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Abstract: This study exhibits the possibility of using an artificial neural network (ANN) to model the
mechanical behavior of wire arc additive manufacturing (WAAM) for Inconel 625. For this reason,
tensile tests of Inconel 625 superalloy as-built (AB) samples and samples after heat treatment at
1200 ◦C (HT-1200) by WAAM were performed. For the HT-1200 samples, the yield stress decreased,
and the elongation increased significantly due to grain refinement and the formation of annealed
twins. A new hybrid model combining a swarm intelligence optimization algorithm with a back
propagation neural network (BPNN) was developed to simulate the flow behavior of the superalloy.
Compared with other hybrid BPNN models that have been reported, the proposed BPNN model is
in better agreement with the experimental data and provides a better description of the flow stress
of the Inconel 625 superalloy. The excellent predictive ability of the model may be attributed to the
optimization of the weights and thresholds of the BPNN, which obtains the optimal global solution
in the search space more efficiently.

Keywords: additive manufacturing; Inconel 625 superalloy; artificial neural network; optimization
algorithm; mechanical properties

1. Introduction

Inconel 625 is a nickel-based superalloy that is widely used in aerospace, petroleum,
chemical, and marine industries [1–3]. However, machining Inconel 625 parts into fine
shapes by conventional subtractive manufacturing methods is extremely difficult and
expensive, attributed to the high hardness and high-temperature strength of this alloy.

Wire arc additive manufacturing (WAAM) has been used to fabricate various metals
and alloys, such as titanium alloys [4], aluminum alloys [5], and superalloys [6], due to
its high deposition rate (5–8 kg/h), fewer metallurgical defects (lack of fusion, porosity,
cracks, etc.), and high material utilization. In view of the above advantages, WAAM is
also widely used in the manufacture of the Inconel 625 alloy [7]. However, compared to
traditional casting or forging, WAAM results in coarse columnar grains and a stronger
<100> texture along the build direction, which leads to mechanical anisotropy of the
material. The mechanical properties of Inconel 625 are usually improved by annealing.
Recrystallization usually occurs in the metal after cold deformation annealing, which can
refine the deformed grains and thus improve the mechanical properties of the metals [8].
For the Inconel 625 superalloy manufactured by WAAM, when heat treated at 1200 ◦C, the
size and number of Laves phases and carbides are significantly reduced [9], accompanied
by a complete recrystallisation of the sample, which leads to a significant increase in the
strength and elongation of Inconel 625 [10,11].

The constitutive model describes the law of macroscopic stress variation with strain
during the deformation of a material. The constitutive model is not only the theoretical
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basis of metal forming problems, but also the key factor for numerical analysis. In the
past, for the mechanical problems of engineering structures, traditional theoretical research
methods were usually used. For example, Peron et al. [12] employed the strain energy
density (SED) approach to predict the tensile strength of polyetheretherketone in corrosive
environments. Subsequently, they studied the fracture of notched Ti-6Al-4V via the SED
approach and the theory of critical distance (TCD) method [13]. Other similar studies can
be found in the literature [14–18]. In particular, the empirical constitutive relationship has
been considered an effective method for predicting plastic deformation in metals [19,20],
but the high complexity of mathematical modeling has limited its wide application. With
the application of artificial intelligence in the field of materials, machine learning has
been utilized to construct constitutive models and has gained wide application in recent
years [21,22]. For example, artificial neural networks (ANNs) have been widely used to
accurately predict the hot deformation behaviors of nickel-based superalloys [23–29].

A BPNN is a kind of artificial neural network which uses a backpropagation algorithm
to automatically update internal random parameters in the process of training and can
realize the random nonlinear mapping of input and output, which has great advantages
in solving nonlinear problems. At present, this method has been applied to the fields of
material performance prediction, complex structural performance prediction, and structural
optimization. However, the initial weights and thresholds of the original BPNN model
are randomly set, which makes it easy to obtain local optimal solutions, leading to the
problem of slow convergence speed. More importantly, when the amount of data is
large and the training time is long, the training mode of the BPNN may have a problem
overfitting. Therefore, it is of great significance to use optimization algorithms to optimize
the initial parameters of the BPNN to avoid getting local optimal solutions. For example,
Liu et al. [30] proposed a hybrid algorithm combining a BPNN and simulated annealing.
The experimental results showed that the proposed mixed model had good prediction
accuracy in predicting the mechanical properties of rocks. Chen et al. [31] constructed
a hybrid model combining an adaptive evolutionary artificial bee colony algorithm and
a BPNN. The experimental results showed that under the guidance of historical error
data, the prediction accuracy of the proposed hybrid model was still better than other
algorithms. Ban et al. [32] combined the improved gravity search algorithm and particle
swarm optimization algorithm to optimize a BPNN and successfully applied it to the fault
diagnosis of motor drive systems. Sun et al. [33] combined the harmonic search algorithm
and a BPNN to form a new hybrid model and applied it to the inverse analysis of rockfill
parameters. The example study shows that compared with the original BPNN algorithm,
the hybrid model has the advantages of high convergence accuracy, fast convergence speed,
and strong stability.

