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Abstract: Currently, an increasing number of macaque brain MRI datasets are being made publicly
accessible. Unlike human, publicly accessible macaque brain datasets suffer from data quality in
diffusion magnetic resonance imaging (dMRI) data. Typically, dMRI data require a minimum ratio
of 1:10 between low b-value (b < 10) volumes and high b-value (b > 300) volumes. However, the
currently accessible macaque datasets do not meet this ratio. Due to site differences in macaque brain
images, traditional human brain image-to-image translation models struggle to perform well on
macaque brain images. Our work introduces a novel end-to-end primary-auxiliary dual generative
adversarial network (PadGAN) for generating low b-value images. The auxiliary generator in the
PadGAN is responsible for extracting the latent space features from peak information maps and
transmitting them to the primary generator, enabling the primary generator to generate images with
rich details. Experimental results demonstrate that PadGAN outperforms existing methods both
qualitatively and quantitatively (mean SSIM increased by 0.1139). Diffusion probabilistic tractography
using dMRI data augmented by our method yields superior results.

Keywords: medical image-to-image translation; generative adversarial networks; dMRI data
augmentation; macaque brain image

1. Introduction

Studying the macaque brain provides a crucial avenue for understanding human
brain mechanisms in neuroscience research [1]. Currently, the macaque monkey serves as a
prominent primate model and has become a vital subject for investigating the human brain
using various medical imaging techniques [2,3].

Diffusion magnetic resonance imaging (dMRI) technology detects the movement di-
rection of water molecules in the brain, utilizing the anisotropic diffusion characteristics
of water molecules in the white matter to reconstruct the white matter in the brain. The
b-value represents the intensity of the diffusion-sensitive gradient field, which, along with
its corresponding three b-vectors, reflects the influence of microstructural tissue on water
diffusion within living tissue in dMRI. Researchers commonly refer to the images corre-
sponding to different b-value intensities in the dMRI volume as b-value images. Diffusion
tensor imaging (DTI) estimation and probabilistic tractography techniques are established
methods for reconstructing major white matter fiber bundles in brain imaging [4]. Typically,
dMRI images consist of multiple b-value images, with low b-value (b < 10, recommend
b = 0) volumes serving as the basis for DTI, which is crucial for data analysis in neuroscience
research. Nowadays, to mitigate interference such as head motion during acquisition, one
low b-value image often corresponds to 5–10 high b-value (b > 300,commonly b = 1000)
volumes [5]. However, in some publicly accessible macaque brain dMRI datasets, the ratio
of low b-value to high b-value volumes may be below 1:5 or even 1:10, which could be
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due to the use of early acquisition protocol configurations [6]. The reliability of computed
results, such as DTI estimation, from analyses using data that do not meet the required
ratio needs further confirmation. Therefore, it is necessary to generate and optimize low
b-value volumes in macaque brain dMRI data.

Medical image-to-image translation refers to the method of translation images from
an input image modality to an output modality through a mapping relationship. This
approach can be used to acquire additional data or complete missing data [7], and it can be
applied to downstream tasks in medical image processing, such as image registration and
segmentation [8,9], as well as image classification [10].

Generative adversarial networks (GANs) are network models based on game theory,
consisting of a generator and a discriminator [11]. The generator attempts to generate
high-quality images to deceive the discriminator, while the discriminator distinguishes
between real and generated images. Both sides become stronger in the adversarial process,
resulting in the generator producing increasingly realistic images. With the emergence of
GANs, the performance of medical image-to-image translation has been greatly improved.
Initially, GANs were only used to generate images from random noise. With researchers
attempting to use Transformer as the generator of GANs [12], Transformer is being applied
in the field of medical image-to-image translation. The advent of pix2pix and CycleGAN
propelled the performance of GANs in image-to-image translation tasks [13,14]. New
methods harness the powerful generative capabilities of GANs to produce visually and
objectively superior images.

Some researchers have explored the application scenarios of CycleGAN in medical
image-to-image translation [15–17], but more efforts have been devoted to improving
CycleGAN for better application in unsupervised learning settings [18–23]. Methods based
on CycleGAN are unsupervised approaches, with the advantage of being able to perform
mutual translation between two domains without requiring paired images. However,
because CycleGAN serves two image translation tasks, its performance on the generation
task in a single target domain is generally inferior compared with supervised methods.

Compared with CycleGAN, methods based on Transformer are a supervised learning
approach. Some researchers have employed Transformer for medical segmentation [24],
MRI reconstruction [25], and medical image-to-image translation [8,26,27]. However, Trans-
former requires a large amount of data, but publicly accessible samples of macaque dMRI
data are limited, making it challenging to fully leverage the advantages of Transformer [28].

