improved cost function also added the singularity index of
Riemannian geometric perception as the cost function, so it can avoid the singularity of the
robotic arm.
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2.4. Path Optimization

To obtain the optimal path from the end effector trajectories generated by the improved
FMT* algorithm, the following steps are taken. Firstly, the geometric envelope method is
employed to check for interference between the robotic arm links and obstacles. Trajectories
that result in collisions are removed. Then, the cost of each remaining path is calculated,
and the path with the lowest cost is selected. Finally, the chosen path is smoothed using
the B-spline algorithm.

2.4.1. Collision Detection

In terms of collision detection, the end effector trajectories are first input into a simu-
lation environment built based on the real working environment of the robotic arm. The
simulated robotic arm moves along the planned path, and the interference between each
link and obstacle is detected. This process can generally be carried out using a geometric
envelope method. As shown in Figure 7, the robotic arm is wrapped with simple geometric
shapes, and collision detection is performed using envelope models. The advantage of
this method is that it requires less computational effort for collision detection, as it only
needs to calculate the minimum distance between the envelope model and the obstacles to
determine if a collision occurs. If a collision is detected at a certain point along the trajectory,
the inverse kinematics of the robotic arm at that point can be traversed to check if all joint
combinations lead to collisions. If a collision-free inverse solution cannot be found, the
trajectory is discarded.
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2.4.2. Path Cost Calculation

After completing the collision detection, the cost of all collision-free trajectories is
calculated. Since the cost of each path point has already been calculated during the
expansion of the path points, the total path cost is the sum of the costs of all path points on
that path, as shown in Equation (15):

Cpath =
n

∑
i=0

c(xi)
∗ (15)

c(x i)
∗ represents the cost of the i-th path point in the improved FMT* algorithm. This

cost is determined by the distance from the path point to the root node and the distance
from the path point to the singularity region. Using this equation, the path with the
minimum cost can be obtained.

2.4.3. Path Smoothing

To make the final path smoother, B-spline curves are used to make the robotic arm
trajectory smoother. The B-spline curve can be represented using the Equation (16):

p(u) =
n

∑
i=0

PiBi,k(u) (16)
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where Pi(i ∈ [0, n]) represents the i-th control point of the B-spline curve, Bi,k(u) represents
the i-th k-th order B-spline basis function. The basis function can be defined using the de
Boor–Cox recursion formula:

Bi,k(u) =


{

1, ui ≤ u ≤ ui+1

0, otherwise
k = 0

u−ui
ui+k−ui

Bi,k−1(u) +
ui+k+1−u

ui+k+1−ui+1
Bi+1,k−1(u) k ≥ 1

(17)

In Equation (17), if both the numerator and denominator are zero, then the term is
assumed to be 0. If the denominator is zero and the numerator is not zero, then the term is
assumed to be 1. ui(iϵ[0, n + k]) is called the knot vector, which is defined as Equation (18):

[u0, u1, · · · , uk, uk+1, · · · , un, un+1, · · · , un+k] (18)

Based on the knot vector, n + k segments of the B-spline curve can be generated.
The knot vector can control the shape of the B-spline curve and its local characteristics
near the control points. Commonly used knot vectors include uniform knot vectors and
quasi-uniform knot vectors. A uniform knot vector is a vector with equal intervals between
the nodes, which can create a uniformly distributed curve. A quasi-uniform knot vector
has duplicate elements at both ends of the knot vector, which can make the tangent of the
spline curve at the beginning and end parallel to the line connecting the control points.

In this paper, the path points generated by the improved FMT* algorithm are used as
control points, and quasi-uniform cubic B-spline curves are used as the curves for trajectory
planning to make the planned trajectory smoother.