The dung beetle optimization (DBO) algorithm [34] is a global optimization algorithm
with search information as its objective function. The natural behaviors exhibited by dung
beetles, such as rolling, dancing, foraging, breeding, and stealing, are the basis of the DBO
algorithm. The design of these different update strategies shows good competitiveness in
convergence speed, scalability, optimization accuracy, and elasticity; the DBO algorithm di-
vides the initial population into four subpopulations and searches for the optimal location,
respectively. By comparing each subpopulation, the global optimal position is obtained.
The weights and thresholds of the BPNN are used to solve the optimal position of the dung
beetles. By using DBO to optimize the BPNN’s weights and thresholds, the convergence
speed of the BPNN is improved, the training time is reduced, and the optimal global
solution is obtained in the global search. Since the DBO algorithm has a good balance
between global search and local development, it has significant advantages in optimizing
the BPNN. The existing research shows that using DBO to optimize the initial parame-
ters of the BPNN can improve the convergence speed of the BPNN, reduce the training
time, and obtain the optimal global solution [35,36]. Although the DBO-BPNN has been
applied in engineering, there is still room for improvement in this method. Therefore, this
paper will improve the existing DBO algorithm and combine the enhanced DBO (EDBO)
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algorithm [37] with a BPNN to obtain the so called EDBO-BPNN model. The model will
optimize the initial parameters of the BPNN and update the weights and thresholds of the
BPNN iteratively to find the optimal solution in the range of solutions. In the present study,
the stress–strain curves of the Inconel 625 superalloy AB samples and HT-1200 samples
fabricated by WAAM were measured experimentally. On the basis of the experimental
data, the constitutive equation was established using the established EDBO-BPNN model.
Finally, the prediction results of the EDBO-BPNN model established in this study are
compared with the experimental results and some existing BPNN models in the literature.

2. Material and Methods
2.1. Material and Process Parameters

The Inconel 625 superalloy is prepared by WAAM from ERNiCrMo-3 wire with a
diameter of 1.2 mm. Chen et al. [38] studied the optimal deposition parameters to produce
the Inconel 625 superalloy by WAAM; here, the same parameters are used, i.e., current
(125 A), travel speed (0.3 m/min), voltage (12.8 V), and wire feed speed (5.5 m/min). The
as-built (AB) sample was heat treated in a vacuum at 1200 ◦C (HT-1200) for 1.5 h and then
water quenched. The target samples were extracted from the middle stable region of the
AB thin wall via electric discharge machining for metallographic preparation. To reveal
the microstructural features, the polished samples were etched in solution (90 mL H2O
and 10 g CrO3) for 20 s. The microstructure was characterized using electron backscatter
diffraction (EBSD) with a step size of 4 µm and scanning electron microscopy (SEM). The
tensile sample was selected in the vertical building direction and the tensile test was
carried out on an Instron-5982 tensile tester with a strain rate of 0.5 mm/min at room
temperature. All the tensile tests were tested three times to ensure repeatability of results.
The difference between the three tests in the experiment was not significant, (yield strength,
tensile strength, and elongation maximum error were all within 6%), so we randomly
selected a set of experimental data for the study.

2.2. Dung Beetle Optimization (DBO) Algorithm

Recently, researchers have proposed a newer population intelligence optimization
algorithm to deal with two kinds of problems: optimization with constraints and opti-
mization without constraints, called the dung beetle optimization (DBO) algorithm. The
prototype for designing the DBO algorithm includes certain habits in the activities of dung
beetles, i.e., reproduction, dancing, ball-rolling, stealing, and foraging. The DBO algorithm
divides the initial large population of dung beetles into four smaller populations for the
optimization processes of reproduction, ball-rolling, stealing, and foraging, respectively.
The principle of DBO is described below.