The pix2pix-based method is also a widely used supervised learning approach for
medical image-to-image translation. The Synb0-DisCo method applies the pix2pix tech-
nique to correct distorted b0 images [29]. pGAN and Ea-GAN, respectively, enhance the
image detail capability by improving the loss function and considering edge informa-
tion [30,31]. MedGAN [32] employs a cascaded U-Net as its generator for various medical
image translation tasks. As pix2pix-based methods are designed for the generation task of a
single target domain with paired image data, they often exhibit higher generation accuracy
in medical image-to-image translation tasks. However, since such methods typically rely
on a single generative adversarial network, they lack in detail learning.

Furthermore, all these methods share a common issue. Currently, most studies on
modality translation of brain MRI images are based on human brain GRAY color space, with
the aim of providing visually interpretable images [21,26,31,33]. Medical imaging signal
intensity values have absolute significance [8], and are required for probabilistic tractogra-
phy calculations, rather than the typical GRAY color range of bitmap images. Therefore,
the images generated by the aforementioned methods cannot meet the requirements of
computational neuroscience research.

In this work, we introduce the concept of peak information maps and propose a novel
end-to-end primary-auxiliary dual GAN network (PadGAN), which can extract latent space
features from peak information maps to translate high-quality low b-value images. The
generated low b-value images can be used for augmenting dMRI image data, improving
the quality of dMRI images. The results show that PadGAN outperforms existing methods



Appl. Sci. 2024, 14, 3229 3 of 17

in qualitative observations and quantitative metrics, and the effectiveness of each module
is validated through ablation experiments. Finally, we use the Xtract toolbox [34] in FSL6.0
(FMRIB Software Library) tools [35] to perform probabilistic tractography and use FSL
tools to conduct DTI estimation on dMRI data augmented. The Xtract calculation results of
dMRI data augmented using our method are more satisfactory. In summary, the specific
contributions of this paper are as follows:

1. We introduce the concept of peak information maps and design a corresponding
method for calculating peak information maps.

2. We propose a novel end-to-end primary-auxiliary dual GAN network to translate
high b-value images to low b-value images. In this network, the auxiliary generator
extracts latent space features from peak information maps and transfers these features
to the primary generator. The primary network integrates the latent space features
and multi-scale features to generate low b-value images.

3. Through DTI estimation and Xtract probabilistic tractography experiments, we vali-
date the effectiveness of generating low b-value images for augmenting original dMRI
data, providing new validation approaches for quality assessment in brain science
research and offering optimized dMRI data for brain science studies.

2. Materials and Methods
2.1. Datasets

We obtained human brain dMRI images from the WU-Minn public dataset released
by the Human Connectome Project (HCP) in 2016 [36]. We selected 96 dMRI data with the
following specific parameters: echo-planar imaging (EPI) sequence, TR/TE = 5520/89.5 ms,
flip angle (FA) = 78°, and voxel resolution of 1.25 × 1.25 × 1.25 mm.

We used the publicly accessible macaque brain imaging dataset from The PRIMatE
Data Exchange (PRIME-DE) [6]. This dataset contains data from different sites, and we
collected 8 data samples from Aix-Marseille Université (AMU), 12 data samples from
Mount Sinai School of Medicine-Philips (MountSinai-P), 5 data samples from Mount Sinai
School of Medicine-Siemens (MountSinai-S), 38 data samples from University of California,
Davis (UCDavis), and 582 data samples from University of Wisconsin–Madison (UWM).
The parameters of macaque datasets from different sites are shown in Table 1. These
datasets all suffer from varying degrees of imbalance between the number of low b-value
and high b-value images. The quantities and ratios of low b-value images to high b-value
images in the dMRI images from different data sites are shown in Table 2.

Table 1. Specific parameters of macaque datasets.

Datasets Scanner (3T) Voxel Resolution (mm) TE (ms) TR (ms) b-Values (s/mm2)

AMU Siemens Prisma 1 × 1 × 1 87.6 7520 5, 500
MountSinai-P Philips Achieva 1.5 × 1.5 × 1.5 19 2600 0, 1000
MountSinai-S Siemens Skyra 1.0 × 1.0 × 1.0 95 5000 10, 1005

UCDavis Siemens Skyra 1.4 × 1.4 × 1.4 115 6400 5, 1600
UWM GE DISCOVERY_MR750 2.1875 × 3.1 × 2.1875 94.3 6100 0, 1000

Table 2. The number of low b-value and high b-value images in the macaque dataset.