2.5. Computational Complexity
2.5.1. Time Complexity Analysis

The improved FMT algorithm proposed in this article first uses standard FMT* to
generate feasible paths. For the standard FMT*, suppose the number of sampling points is n,
and if the connection radius is set to the maximum distance between sample points, the time
complexity is O(n log(n)). Then, in the second sampling step, it is necessary to segment
and sort the feasible paths, and expand the width of the feasible paths. The time complexity
of this step is linearly related to the number of path points, so its time complexity can
be seen as O(n). In the subsequent collision detection phase, each path point needs to
be filtered using a cycle, so its time complexity is also O(n). For the secondary sampling
path expansion, compared with the path expansion of the original FMT* algorithm, the
improved FMT* uses a singularity avoidance cost function based on geometric perception,
which needs to calculate the inverse kinematics solution of the inner point of the connection
radius in each iteration cycle, so its time complexity is O(n2). Therefore, the total time
complexity of improving FMT is as Equation (19):

O(n log(n)) + O(n) + O(n) + O(n2) ≈ O(n2) (19)

2.5.2. Space Complexity Analysis

At the beginning of the algorithm, it needs to be in free space X f ree. Generate a set of
sample points internally. Each sample point needs to store its coordinates in space, which is
usually proportional to the dimension (d) of the problem. Therefore, the space required to
store all sample points is O(nd). However, when analyzing the overall spatial complexity,
it is common to consider (d) as a constant, thus simplifying the spatial complexity of
sample point storage O(n). The FMT algorithm constructs a path by checking the potential
connections between sample points, which requires storing connection information between
point pairs. In the worst-case scenario, if each point is connected to all other points, the
number of connections may be close to O(n2). However, due to the fact that the FMT
algorithm uses a radius-based neighborhood search, not all pairs of points will form a
connection, which determines whether points can be connected. In fact, as the number of
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sample points increases, the average number of connections at each point is influenced by
the choice of connection radius, but it does not increase in a square relationship with the
number of points. The spatial complexity of improving FMT* satisfies Equation (20):

O(n) < O < O(n2) (20)

3. Experiment and Result

This paper first verifies the obstacle avoidance trajectory planning performance and
singularity avoidance performance of the improved FMT* algorithm through simulation
experiments on a personal computer. Then, the algorithm proposed in this paper is applied
to the obstacle avoidance trajectory planning of the AUBO-I5 robotic arm.

3.1. Obstacle Avoidance Trajectory Planning Simulation Experiment

In order to evaluate the obstacle avoidance trajectory planning performance of the
improved FMT* algorithm in Cartesian space, a three-dimensional path planning simula-
tion environment was built on a computer based on the actual scenario. The length, width,
and height of this rectangular space were set to 20 m, 20 m, and 5 m, respectively. A green
point was set as the starting point and a red point as the destination. The coordinates of
the starting point and destination were (10, 8, 1) and (12, 14, 1), respectively. There was a
wall-shaped obstacle with a height of 3 m between the starting point and the destination.
In the same simulation environment, the algorithm proposed in this paper was compared
with three other path-planning algorithms in a comparative experiment. The results of the
path planning are shown in Figure 8, where the green line segments represent the sampled
paths and the red line segments represent the optimal path. From Figure 8, it can be seen
that the path generated by the algorithm in this paper has a shorter length compared to the
other algorithms, and the sampled paths are more concentrated.
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Figure 8. Comparison of different path search algorithms with the red path representing the optimal
path found by the algorithm.

By conducting 20 experiments using each algorithm in the same environment, the
experimental results shown in Table 2 were obtained. From the experimental results,
it can be seen that the average path length of the improved FMT* algorithm is 18.8 m,
which is 13.3% shorter than the standard FMT*, 8.3% shorter than the standard RRT*, and
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22.3% shorter than the standard RRT-connect. This indicates that the path planned by the
improved FMT* algorithm has a shorter length compared to the other three algorithms.
Moreover, in terms of the variance of path length, the improved FMT* algorithm has
better stability, as the path length does not vary significantly in each planning iteration,
demonstrating good stability. In terms of the time consumed for path planning, the
improved FMT* algorithm ranks second among the four algorithms. It does not have
an advantage over the standard FMT* and standard RRT-connect, which may be due to
the increased computational requirements of the algorithm. However, the increase in
computation time compared to the standard FMT* is only 5.6%, which is acceptable.