(1) Mathematical modeling of rolling ball behavior

Equation (1) shows the specific location update mode of each individual.

xg+1
i = xg

i + a × k × xg−1
i + b ×

∣∣∣xg
i − xg

worst

∣∣∣ (1)

where g represents the latest iteration number, xg
i represents the position of the ith dung

beetle in the whole population during the gth iteration, a denotes a real number that
takes 1 or −1 when different situations are encountered during the rolling process, with
1 denoting no deviation from the original route and −1 denoting a deviation from the
original orientation, k denotes a constant deflection coefficient in the range of (0, 0.2], and
b denotes a fixed value. xg

worst denotes the worst position of all ranges produced by the

algorithm during the current iteration, and
∣∣∣xg

i − xg
worst

∣∣∣ is used to model changes in light
intensity and denotes the difference between the ith dung beetle and the worst positioned
dung beetle in all ranges.
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Equation (2) calculates the new position of each individual after the update.

xg+1
i = xg

i + tan(θ)
∣∣∣xg

i − xg−1
i

∣∣∣ (2)

where
∣∣∣xg

i − xg−1
i

∣∣∣ denotes the distance between two neighboring dung beetles, i.e., the ith
individual and the (i − 1)th individual. Note that the position of the dung beetle is not
updated when the θ = 0, π/2, or π.

(2) Mathematical modeling of reproductive behavior

The strategy is represented by the following equation:XLb∗ = max
{

X∗ × (1 − R), XLb
}

XUb∗ = min
{

X∗ × (1 + R), XUb
} (3)

where X* denotes the optimal position of the latest small range, the region of spawning
contains the upper and lower boundaries, denoted by XLb∗ and XUb∗ , respectively, XLb

and XUb represent the maximum and minimum ranges of the problem to be optimized,
respectively, R = 1 − g/G, and G denotes the set iteration threshold.

The updating of the individual position during the breeding behavior is represented
by the following equation:

xg+1
i = X∗ + b1 ×

(
xg

i − XLb∗
)
+ b2 ×

(
xg

i − XUb∗
)

(4)

where xg
i denotes the position of the ith brood ball during the gth iteration, and b1 and

b2 are two random and independent vectors, both of size 1 × D, where D denotes the
dimension of the variable in the actual optimization problem. In addition, the optimization
process must ensure that the positions of the brood balls are strictly confined within the
specified upper and lower bound regions.

(3) Mathematical modeling of foraging behavior

When the iterative process continues and the number of iterations increases, the
optimal range of foraging area at this time will also keep adjusting dynamically, and the
process is represented by the following equation:XLbb

= max
{

Xb × (1 − R), XLb
}

XUbb
= min

{
Xb × (1 + R), XUb

} (5)

where, unlike the parameters of the above sub-processes, Xb is the optimal position in
the full range, XLbb

denotes the lower boundary of the optimal foraging area, and XUbb

represents the upper boundary of the optimal foraging area. Based on the above conditions,
the following formula updates the position of the new individual:

xg+1
i = xg

i + C1 ×
(

xg
i − XLbb

)
+ C2 ×

(
xg

i − XUbb
)

(6)

where xg
i denotes the position of the ith small individual in the population during the

gth iteration, C1 represents a random value that follows a normal distribution, and C2
represents a random vector of size 1 × D with the range (0, 1).

(4) Mathematical modeling of theft

The following equation updates the thief’s location:

xg+1
i = Xb + S × t ×

(∣∣∣xg
i − X∗

∣∣∣+ ∣∣∣xg
i − Xb

∣∣∣) (7)
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where xg
i denotes the position of the ith thief in the overall population during the gth

iteration, t represents a random vector that follows a normal distribution with a size of
1 × D, and S is a fixed value. Figure 1 illustrates the flow of the original DBO algorithm.
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Figure 1. Step-by-step diagram of dung beetle optimization.