Datasets Number of Low b-Value Images Number of High b-Value Images Ratio

AMU 4 67 1:17
MountSinai-P 2 120 1:60
MountSinai-S 10 80 1:8

UCDavis 6 60 1:10
UWM 1 12 1:12
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2.2. Preprocessing

The series of preprocessing steps applied to all the datasets are as follows:

1. Head motion correction and eddy current correction were performed using the FSL tool.
2. Non-brain tissues were removed from human brain images using the FSL tool, while

non-brain tissues were removed from macaque brain images using a deep learning
method developed by our research group [37].

3. Paired high b-value and low b-value images were extracted from the dMRI images,
where the high b-value images served as inputs to the model, and the low b-value
images served as reference images. The task of extracting b-value images was accom-
plished using the FSL tool.

4. All high b-value images were scaled to the range of 0 to 1 using the min–max normal-
ization method, and their dimensions were resampled to 256 × 256 × 256.

5. The data were divided into pre-training, training, and testing sets: the pre-training
set included 96 pairs of human brain images and 467 pairs of UWM images. The
remaining data from UWM, AMU, MountSinai-P, MountSinai-S, and UCDavis sites
were divided into training and testing sets, with a ratio of 8:2.

2.3. PadGAN

We propose a primary-auxiliary dual generative adversarial network called PadGAN,
consisting of two generative adversarial networks: the primary network and the auxiliary
network, both targeting the domain of low b-value images. Figure 1 illustrates the training
data flow of PadGAN. During training, the peak information map is input into the auxiliary
generator, which learns towards the domain of low b-value images through adversarial
learning while simultaneously passing latent space features to the primary generator. The
high b-value images are input into the primary generator, which maps them to the domain
of low b-value images through feature fusion modules by merging latent space features.
The low b-value images generated by the auxiliary generator and the primary generator
are passed to the auxiliary discriminator and the primary discriminator, respectively,
to discriminate between real and generated images, thereby enhancing the generation
capabilities of both generators through adversarial learning.

Figure 1. The training data flow diagram of PadGAN. The auxiliary discriminator (AD) discriminates
between the images generated by the auxiliary generator (AG) and the real images, while the
primary discriminator (PD) discriminates between the images generated by the primary generator
(PG) and the real images. The auxiliary network uses three losses, LAG_adv, LAD_adv, and LA_L1,
for backpropagation, while the primary network uses three losses, LPG_adv, LPD_adv, and LA_L1,
for backpropagation.
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2.3.1. Peak Information Maps

Recently, latent space has flourished in the field of image generation [38]. Latent space
can generate diverse high-resolution images [39] and can also be used for re-editing images
by extracting latent space features [40,41]. In order to introduce diversity into generated
images, random Gaussian noise is commonly used as the input for extracting latent space
features. However, unlike works focused on enhancing image diversity, this paper places
high demands on the accuracy of generated image details. Therefore, random Gaussian
noise as the input for latent space feature extraction may not be suitable.

Max-pooling layers are widely used in image classification, segmentation, and other
fields [42]. They can preserve texture features and edge information of images while reduc-
ing information redundancy. However, there is also a risk of losing important information.
Due to the high demand for image details in end-to-end image-to-image translation tasks,
max-pooling layers are rarely used to prevent information loss during training [43]. To
reduce the risk of losing other information while preserving texture and other detailed
information, we introduced the concept of peak information maps.

Given the assumption that brain images from the same data site and the same species
exhibit a certain degree of similarity, we perform a per-pixel maximum extraction operation
on the low b-value brain images of macaques within the same site. All extracted maximum
values are concatenated into a 3D image, which represents the peak information map of
that site, as illustrated in Figure 2. Additionally, Equations (1) and (2) demonstrate this
process. The peak information maps from different sites serve as inputs to the auxiliary
network for the respective site’s data, facilitating the extraction of latent space features.

voxij = MAX(imgi1(voxj), imgi2(voxj), ...imgin(voxj)) (1)

re fi = PConcat(voxij), i = 1, 2, ..., k, j = 1, 2, ..., m. (2)

where voxij represents the j-th voxel selected at the i-th site, MAX(·) represents the peak
extraction operation, imgin(voxj) represents the j-th pixel of the n-th image at the i-th site,
and re fi represents the peak information map of the i-th site, of which there are k such
peak information maps. PConcat(·) represents the pixel concatenation operation, which
concatenates individual pixels into the entire image. Iterate over all i and j values to obtain
the peak information map for each site.