Table 2. Experimental results of obstacle avoidance path planning under different algorithms.

Algorithm Improved FMT* Standard FMT* RRT* Smart Standard RRT* Standard
RRT-Connect Informed RRT*

Parameters

Initial sample
point: 1000

Secondary samp
point: 500

Initial connection
radius: 0.3 (m)

Secondary
connection radius:

0.15 (m)

Sample point:
1000

Connection
radius: 0.3 (m)

Sample point:
1000

Connection
radius: 0.3 (m)

Step length:
0.3 (m)

Maximum
iteration count:

4000

Step length:
0.3 (m)

Maximum
iteration count:

4000

Sample point:
1000

Connection
radius: 0.3 (m)

Average time
consumption 1.67 (s) 1.58 (s) 1.72 (s) 2.21 (s) 0.98 (s) 1.64 (s)

Time variance 0.16
(
s2 ) 0.11

(
s2 ) 0.13 (s) 0.38

(
s2 ) 0.09

(
s2 ) 0.21

(
s2 )

Average path length 18.8 (m) 21.7 (m) 22.1 (m) 23.6 (m) 25.2 (m) 20.8 (m)

Path length variance 1.12
(
m2 ) 1.20

(
m2 ) 1.18

(
m2 ) 1.14

(
m2 ) 1.39

(
m2 ) 1.15

(
m2 )

3.2. Singular Point Avoidance Simulation Experiment

To validate the effectiveness of the improved FMT* algorithm in avoiding singular
points, experiments were conducted using a 6-degree-of-freedom (6-DOF) robotic arm
model in MATLAB (version R2023b). Firstly, the initial and final poses were set in the
workspace of the robotic arm, and a straight-line trajectory was planned. The start and end
points were (0.5, 0.5, 1.2) and (−0.5, −0.5, 1.2), respectively. This trajectory passes through
a singular point at the shoulder of the robotic arm, with coordinates (0.18, 0.18, 1.2). The
MATLAB simulation system framework is shown in Figure 9.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 24 
 

Average time 
consumption 

1.67 (s) 1.58 (s) 1.72 (s) 2.21 (s) 0.98 (s) 1.64 (s) 

Time variance 0.16 (sଶ) 0.11 (sଶ) 0.13 (s) 0.38 (sଶ) 0.09 (sଶ) 0.21 (sଶ) 
Average path 

length 
18.8 (m) 21.7 (m) 22.1 (m) 23.6 (m) 25.2 (m) 20.8 (m) 

Path length vari-
ance 

1.12 (mଶ) 1.20 (mଶ) 1.18 (mଶ) 1.14 (mଶ) 1.39 (mଶ) 1.15 (mଶ) 

3.2. Singular Point Avoidance Simulation Experiment 
To validate the effectiveness of the improved FMT* algorithm in avoiding singular 

points, experiments were conducted using a 6-degree-of-freedom (6-DOF) robotic arm 
model in MATLAB (version R2023b). Firstly, the initial and final poses were set in the 
workspace of the robotic arm, and a straight-line trajectory was planned. The start and 
end points were (0.5, 0.5, 1.2) and (−0.5, −0.5, 1.2), respectively. This trajectory passes 
through a singular point at the shoulder of the robotic arm, with coordinates (0.18, 0.18, 
1.2). The MATLAB simulation system framework is shown in Figure 9. 

 
Figure 9. Simulation experiment Simulink system diagram. 