2.3. Backpropagation Neural Network (BPNN)

In this study, we first perform stretching performance prediction by constructing a
BPNN model and further optimize the BPNN model using the EDBO algorithm (EDBO-
BPNN). Figure 2 shows the generic structure of the ANN. In order to simulate the constitu-
tive relationships of Inconel 625, the tensile strains were set as input and the tensile stresses
as output. The ANN training process uses root mean square error (RMSE) as the evaluation
index for stretching performance prediction with the following equation:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(8)

where yi denotes the experimental value and ŷi denotes the predicted value.
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2.4. The Proposed Hybrid EDBO-BPNN

The initial parameters of the BPNN are randomly assigned, so the numerous parame-
ters lead to unstable model calculation. Optimizing the BPNN using EDBO can improve
the prediction performance of the model. The main idea of an EDBO-BPNN is to update
the BPNN’s weights and thresholds by constantly updating the location of the dung beetle
population until a global minimum is found that represents the optimal solution to the
initial weights and thresholds. The flow of an EDBO-BPNN is shown in Figure 3. Firstly,
the parameters of the BPNN are determined, including the hidden layer, number of hidden
nodes, training cycle, model learning rate, and activation function. Secondly, the optimized
BPNN prediction model is trained using the training set. The optimization methods used
are EDBO-BPNN, BDB-BPNN, JAYA-BPNN, PSO-BPNN, GWO-BPNN, and WOA-BPNN.
Finally, we studied the training model using a test set and evaluated the predictive power
of the four models based on statistical parameters such as coefficient of determination
(R2), RMSE, mean absolute error (MAE), and mean absolute percentage error (MAPE). The
predicted values of six kinds of neural network models are compared with experimental
values and the predictive ability of the models is analyzed.
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In this paper, six optimization algorithms are used to compare the optimization of the
BPNN model, which are EDBO, DBO, JAYA [39], Particle Swarm Optimization (PSO) [40],
Gray Wolf Optimization (GWO) [41], and the Whale Optimization Algorithm (WOA) [42].
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3. Results and Discussions
3.1. Model Evaluation Index

To evaluate the deflection prediction model under different machine learning models
(MLs) from multiple perspectives, four evaluation indexes were selected to quantify the
prediction performance of the model, namely, R2, RMSE, MAE, and MAPE [43]. The more
R2 is equal to 1, the closer the predicted value is to the measured value, and the more
accurate the model’s prediction result is. RMSE is used to assess the deviation between
the predicted value and the measured value. The more the RMSE value approaches 0, the
better the prediction performance of the model. Both MAE and MAPE represent the mean
deviation between predicted and measured values. The closer the MAE and MAPE values
are to 0, the more accurate the model’s predictions are. For a perfect prediction model, the
values of these metrics should equal their ideal optimal values. The calculation methods of
various evaluation indexes are shown below:

R2 = 1 − ∑n
i=0(yi − ŷi)

2

∑n
i=0(yi − y)2 (9)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(10)

MAE =
∑n

i=1|(ŷi − yi)|
n

(11)

MAPE =
∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣× 100%

n
(12)

where yM is the average of the actual values, yi is the actual value of the sample tensile
stress, ŷi is the predicted value, and n is the number of tensile stress samples.

3.2. Analysis of Prediction Results
3.2.1. Microstructure

Figure 4a,d show the EBSD observations of the two grain morphologies, indicating
that they show significant changes in grain size and preferred crystal orientation. The
microstructure of the AB sample consists mainly of columnar grains with a strong <100>
texture and a maximum multiples of uniform density (MUD) value of 14.06, as shown in
Figure 4b. Figure 4e displays that complete recrystallisation occurs in the microstructure
of the HT-1200 sample, which consists mainly of equiaxed grains with relatively random
grain orientation and a weak texture (max MUD = 4.40). The percentage of low angle
grain boundaries (LAGBs) in AB specimens was 17.07%, as shown in Figure 4c. After heat
treatment, the percentage of LAGBs in the HT-1200 sample decreased due to the occurrence
of recrystallization, and a large number of TGBs appeared at the 60◦ position, as shown
in Figure 4f. In addition, compared with the AB sample, the proportion of recrystallized
grains in the microstructure of the HT-1200 specimen increased dramatically, whereas the
deformed grains almost completely disappeared, as shown in Figure 4g.