Figure 2. Schematic diagram of peak information map. Image1, Image2, and Image3 represent three
images within the same site. The green and blue rectangles represent the pixels of the image, where
the blue rectangles represent the maximum pixel values at the same position in the three images.
Concatenating the maximum value pixels at each position yields the peak information map.
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2.3.2. Auxiliary GAN

In the field of image generation, there is typically no end-to-end training data accessi-
ble. The extraction of latent space features is often achieved through several fully connected
layers to decouple Gaussian noise and generate more diverse images [39]. The peak in-
formation map proposed in this paper provides end-to-end training data for extracting
latent space features. We adopted an adversarial learning approach to extract latent space
features to enhance the details of the generated images.

The role of the auxiliary generative adversarial network is to provide high-quality
latent space information to the primary generative adversarial network. To achieve this,
the auxiliary GAN continuously maps from the peak information map to the low b-value
images through adversarial learning. The main architecture of the auxiliary generator
network adopts a U-Net convolutional neural network, which is divided into an encoder
and a decoder. The encoder consists of 8 down-sampling convolutional blocks, while
the decoder consists of 8 up-sampling convolutional blocks. After encoding through the
8 down-sampling convolutional blocks, the input data obtain a 512 × 1 × 1 latent space
feature, as shown in Equation (3).

Latent = 8 ∗ DC(x) (3)

where Latent represents latent space features, 8 ∗ DC(·) represents the 8 down-sampling
convolution operations, and x represents the input image, where the output of each down-
sampling convolution operation serves as the input to the next down-sampling convolution
operation. The specific down-sampling convolution operation is shown in Equation (4).

f ea = LReLU(BN(Conv(input))) (4)

where f ea represents the feature map obtained from a down-sampling convolution oper-
ation DC(·), LReLU(·) represents the LeakyReLU activation function, BN(·) represents
the batch normalization operation, and Conv(·) represents the convolution operation with
a kernel size of 4 × 4, stride of 2, and padding of 1. input denotes the input image or
feature map. It should be noted that there is no activation function operation in the first
down-sampling convolutional layer, and the ReLU activation function is used instead of
LeakyReLU in the last down-sampling convolutional layer.

The latent space features have two destinations: The first one is sent to the primary
network to enhance its generation capability, and the second one is sent to the auxiliary
network to strengthen the inherent properties of the latent space features. Within the
auxiliary network, 8 up-sampling convolution modules decode the latent space features
and map them to the low b-value space, as shown in Equation (5).

ŷ = 8 ∗ UC(Latent) (5)

where ŷ represents the output image of the auxiliary generator, and 8 ∗ UC(·) denotes 8
up-sampling transpose convolution operations, where the output of each up-sampling
transpose convolution operation serves as the input to the next up-sampling transpose
convolution operation. The specific details of the up-sampling transpose convolution
operation are outlined in Equations (6) and (7).

f eaCi =

{
f eaDC(9−i), i = 1
Concat( f eaDC(9−i), f eaUC(i−1)), i = 2, 3, ..., 8

(6)

f eaUCi =

{
ReLU(BN(ConvT( f eaCi))), i = 1, 2, ..., 7
Tanh(ConvT( f eaCi)), i = 8

(7)

where f eaDC(9−i) represents the features of the (9-i)-th down-sampling convolutional module,
and f eaUCi represents the features of the i-th up-sampling transpose convolutional module.
Concat(·) represents the operation of concatenating feature dimensions. If this is the first
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up-sampling transpose convolutional module, the Concat(·) operation is ignored. ReLU(·)
represents the ReLU activation function, and ConvT(·) denotes the transpose convolution
operation, with a kernel size of 4 × 4, a stride of 2, and padding of 1. Tanh(·) represents the
Tanh activation function. It is worth noting that different equations are executed for different
values of i, and finally, when i = 8, the final generated image is output.

The discriminator of the auxiliary generator adopts the PatchGAN architecture [13],
which consists of 5 convolutional layers. Each convolutional layer performs down-sampling
on the feature map. Eventually, it obtains a feature map size that is 1

25 × 1
25 times larger

than the original image, where each intensity value in this feature map corresponds to
the discriminative result of a certain region in the input image. PatchGAN divides the
image into small patches for discrimination, which allows for accurate reflection of local
information and enhances accuracy.