As shown in Figure 10a, it can be observed that without singular point avoidance, 
joint 1, joint 4, joint 5, and joint 6 undergo significant changes in joint angles after passing 
through the singular point. As illustrated in Figure 10b, by using the singular point avoid-
ance trajectory planning algorithm proposed in this paper, the end effector of the robotic 
arm successfully avoids the singular point. This ensures that the joint configuration of the 
robotic arm remains closer to the initial configuration, avoiding drastic changes in joint 
angles and ensuring the stability and safety of the robotic arm’s operation. 

Figure 9. Simulation experiment Simulink system diagram.

As shown in Figure 10a, it can be observed that without singular point avoidance, joint
1, joint 4, joint 5, and joint 6 undergo significant changes in joint angles after passing through
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the singular point. As illustrated in Figure 10b, by using the singular point avoidance
trajectory planning algorithm proposed in this paper, the end effector of the robotic arm
successfully avoids the singular point. This ensures that the joint configuration of the
robotic arm remains closer to the initial configuration, avoiding drastic changes in joint
angles and ensuring the stability and safety of the robotic arm’s operation.
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the singular point avoidance algorithm.

Applying the proposed algorithm for singular point avoidance, the trajectory planning
results for the given singular point are depicted in Figure 11. The red dashed line represents
experimental group 1, which did not utilize the singular point avoidance algorithm, while
the blue solid line represents experimental group 2, which employed the singular point
avoidance algorithm. Since the cost function of this algorithm depends on the singularity
and path length, the planned trajectory using the algorithm avoids the singular point and
maintains the shortest path in the non-singular region.

The variation curves of joint angles and angular velocities for the robotic arm in the
simulation experiment are shown in Figure 12. The red dashed line represents experimental
group 1, while the blue solid line represents experimental group 2. In Figure 12a, the
joint angle curves can be observed, and it is evident that the joint curves in experimental
group 2 are smoother compared to those in experimental group 1, especially in joint 1.
In experimental group 1, joint 1 rotates by 3.1 rad, which is equivalent to 177◦, while in
experimental group 2, joint 1 rotates by 0.3 rad, which is equivalent to 17.2◦. In Figure 12b,
the joint angular velocity curves are shown. In experimental group 1, significant angular
velocity changes occur in joints 1, 4, 5, and 6, which can be attributed to passing through the
shoulder singularity point. This result is consistent with theoretical analysis. In contrast, in
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experimental group 2, the trajectory does not pass through the shoulder singularity point,
resulting in overall smoother changes in joint angular velocities.
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3.3. Robotic Arm Trajectory Planning Experiment in the Real World

An improved FMT* trajectory planning algorithm was effectively implemented for
the AUBO-I5 robotic arm. As for the hardware, a personal computer running served as the
primary controller for the robotic arm, while the AUBO-I5 robotic arm and its associated
control cabinet acted as the execution mechanism. On the software side, a C++ program
utilizing the Moveit interface was developed to incorporate the enhanced FMT* algorithm,
with visualization performed through RVIZ. The program was developed and executed
within the ROS Melodic environment, specifically on Ubuntu 18.04.6 LTS, and was written
adhering to the C++11 standard.

As shown in Figure 13, obstacles were created in the working environment of the
robotic arm, and the initial and target poses of the robotic arm were set. Then, the improved
FMT* algorithm was used to plan a collision-free trajectory from the start point to the
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endpoint. Finally, the robotic arm’s working environment and trajectory planning were
visualized using RVIZ. Since the algorithm in this study also has singularity avoidance
capabilities, the collision-free trajectory planner can avoid the singular points of the robotic
arm, thus improving the stability of the robotic arm.
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4. Discussion

In the intricate field of path planning, the improved Fast Marching Tree (FMT*)
algorithm introduced in our paper emerges as a notably efficient alternative to both
optimization-based and learning-based methodologies. Its principal advantage lies in
the elimination of the necessity for either a pre-constructed mathematical model, which de-
mands extensive prior knowledge, or a data-intensive model that requires substantial train-



Appl. Sci. 2024, 14, 3241 20 of 22

ing. This distinctive characteristic markedly reduces the computational resource footprint,
enhancing the algorithm’s ease of deployment and broadening its application spectrum.