The mechanical properties of the AB and HT-1200 samples are shown in Figure 5a.
The yield strength (YS) of the specimens decreased after heat treatment at 1200 ◦C, but the
elongation increased significantly. The decrease in YS may be attributed to the dissolution
of Laves and carbides. The inset shows the fracture surfaces of both samples. A high
number of dimples and tear ridges are observed on the fracture of both samples, indicating
that both samples are ductile fractures. The HT-1200 sample has a larger dimple size and
a deeper tear ridge, which has a better plastic deformation capacity than the AB sample.
Figure 5b presents the statistical histogram of tensile test results.
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3.2.2. Flow Behavior Analysis

The number of hidden layers of the BPNN is one, and the number of neurons in the
hidden layer is twelve. The population size is 30 and the maximum number of iterations
is 200. To study the ANN for modeling the constitutive relations of Inconel 625, 220 ex-
perimental points in our experimentally obtained stress–strain curves were selected as
the original data set (the training set selects 200 points and the test set selects 20 points)
for the HT-1200 samples. The data points were selected based on the criterion that they
should cover the complete stress-strain curve, including elastic, yield, reinforcement, and
neck segments, so that the entire process of material tensile deformation can be completely
simulated. In particular, the elastic limit, yield stress, and ultimate stress, which are key
points that reflect the mechanical properties of the material, need to be included in the
data set.
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Figure 6 shows the comparison between the prediction results of different hybrid
models and the actual data. For HT-1200, the prediction results of the EDBO-BPNN model
are closer to the actual values in the initial region and the peak region of the stress–strain
curve, indicating that the EDBP-BPNN model is superior to other comparison models in
terms of prediction accuracy and can predict the actual experimental data more accurately.
In the data of the later stage of the test, the stress of the fracture part has a sudden change,
so the stress prediction of this part is the most difficult, yet the model proposed in this paper
can still predict almost the same results as the test. In summary, among all the compared
algorithms, the model proposed in this paper shows the best prediction performance in
both the initial region of stretching and the region where the stress changes abruptly.
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Figure 7 visualizes the prediction evaluation metrics of all the hybrid models in the
form of box-line plots to highlight the differences in the comparison of prediction perfor-
mance. Among them, the EDBO-BPNN model outperforms the other models compared
in all prediction evaluation metrics. The R2 is 0.999964, RMSE is 1.1180, MAE is 0.5534,
and MAPE is 0.1502% for the evaluated index of HT-1200. Table 1 presents the detailed
data. With the same number of iterations, the EDBO-BPNN model can obtain better model
parameters and thus achieve higher prediction accuracy.

In general, the predicted results of the EDBO-BPNN agree best with the experimental
results and can well predict the tensile stress of the Inconel 625 superalloy manufactured
by WAAM. It should be noted that although all the hybrid BPNN models improve the
prediction accuracy of the BPNN model by optimizing the initial parameters of the BPNN,
the EDBO-BPNN proposed in this study achieves a better balance between local and global
search, and thus has a significant advantage in optimizing the BPNN model.
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Table 1. Means of evaluation metrics for the results of training data and testing data.

Model R2 RMSE MAE MAPE

EDBO 0.999964 1.118069 0.553425 0.001502
DBO 0.993321 15.26984 8.354193 0.018004
JAYA 0.991808 18.7458 9.563578 0.01978
PSO 0.989801 21.12981 11.90643 0.025724
GWO 0.985915 25.02655 15.33277 0.029815
WOA 0.990747 20.11049 12.08489 0.024129

4. Conclusions

The microstructure and mechanical properties of the Inconel 625 superalloy AB sam-
ples and HT-1200 samples fabricated by WAAM were studied experimentally. To predict
the mechanical behavior of Inconel 625, a new hybrid model combining a swarm intel-
ligence optimization algorithm with a BPNN, named EDBO-BPNN, was proposed. On
the basis of experiment data, the constitutive equation of the Inconel 625 superalloy was
established using the proposed EDBO-BPNN model in this paper. The prediction results of
the EDBO-BPNN are compared with the experimental results and some existing BPNN
models in the literature. The main conclusions are drawn below. The microstructure of
the AB sample was dominated by columnar grains, and the grains grew epitaxially along
the direction of heat flow, while the microstructure of the HT-1200 sample was completely
recrystallized. For the HT-1200 sample, the grains were refined, annealing twins were
formed, and the texture was weakened. Compared with the AB sample, the yield strength
of the HT-1200 sample is reduced, but the elongation is significantly improved. Compared
with other hybrid BPNN models, the proposed EDBO-BPNN model agrees best with the
experimental results and can well describe the flow stress of the Inconel 625 superalloy.
The excellent predictive ability of the model may be attributed to the optimization to the
weights and thresholds of the BPNN, which obtains the optimal global solution in the
search space more efficiently. The EDBO-BPNN was used to simulate the tensile stress of
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the Inconel 625 superalloy under static load at room temperature. The establishment of a
material constitutive model based on an EDBO-BPNN at high temperature and different
strain rates and the verification of its predictive ability still need further study.
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