2.3.3. Primary GAN

The generator of the primary network consists of down-sampling convolutional blocks,
feature fusion modules, and up-sampling convolutional blocks. The down-sampling
convolutional blocks and up-sampling convolutional blocks have the same architecture as
those in the auxiliary generator, with the only difference being that the input to the primary
generator is the high b-value image. The details and connections between the auxiliary
generator and the primary generator are illustrated in Figure 3. The feature fusion module
combines the encoded features from the auxiliary network’s latent space and the primary
generator, as specified in Equation (8).

f eaout = Fusion(Latent, f eaMDC) (8)

where Fusion(·) represents the feature fusion operation, Latent denotes the latent space
feature map from the auxiliary generator, f eaMDC represents the encoded features from the
primary generator, and f eaout represents the output feature map after the fusion operation.
The specific feature fusion operation is illustrated in Equations (9) and (10).

f eaCout = Concat(Latent, f eaMDC) (9)

f eaout = ReLU(Linear( f eaCout)) (10)

where Linear(·) denotes the linear fusion operation. The linear layer not only reduces the
dimensionality of the features but also effectively integrates the useful features according
to weights. f eaCout represents the output features after the concatenation operation.

The latent space features and the features from the primary generator are combined
through the feature fusion module to obtain richer texture details. After passing through
the feature fusion module, the features are processed by 8 up-sampling convolutional mod-
ules to output the generated images. During the training process, the generated images and
the real images are evaluated by the primary discriminator, promoting the model’s gener-
ation capability through adversarial learning. Similar to the architecture of the auxiliary
generator’s discriminator, the primary discriminator also adopts the PatchGAN network.
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Figure 3. The structure of the two generators. The upper part represents the primary generator (PG),
while the lower part represents the auxiliary generator (AG). In the primary generator, the letter
“F” represents the feature fusion layer, UC(N) represents the up-sampling transpose convolution
operation, and DC(N) represents the down-sampling convolution operation. N represents the number
of convolutional channels.

2.3.4. Loss

The loss function consists of both the primary network loss and the auxiliary network
loss. Both are trained together but independently backpropagated. The loss function
equations of the primary network and the auxiliary network are the same and include both
generator adversarial loss, discriminator adversarial loss, and pixel reconstruction loss.
Equation (11) represents the generator adversarial loss:

LG_adv = E[D(x, G(x))− 1]2 (11)

where LG_adv represents the generator adversarial loss, E(·) denotes the expectation, D(·)
represents the discriminator’s output result, x denotes the input image, and G(x) represents
the generator’s output result. Theoretically, the generator’s adversarial loss is minimized
when the discriminator identifies the generated result as 1. Equation (12) shows the
discriminator adversarial loss:

LD_adv = E[D(x, y)− 1]2 + E[D(x, G(x))]2 (12)

where LD_adv represents the discriminator adversarial loss and y represents the real image.
The discriminator adversarial loss consists of two parts: the first part minimizes when the
concatenated real image with the source image dimension, after being passed through the
discriminator, approaches 1; the second part minimizes when the concatenated generated
image with the source image dimension, after being passed through the discriminator,
approaches 0.

The generator loss and discriminator loss have opposite objective functions, and,
during training, one should be fixed while the other is trained in an alternating manner to
achieve the adversarial goal. Furthermore, to enhance the authenticity of the generated
images, pixel-wise reconstruction loss should be introduced, as shown in Equation (13):

L1 = E[∥y − G(x)∥1] (13)

where L1 represents the pixel-wise reconstruction loss and ∥ · ∥1 represents the L1 norm.
Therefore, the overall loss for both the main network and the auxiliary network is repre-
sented as Equation (14):
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L = λL1L1 + λadv(LG_adv + LD_adv) (14)

where L represents the overall loss, λL1 represents the pixel-wise reconstruction loss
coefficient, and λadv represents the adversarial loss coefficient.

2.4. Process of dMRI Images Augmentation

After training, the entire dMRI image augmentation process using the final PadGAN
model is as follows:

1. Preprocess the dMRI images.
2. Segment the data into 2-dimensional images along the second dimension and input

them into PadGAN for processing to generate low b-value images.
3. Multiply the generated images’ signal intensity values by the maximum value of the

images before normalization to restore the original signal intensity range.
4. Merge the generated two-dimensional images into three-dimensional images and

resample all data to the original size.
5. The synthesized three-dimensional images are incorporated into the 4-D dMRI images

using FSL tools, effectively improving the quality of the dMRI data. The entire process
is illustrated in Figure 4.

Figure 4. The overall processing flow of dMRI images augmentation. The figure provides a detailed
description of the steps outlined in Section 2.4. During testing, the auxiliary generator no longer
outputs results, as there is no need to further optimize the latent space through backpropagation.

3. Results
3.1. Comparison Experiments and Results

The method proposed in this paper is compared with five existing methods that
have shown good performance in the field of medical image-to-image translation research.
Specifically:

1. Pix2pix [13] network adopts the U-Net architecture as the main framework of
the generator.

2. CycleGAN [14] network shares the same generator architecture as pix2pix, but it
involves two generators and two discriminators for cyclic generation tasks.