When scrutinized alongside analogous sampling-based path-planning methods, specif-
ically, the standard FMT, Rapidly Exploring Random Tree (RRT), and RRT-connect algo-
rithms. Our improved FMT* algorithm demonstrates a clear superiority in generating more
concise paths, as quantitatively evidenced in Table 1. This outcome signifies not only an
optimization of the path’s length but also an indirect contribution to the efficiency and
safety of robotic operations. It is noteworthy, however, that the improved FMT* does not
boast the fastest computation times among its peers. Yet, this slight concession in speed is
counterbalanced by its unique capability for singularity avoidance, a critical feature absent
in its counterparts that justifies the marginal increase in computational effort.

The algorithm’s efficacy, particularly in singularity avoidance, was rigorously vali-
dated through simulation experiments employing a 6-degree-of-freedom robotic arm model
in MATLAB. The results, illustrated in Figures 10 and 11, unequivocally demonstrate how
our algorithm significantly elevates the robotic arm’s motion performance by skillfully
navigating away from singularities. Furthermore, real-world applicability tests conducted
on the AUBO-I5 robotic arm, as depicted in Figures 12 and 13, confirmed the algorithm’s
practical effectiveness. The smooth avoidance of obstacles and singular regions, coupled
with successful target point acquisition, attests to the robustness and real-world viability of
the improved FMT∗ algorithm.

This discussion affirms the improved FMT∗ algorithm’s status as a highly effective,
computationally efficient solution for robotic arm trajectory planning, outperforming
traditional models in both theoretical and practical arenas. Its ability to reduce path
length while incorporating singularity avoidance into its computational framework rep-
resents a significant leap forward, paving the way for future advancements in robot arm
trajectory planning.

5. Conclusions

In this study, we introduced an augmented version of the Fast Marching Tree (FMT*)
algorithm, meticulously engineered for the sophisticated task of Cartesian space trajectory
planning in robotic arms, with a special focus on evading both physical obstacles and the
mathematical quagmires known as singularities. This enhancement is primarily anchored
in the strategic application of Sobel sampling—a technique renowned for its capability
to yield a uniform distribution of sampling points across the space. By integrating this
technique into a novel two-stage sampling point generation strategy, we have significantly
advanced the efficiency and effectiveness of trajectory planning in complex environments.

A pivotal innovation of our work is the refinement of the FMT* algorithm’s path
connection strategy through the incorporation of a geometric perception singularity index.
This modification imbues the algorithm with the dual capability to skirt around obstacles
while meticulously avoiding singular regions, ensuring a safer and more reliable path
for robotic arm movement. The path selection process is equally robust, employing a
comprehensive approach that leverages collision detection and path cost analysis to identify
the most optimal trajectory. The application of quasi-uniform cubic B-splines further
enhances the trajectory, ensuring smoothness and continuity essential for the precise
execution of tasks by robotic arms.

Notwithstanding these advancements, our improved FMT* algorithm is not devoid of
limitations. A notable challenge is the potential discrepancy between the optimal path in
Cartesian space and the efficiency of that path when translated into joint space—a critical
consideration for the practical application of robotic arms. Moreover, the reliance on sam-
pling for path generation introduces a degree of variability influenced by initial sampling
parameters. This sensitivity can result in significant variations in outcomes, emphasizing
the impact of the stochastic nature of sampling-based methods on the predictability and
consistency of the optimal path.
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Future endeavors to ameliorate these limitations could explore adaptive sampling
techniques that dynamically refine based on environmental complexity or investigate
more sophisticated metrics for joint space efficiency. Additionally, integrating predictive
models or machine learning algorithms to optimize initial sampling parameters may offer a
pathway to reducing variability and enhancing the consistency of the algorithm’s outcomes.
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