3. SwinUnet [24] utilizes the Swin Transformer as the main framework for medical
image segmentation tasks, adapted for application in this paper.

4. ResViT [26] builds upon the Vision Transformer architecture as the main generator
framework.

5. pGAN [30] adopts ResNet as the main framework.

For the comparative experiments, the original models’ architectures and training
parameters are used during the training process. All models are pre-trained for 20 epochs
and trained for an additional 80 epochs on an NVIDIA GeForce RTX 3090. Structural
similarity (SSIM), peak signal-to-noise ratio (PSNR), and mutual information (MI) are
selected as quantitative evaluation metrics in this paper.

Table 3 lists the comprehensive results of the AMU, Mount Sinai-P, Mount Sinai-S,
UCDavis, and UWM sites, each containing non-brain tissue. To compare the results with
only brain tissue, the non-brain tissue is removed from all results, as shown in Table 4,
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which displays the results after excluding non-brain tissue for the five sites. The overall
results are consistent with Table 1, but there is a slight decrease. Subsequent experiments
show results after excluding non-brain tissue. The specific results for the five datasets are
shown in Table 5, and Figures 5 and 6. The CycleGAN method produces results closer to
the source images on most datasets. Although this method employs a dual-generator and
dual-discriminator structure, with each generative adversarial network serving separate
tasks for generating target and source images, it is suitable for scenarios where paired
images are not required in both domains. In contrast, both generative adversarial networks
in our method are dedicated to generating low b-value images, resulting in better visual
observations and evaluation metrics. The pGAN method fails to generate detail-rich images,
as it uses ResNet as the basic generator architecture with a deeper network structure, but
lacks the capability to retain encoder feature map information like U-Net. Our method
utilizes the advantages of the U-Net architecture to capture features from different layers,
thereby preserving detailed image information. Transformer-based ResViT and SwinUnet
methods exhibit relatively generic performance due to the differences in global information
from different sites in the macaque brain image dataset and the limited data samples. In
contrast, our method, a fully convolutional neural network, maximizes the local generation
capabilities of convolutional neural networks. The Pix2pix method, a single generator
adversarial network based on the U-Net generator architecture, performs well in generating
global structural features but lacks detailed features. Our method addresses this limitation
by using the auxiliary generative adversarial network to provide hidden space containing
more detailed features, thus compensating for the shortcomings of the single generator
adversarial network in capturing detailed features.

Table 3. Quantitative comparison results including non-brain tissue.

Methods PSNR SSIM MI

pix2pix 33.7100 0.9285 1.4313
CycleGAN 28.7177 0.8681 1.3716

pGAN 25.9224 0.8534 1.3467
SwinUnet 28.7114 0.8799 1.3786

ResViT 24.6464 0.8428 1.3614
Ours 38.8700 0.9556 1.5005

The bold font indicates the best result.

Table 4. Quantitative comparison of non-brain tissue removal.

Methods PSNR SSIM MI

pix2pix 27.6511 0.7683 1.3144
CycleGAN 22.7904 0.5211 1.2528

pGAN 20.0104 0.4600 1.2275
SwinUnet 23.0855 0.5583 1.2623

ResViT 18.7379 0.4161 1.2376
Ours 32.2587 0.8822 1.3828

The bold font indicates the best result.

Table 5. Quantitative comparison between PadGAN and other translation frameworks across five
independent sites.

Model
UCDavis MountSinai-P MountSinai-S AMU UWM

PSNR SSIM MI PSNR SSIM MI PSNR SSIM MI PSNR SSIM MI PSNR SSIM MI

pix2pix 29.0037 0.7994 1.3353 22.4200 0.6227 1.2560 25.9427 0.8027 1.3347 29.6144 0.7919 1.2938 29.0558 0.8367 1.3045
CycleGAN 23.1076 0.5038 1.2514 19.4039 0.3975 1.2299 25.2008 0.6765 1.2872 26.2187 0.7005 1.2778 19.1597 0.4966 1.2367

pGAN 19.2235 0.4242 1.2284 19.9858 0.4199 1.2128 23.8789 0.6279 1.2511 22.0872 0.5719 1.2402 18.0913 0.4958 1.2018
SwinUnet 23.3034 0.5619 1.2584 17.4287 0.3400 1.2495 25.9383 0.7381 1.2993 26.8461 0.6911 1.2759 28.1703 0.7316 1.2662

ResViT 17.4558 0.3666 1.2398 20.1088 0.4487 1.2268 23.9303 0.5899 1.2568 20.2219 0.4879 1.2489 16.8820 0.4320 1.2023
Ours 35.7479 0.9188 1.4185 24.7701 0.8027 1.3379 30.6730 0.9068 1.3826 28.9085 0.8150 1.3033 29.5930 0.8753 1.3229

The bold font indicates the best result.
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Figure 5. Visualization of 3 site datasets. These are 3 randomly selected data samples from the
3 datasets. The first column represents the source image, the last column represents the target image,
and the middle column represents the comparative result. The red box highlights some details.

3.2. Ablation Experiments and Results

We conducted three ablation experiments to further investigate the role and effective-
ness of the auxiliary generator in our proposed method. The details of the experiments are
as follows: (1) removing the auxiliary network and retaining only the encoder part of the
auxiliary network to encode the peak information map, to verify the role of the auxiliary
network; (2) replacing the latent space features extracted by the auxiliary generator with
random Gaussian noise to explore the role of latent space features; and (3) directly reusing
the weights of the main generator in the auxiliary network to verify whether the auxiliary
network needs to be trained separately.

The results are shown in Table 6. (1) After removing the auxiliary network, PSNR
decreased by 5.1256, SSIM decreased by 0.1225, and MI decreased by 0.0736. This indicates
that the auxiliary generator plays an important role in improving the network performance.
(2) When replacing the auxiliary generator with noise, PSNR decreased by 4.2291, SSIM
decreased by 0.0649, and MI decreased by 0.0445. This suggests that the auxiliary generator
can effectively extract latent space features from the peak information map. (3) When
reusing the main network’s network weights in the auxiliary network, PSNR decreased by
1.8627, SSIM decreased by 0.0385, and MI decreased by 0.0371, fully demonstrating that the
latent space learned by the auxiliary generator is different from that of the main generator,
and the auxiliary generator has a necessary existence.
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Figure 6. Visualization of 2 site datasets. These are 2 randomly selected data samples from the
2 datasets. The first column represents the source image, the last column represents the target image,
and the middle column represents the comparative result. The red box highlights some details.

Table 6. Quantitative comparison of ablation experiments.

Methods PSNR SSIM MI

PadGAN 32.3856 0.8825 1.3857
Setting (1) 27.2600 0.7600 1.3121
Setting (2) 28.1565 0.8176 1.3412
Setting (3) 30.5229 0.8440 1.3486

The bold font indicates the best result.

3.3. Xtract and DTI Estimation Results

Xtract is a robust probabilistic tractography method integrated into the FSL6.0 software
package. It utilizes dMRI data to estimate the trajectories and connectivity patterns of white
matter tracts. To assess the effectiveness of the augmented macaque dMRI brain images
through our proposed method, we employed Xtract to compute the structural connectivity
of dMRI brain images. Eight subjects were selected from the UCDavis dataset, and the
images generated by pix2pix and PadGAN were respectively added to the corresponding
dMRI data. Subsequently, we conducted Xtract tractography experiments on the dMRI
images augmented by the pix2pix and PadGAN methods, as well as the original reference
dMRI images, resulting in a total of 42 fiber tracts.

As shown in Figure 7, the fiber bundle visualization results demonstrate that, com-
pared with pix2pix, our method captures more fiber bundles visually, and the shapes are
similar to the reference results. It is worth noting that our results display more and clearer
fiber bundles within the white rectangular area.

DTI is a magnetic resonance imaging technique used to study the diffusion properties
of water molecules within tissues. DTI offers various diffusion parameters, with the
most commonly used being fractional anisotropy (FA) and mean diffusivity (MD). FA
represents the degree of directional diffusion of water molecules within the tissue, while
MD represents the average strength of water molecule diffusion. To better evaluate the
quality of the generated images, this study conducted DTI estimation on dMRI images
augmented by the PadGAN and pix2pix methods. Figure 8 displays the DTI estimation
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results using FA and MD as examples. In the low b-value replacement experiment, our
method demonstrates higher similarity to the original reference dMRI images compared
with the pix2pix method. In the experiment of augmenting the original reference dMRI,
our method shows smoother results. The last column in the figure demonstrates that the
absence of low b-value volumes in dMRI images significantly affects the DTI estimation
results. Therefore, low b-value images are crucial for DTI computation.

Figure 7. Fiber bundle visualization results. The left and middle columns respectively show the
results after data enhancement with the pix2pix and PadGAN methods, while the right column
shows the results of the reference original dMRI image. The part inside the white rectangle is zoomed
in for comparison.

Figure 8. DTI estimation results. The first row displays FA, and the second row shows MD. The first
and second columns respectively show the DTI estimation results after replacing the original low
b-value volume with volumes generated using pix2pix and our method. The third column shows the
DTI estimation results after augmenting the original reference dMRI images using our method for
data augmentation. The fourth and fifth columns respectively display the DTI estimation results for
the reference images and dMRI without the low b-value volume.
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The experiments above indicate that Xtract and DTI estimation results can reflect
the quality of different macaque image generation methods. Therefore, Xtract and DTI
estimation are expected to become further validation methods for assessing the quality of
generated macaque or medical images.

4. Discussion

In this work, we propose a method for dMRI brain image data augmentation using
PadGAN to generate low b-value images. The introduction of peak information maps
creates end-to-end conditions for extracting latent space features, allowing the auxiliary
network to obtain latent space features through adversarial learning. On the basis of the
U-Net network, a feature fusion module is added to the primary generator to merge latent
space features and multi-scale information, thus generating images with rich details. Addi-
tionally, various generative adversarial network models are explored, and the strengths and
weaknesses of each model are analyzed. PadGAN is creatively proposed and compared
with comparative models in qualitative, quantitative, Xtract probabilistic tractography and
DTI estimation to demonstrate its overall performance. Finally, ablation experiments are
conducted on each module of PadGAN to demonstrate the importance of each part.

Both generators in PadGAN adopt the encoder–decoder architecture based on U-Net,
preserving multi-scale information through skip connections, and the introduction of la-
tent space features enables PadGAN to learn fine-grained image features. As shown in
Figures 5 and 6, unlike previous studies on human brain datasets where Transformer-based
network models yield poor results, typically due to the large volume of data in human
brain datasets resulting in different model parameters for each dataset, our approach uses
a unified training strategy for the limited datasets of macaque brain images from each site.
For datasets collected from each site, there are significant differences in acquisition param-
eters. Therefore, attention mechanisms are difficult to perform effectively for multi-site
datasets. While ResNet can maintain model learning capability, even with deep network
layers, it does not preserve multi-scale features like U-Net, resulting in deficiencies in detail
generation. The pix2pix method based on U-Net demonstrates good performance, but,
as a single generator and discriminator method, it still lacks in generating image details.
Although CycleGAN has two generative adversarial networks, these networks are tasked
with mutual conversion between two modal data samples and do not leverage both net-
works to generate images in one target domain. The auxiliary network in PadGAN provides
latent space information to the primary network to enhance the detail generation of the
generated images, utilizing U-Net’s skip connections to preserve multi-scale information,
resulting in superior performance in image details.

Unlike the typical computer vision image-to-image translation domain, the signal
intensity values of MRI images have absolute significance and can be used for DTI estima-
tions or neuroimaging studies. Common images in daily life are usually RGB images with
a maximum pixel intensity value of 255, while the signal intensity value range of macaque
brain images is typically in the range of thousands to tens of thousands. Therefore, when
evaluating the quality of MRI image generation, we can go beyond quantitative metrics
and qualitative observations. For medical MRI, some researchers conduct Turing tests with
expert radiologists to assess the authenticity of generated images [32]. For macaque and
human brain images used in research, we can further evaluate the quality of generated
images by calculating neural tracing or DTI estimation results, which presents a novel
validation approach.

In future work, we can explore the generation of realistic images using multi-modal
data. Although the macaque brain imaging dataset is limited, with few data within each
site, many sites have at least two modalities of data. Utilizing network models that can
effectively leverage multi-modal information may lead to the generation of higher quality
images. Additionally, our method also has the potential for application in human brain
imaging. Firstly, our method can be used for data augmentation of human brain dMRI
images. Although human brain images typically have a higher spatial resolution and
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signal-to-noise ratio, and there are more publicly available datasets with better data quality,
there may still be issues with insufficient collection of low b-value images due to operator
and configuration issues. In such challenges, applying our method directly to human
brain images is a good choice. Secondly, our method has the potential for application in
classification studies of normal and diseased brain images. By using the PadGAN method
to generate more images of a certain modality, the image sample size can be expanded,
thereby improving classification accuracy. However, diseased images typically require
higher precision in a certain region, and it may be a good choice to introduce attention
mechanisms to enhance contextual information.

5. Conclusions

PadGAN is employed to translate high b-value images of macaque brains to low
b-value images and augment dMRI image data. Visually, the low b-value images gener-
ated by PadGAN exhibit richer detail information. In terms of evaluation metrics, both
image quality and structural similarity show significant improvement. Results from Xtract
probabilistic tractography and DTI estimation indicate that the dMRI images obtained
through our data augmentation method yield better outcomes. This work can provide
data augmentation and optimization services for neuroscience, and also offers insights into
quality assessment methods for macaque dMRI brain imaging data.
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